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Abstract

We first propose an adaptive accelerated
proximal gradient (APG) method for mini-
mizing strongly convex composite functions
with unknown convexity parameters. This
method incorporates a restarting scheme to
automatically estimate the strong convexity
parameter and achieves a nearly optimal it-
eration complexity. Then we consider the ℓ1-
regularized least-squares (ℓ1-LS) problem in
the high-dimensional setting. Although such
an objective function is not strongly convex,
it has restricted strong convexity over sparse
vectors. We exploit this property by combin-
ing the adaptive APG method with a homo-
topy continuation scheme, which generates a
sparse solution path towards optimality. This
method obtains a global linear rate of conver-
gence and its overall iteration complexity has
a weaker dependency on the restricted condi-
tion number than previous work.

1. Introduction

We consider first-order methods for minimizing com-
posite objective functions, i.e., the problem of

minimize
x∈Rn

{
φ(x) , f(x) + Ψ(x)

}
, (1)

where f(x) and Ψ(x) are lower-semicontinuous, prop-
er convex functions (Rockafellar, 1970, Section 7). We
assume that f is differentiable on an open set contain-
ing domΨ and its gradient ∇f is Lipschitz continuous
on domΨ, i.e., there exists a constant Lf such that

‖∇f(x)−∇f(y)‖2 ≤ Lf‖x−y‖2, ∀x, y ∈ domΨ. (2)
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We also assume Ψ(x) is simple (Nesterov, 2013), mean-
ing that for any y ∈ domΨ, the following auxiliary
problem can be solved efficiently or in closed-form:

TL(y) = argmin
x

{
∇f(y)Tx+

L

2
‖x− y‖22 +Ψ(x)

}
.

(3)
This is the case, e.g., when Ψ(x) = λ‖x‖1 for any
λ > 0, or Ψ(x) is the indicator function of a closed
convex set that admits an easy projection mapping.

The so-called proximal gradient (PG) method simply
uses (3) as its update rule: x(k+1) = TL(x

(k)), for
k = 0, 1, 2, . . ., where L is set to Lf or determined by
a linear search procedure. The iteration complexity
for the PG method is O(Lf/ǫ) (Nesterov, 2004; 2013),
which means, to obtain an ǫ-optimal solution (whose
objective value is within ǫ of the optimum), the PG
method needs O(Lf/ǫ) iterations. A far better itera-

tion complexity, O
(√

Lf/ǫ
)
, can be obtained by accel-

erated proximal gradient (APG) methods (Nesterov,
2013; Beck & Teboulle, 2009; Tseng, 2008).

The iteration complexities above imply that both PG
and APG methods have a sublinear convergence rate.
However, if f is strongly convex, i.e., there exists a
constant µf > 0 (the convexity parameter) such that

f(x) ≥ f(y) + 〈∇f(y), x− y〉+ µf

2
‖x− y‖22, (4)

for all x, y ∈ domΨ, then both PG and APG
methods will achieve a linear convergence rate with
the iteration complexities being O(κf log(1/ǫ)) and
O(
√
κf log(1/ǫ)) (Nesterov, 2004; 2013), respectively.

Here, κf = Lf/µf is called condition number of the
function f . Since κf is typically a large number, the
iteration complexity of the APG methods can be sig-
nificanly better than that of the PG method for ill-
conditioned problems. However, in order to obtain
this better complexity, the APG methods need to use
the convexity parameter µf , or a lower bound of it,
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explicitly in their updates. In many applications, an
effective lower bound of µf can be hard to estimate.

To address this problem, our first contribution in this
paper is an adaptive APG method for solving prob-
lem (1) when f is strongly convex but µf is unknown.
This method incorporates a restart scheme that can
automatically estimate µf on the fly and achieves an
iteration complexity of O

(√
κf log κf · log(1/ǫ)

)
.

Even if f is not strongly convex (µf = 0), problem (1)
may have special structure that may still allow the
development of first-order methods with linear con-
vergence. This is the case for the ℓ1-regularized least-
squares (ℓ1-LS) problem, defined as

minimize
x

φλ(x) ,
1

2
‖Ax− b‖22 + λ‖x‖1, (5)

where A ∈ R
m×n and b ∈ R

m are the problem data,
and λ > 0 is a regularization parameter. The problem
has important applications in machine learning, signal
processing, and statistics; see, e.g., Tibshirani (1996);
Chen et al. (1998); Bruckstein et al. (2009). We are e-
specially interested in solving this problem in the high-
dimensional case (m < n) and when the solution, de-
noted as x⋆(λ), is sparse.

In terms of the general model in (1), we have f(x) =
(1/2)‖Ax − b‖22 and Ψ(x) = λ‖x‖1. Here f(x) has
a constant Hessian ∇2f(x) = ATA, and we have
Lf = ρmax(A

TA) and µf = ρmin(A
TA) where ρmax(·)

and ρmin(·) denote the largest and smallest eigenval-
ues, respectively, of a symmetric matrix. Under the
assumption m < n, the matrix ATA is singular, hence
µf = 0 (i.e., f is not strongly convex). Therefore, we
only expect sublinear convergence rates (at least glob-
ally) when using first-order optimization methods.

Nevertheless, even in the case ofm < n, when the solu-
tion x⋆(λ) is sparse, the PG method often exhibits fast
convergence when it gets close to the optimal solution.
Indeed, local linear convergence can be established for
the PG method provided that the active submatrix
(columns of A corresponding to the nonzero entries of
the sparse iterates) is well conditioned (Luo & Tseng,
1992; Hale et al., 2008; Bredies & Lorenz, 2008). To
explain this more formally, we define the restricted
eigenvalues of A at the sparsity level s as

ρ+(A, s) = sup

{
xTATAx

xTx
: x 6= 0, ‖x‖0 ≤ s

}
,

ρ−(A, s) = inf

{
xTATAx

xTx
: x 6= 0, ‖x‖0 ≤ s

}
,

(6)
where s is a positive integer and ‖x‖0 denotes the num-
ber of nonzero entries of a vector x ∈ R

n. From the

above definitions, we have

µf ≤ ρ−(A, s) ≤ ρ+(A, s) ≤ Lf , ∀ s > 0.

As discussed before, we have µf = 0 for m < n. But it
is still possible that ρ−(A, s) > 0 holds for some s < m.
In this case, we say that the matrix A satisfies the
restricted eigenvalue condition at the sparsity level s.
Let supp(x) = {j : xj 6= 0}, and assume that x, y ∈ R

n

satisfy |supp(x) ∪ supp(y)| ≤ s. Then it can be shown
(Xiao & Zhang, 2013, Lemma 3) that

f(x) ≥ f(y) + 〈∇f(y), x − y〉+ ρ−(A, s)

2
‖x− y‖22.

The above inequality gives the notion of restricted
strong convexity (cf. strong convexity defined in (4)).
Intuitively, if the iterates of the PG method become
sparse and their supports do not fluctuate much from
each other, then restricted strong convexity leads to
(local) linear convergence. This is exactly what hap-
pens when the PG method speeds up while getting
close to the optimal solution.

Moreover, such a local linear convergence can be ex-
ploited by a homotopy continuation strategy to ob-
tain much faster global convergence (Hale et al., 2008;
Wright et al., 2009; Xiao & Zhang, 2013). The basic
idea is to solve the ℓ1-LS problem (5) with a large
value of λ first, and then gradually decreases the val-
ue of λ until the target regularization is reached. For
each value of λ, Xiao & Zhang (2013) employ the PG
method to solve (5) up to an adequate precision, and
then use the resulting approximate solution to warm
start the PG method for (5) with the next value of λ.
It is shown (Xiao & Zhang, 2013) that under suitable
assumptions for sparse recovery (mainly the restricted
eigenvalue condition), an appropriate homotopy strat-
egy can ensure all iterates of the PG method be sparse,
hence linear convergence at each stage can be estab-
lished. As a result, the overall iteration complexity of
such a proximal-gradient homotopy (PGH) method is

Õ
(
κs log(1/ǫ)

)
where κs denotes the restricted condi-

tion number at some sparsity level s > 0, i.e.,

κs , κ(A, s) =
ρ+(A, s)

ρ−(A, s)
, (7)

and the notation Õ(·) hides additional log(κs) factors.
Our second contribution in this paper is to show that,
by using the adaptive APG method developed in this
paper in a homotopy continuation scheme, we can fur-
ther improve the iteration complexity for solving the
ℓ1-LS problem to Õ

(√
κs′ log(1/ǫ)

)
, where the sparsi-

ty level s′ is slightly larger than the one for the PGH
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method. We note that this result is not a trivial exten-
sion from the convergence results for the PGH method
in Xiao & Zhang (2013). In particular, the adaptive
APG method does not have the property of monotone
decreasing, which was important for the analysis of the
PGH method. In order to overcome this difficulty, we
had to show a “non-blowout” property of our adaptive
APG method, which is interesting in its own right.

2. An APG method for minimizing

strongly convex functions

The main iteration of the APG method is based on a
composite gradient mapping introduced by Nesterov
in (Nesterov, 2013). For any fixed point y and a giv-
en constant L > 0, we define a local model of φ(x)
around y using a quadratic approximation of f but
keeping Ψ intact:

ψL(y;x) = f(y) +∇f(y)T (x− y) + L

2
‖x− y‖22 +Ψ(x).

According to (3), we have

TL(y) = argmin
x

ψL(y;x). (8)

Then the composite gradient mapping of f at y is de-
fined as

gL(y) = L(y − TL(y)).
Following (Nesterov, 2013), we also define a local Lip-
schitz parameter

SL(y) =
‖∇f(TL(y))−∇f(y)‖2

‖TL(y)− y‖2
.

With the machinery of composite gradient mapping,
Nesterov (2004; 2013) developed several variants of
the APG methods. As discussed in the introduction,
compared to the PG method, the iteration complex-
ity of the accelerated methods have a better depen-
dence on the accuracy ǫ when f is not strongly convex,
and a better dependence on the condition number κf
when f is strongly convex. However, in contrast with
the PG method, the better complexity bound of the
APG method in the strongly convex case relies on the
knowledge of the convexity parameter µf , or an effec-
tive lower bound of it, both of which can be hard to
obtain in practice.

To address this problem, we propose an adaptive APG
method that can be applied without knowing µf and
still obtains a linear convergence rate. To do so, we
first present an APG method in Algorithm 1 and in Al-
gorithm 2 upon which the development of the adaptive
APG method is based. We name this method scAPG,
where “sc” stands for “strongly convex.”

Algorithm 1 {x̂, M̂} ← scAPG(x(0), L0, µ, ǫ̂)

parameter: Lmin ≥ µ > 0, γdec ≥ 1
x(−1) ← x(0)

α−1 = 1
repeat

( for k = 0, 1, 2, . . .)
{x(k+1),Mk, αk, g

(k), Sk}
← AccelLineSearch(x(k), x(k−1), Lk, µ, αk−1)

Lk+1 ← max{Lmin,Mk/γdec}
until ω(x(k+1)) ≤ ǫ̂
x̂← x(k+1)

M̂ ←Mk

Algorithm 2 {x(k+1),Mk, αk, g
(k), Sk}

← AccelLineSearch(x(k), x(k−1), Lk, µ, αk−1)

parameter: γinc > 1
L← Lk/γinc
repeat

L← Lγinc
αk ←

√
µ
L

y(k) ← x(k) +
αk(1−αk−1)
αk−1(1+αk)

(x(k) − x(k−1))

x(k+1) ← TL(y
(k))

until φ(x(k+1)) ≤ ψL(y
(k);x(k+1))

Mk ← L
g(k) ←Mk(y

(k) − x(k+1))
Sk ← SL(y

(k))

To use this algorithm, we need to first choose an ini-
tial optimistic estimate Lmin for the Lipschitz constant
Lf : 0 < Lmin ≤ Lf , and two adjustment parameter-
s γdec ≥ 1 and γinc > 1. In addition, this method
requires an input parameter µ > 0, which is an esti-
mate of the true convexity parameter µf . The scAPG
method generates the following three sequences:

αk =

√
µ

Mk
,

y(k) = x(k) +
αk(1− αk−1)

αk−1(1 + αk)
(x(k) − x(k−1)), (9)

x(k+1) = TMk
(y(k)).

where Mk is found by the line-search procedure in Al-
gorithm 2. The line search procedure starts with an es-
timated Lipschitz constant Lk, and increases its value
by the factor γinc until φ(x(k+1)) ≤ ψMk

(y(k);x(k+1)),
which is sufficient to guarantee the convergence. In
each iteration of Algorithm 1, the scAPG method tries
to start the line search at a smaller initial value by set-
ting Lk+1 to be min{Lmin,Mk/γdec}.
The scAPG algorithm can be considered as an exten-
sion of the constant step scheme of Nesterov (2004) for
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minimizing composite functions in (1) when µf > 0.

Indeed, if Mk = Lf , we have αk =
√
µf/Lf for all k

and the update for y(k) becomes

y(k) = x(k) +

√
Lf −√µf√
Lf +

√
µf

(x(k) − x(k−1)), (10)

which is the same as Algorithm (2.2.11) in Nesterov
(2004). Note that, one can not directly apply Algo-
rithm 1 or Nesterov’s constant scheme to problems
without strongly convexity by simply setting µ = 0.

Another difference from Nesterov’s method is that Al-
gorithm 1 has an explicit stopping criterion based on
the optimality residue ω(x(k+1)), which is defined as

ω(x) , min
ξ∈∂Ψ(x)

‖∇f(x) + ξ‖∞, (11)

where ∂Ψ(x) is the subdifferential of Ψ at x. The
optimality residue measures how close a solution x is
to the optimality condition of (1) in the sense that
ω(x⋆) = 0 if and only if x⋆ is an solution to (1).

The following theorem states that, if µ is a positive
lower bound of µf , the scAPG converges geometrically
and it has an iteration complexity O(

√
κf log(1/ǫ)).

Theorem 1. Suppose x⋆ is the optimal solution of (1)
and 0 < µ ≤ µf . Then Algorithm 1 guarantees that

φ(x(k))−φ(x⋆) ≤ τk
[
φ(x(0))−φ(x⋆)+µ

2
‖x(0)−x⋆‖22

]
,

(12)
µ

2
‖y(k)−x⋆‖22 ≤ τk

[
φ(x(0))−φ(x⋆)+µ

2
‖x(0)−x⋆‖22

]
,

(13)

where

τk =

{
1 k = 0,∏k−1

i=0 (1− αi) k ≥ 1.
(14)

Moreover,

τk ≤
(
1−

√
µ

Lfγinc

)k

.

In addition to the geometric convergence of φ(x(k)),
this theorem states that the auxiliary sequence y(k)

also converges to the unique optimizer x⋆ with a geo-
metric rate.

If µ does not satisfies µ ≤ µf , Theorem 1 may not
hold anymore. However, we can show that, in this
case, Algorithm 1 will at least not blowout. More pre-
cisely, we show that φ(x(k)) ≤ φ(x(0)) for all k ≥ 1
as long as µ ≤ Lmin, which can be easily enforced in
implementation of the algorithm.

Lemma 1. Suppose 0 < µ ≤ Lmin. Then Algorithm 1
guarantees that

φ(x(k+1)) ≤ φ(x(0))− Mk

2

∥∥x(k+1) − x(k)
∥∥2
2
. (15)

The non-blowout property is also critical in our analy-
sis of the homotopy method for solving the ℓ1-LS prob-
lem presented in Section 4. In particular, it helps to
show the sparsity of x(k) once x(0) is sparse. (All proofs
for our results are given in the supporting materials).

3. An Adaptive APG method with

restart

When applied to strongly convex minimization prob-
lems, Nesterov’s constant step scheme (10) needs to
use Lf and µf as input parameters. Thanks to the
line-search technique, Algorithm 1 does not need to
know Lf explicitly. However, it still need to know the
convexity parameter µf or a nontrivial lower bound
of it in order to guarantee the geometric convergence
rate given in Theorem 1.

Compared to line search on Lf , estimating µf on-the-
fly is much more sophisticated. Nesterov (2013) sug-
gested a restarting scheme to estimate µf , which does
not require any lower bound of µf , and can be shown
to have linear convergence (up to a logarithmic fac-
tor). In this section, we adapt his restarting technique
to Algorithm 1 and obtain an adaptive APG method.
This method has the same convergence guarantees as
Nesterov’s scheme. However, there are two important
differences, which we will elaborate on at the end of
this section.

We first describe the basic idea of the restart scheme
for estimating µf . Suppose we simply run Algorithm 1
with a guessed value µ. At each iteration, we can check
if the inequality (12) is satisfied. If not, we must have
µ > µf according to Theorem 1, and therefore need to
reduce µ to ensure Algorithm 1 converges in a linear
rate. However, (12) can not be evaluated because x⋆

is unknown. Fortunately, we can show in the following
lemma that, if µ ≤ µf , the norm of the gradient map-
ping g(k) = gMk

(y(k)) generated in Algorithm 1 also
decreases at a linear rate.

Lemma 2. Suppose 0 < µ ≤ µf and the ini-

tial point x(0) of Algorithm 1 is obtained by call-
ing Algorithm 2, i.e., {x(0),M−1, α−1, g

(−1), S−1} ←
AccelLineSearch(xini, xini, Lini, µ, 1) with an arbi-
trary xini ∈ R

n and Lini ≥ Lmin. Then, for any k ≥ 0
in Algorithm 1, we have

∥

∥gMk
(y(k))

∥

∥

2
≤ 2
√
2τk

Mk

µ

(

1 +
S−1

M−1

)

∥

∥g(−1)
∥

∥

2
. (16)
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Algorithm 3 {x̂, M̂ , µ̂} ← AdapAPG (xini, Lini, µ0, ǫ̂)

parameter:Lmin ≥ µ0, γdec ≥ 1, γsc > 1, θsc ∈ (0, 1)

{x(0),M−1, α−1, g
(−1), S−1}

← AccelLineSearch(xini, xini, Lini, µ0, 1)
x(−1) ← x(0), L−1 ←M−1, µ← µ0

α−1 ← 1, τ0 ← 1, k ← 0
repeat

{x(k+1),Mk, αk, g
(k), Sk}

← AccelLineSearch(x(k), x(k−1), Lk, µ, αk−1)
τk+1 ← τk(1− αk)
if condition A holds, then
x(0) ← x(k+1), x(−1) ← x(k+1), L−1 =Mk

g(−1) ← g(k), M−1 ←Mk, S−1 ← Sk

k ← 0
else

if condition B holds, then
µ← µ/γsc
k ← 0

else

Lk+1 ← max{Lmin,Mk/γdec}
k ← k + 1

end if

end if

until ω(x(k+1)) ≤ ǫ̂
x̂← x(k+1), M̂ ←Mk, µ̂← µ

Unlike the inequality (12), the inequality (16) can be
checked explicitly and, if it does not hold, we know
µ > µf and need to reduce µ.

Now we are ready to develop the adaptive APG
method. Let θsc ∈ (0, 1) be a desired shrinking factor.
We check the following two conditions at iteration k
of Algorithm 1:

• A:
∥∥gMk

(y(k))
∥∥
2
≤ θsc

∥∥g(−1)
∥∥
2
.

• B: 2
√
2τk

Mk

µ

(
1 + S−1

M−1

)
≤ θsc.

If A is satisfied first, then we restart Algorithm 1 with
x(k+1) as the new starting point, set k = 0, and update
the three quantities g(−1), S−1 and M−1 accordingly
(again use α−1 = 1 and τ0 = 1). If A is not satisfied
but B is satisfied first, it means that µ is larger than
µf . In fact, if µ ≤ µf , then combining condition B
with Lemma 2 would imply that A also holds. This
contradiction indicates that if B is satisfied first, we
must have µ > µf , and we have to reduce µ, say by
a factor γsc > 1. In this case, we restart Algorithm 1
still at x(0) and keep g(−1), S−1 and M−1 unchanged.
If neither conditions are satisfied, we continue Algo-
rithm 1 to its next iterate until the optimality residue
is smaller than a prescribed value. We present the

above procedure formally in Algorithm 3, whose iter-
ation complexity is given by the following theorem.

Theorem 2. Assume µ0 > µf > 0. Let gini de-

notes the first g(−1) computed by Algorithm 3, and
NA and NB the number of times that condition-
s A and B are satisfied, respectively. Then NA ≤⌈
log1/θsc

((
1+

Lf

Lmin

)
‖gini‖2

ǫ̂

)⌉
and NB ≤

⌈
logγsc

(
µ0

µf

)⌉

and the total number of iterations is at most

(NA+NB)

√

Lfγincγsc
µf

ln

(

8

(

Lfγincγsc
µfθsc

)2(

1 +
Lf

Lmin

)2
)

.

Note that if 0 < µ0 ≤ µf , then NB = 0.

The total number of iterations given in Theorem 2 is
asymptotically

O
(
κ
1/2
f log(κf ) log

(κf
ǫ̂

))
+O

(
κ
1/2
f log(κf )

)
.

This is the same complexity as for the restart scheme
proposed by Nesterov for his accelerated dual gradient
(ADG) method (Nesterov, 2013, Section 5.3). Despite
using a similar restart scheme and having the same
complexity bound, here we elaborate on some impor-
tant differences between our method from Nesterov’s.

• Nesterov’s ADG method exploits strong convex-
ity in Ψ instead of f . In order to use it under
our assumption (that f is strongly convex), one
needs to relocate a strong convexity term from f
to Ψ, and this relocated term needs to be adjusted
whenever the estimate µ is reduced.

• The restart scheme suggested in (Nesterov,
2013, Section 5.3) uses an extra line-search at each
iteration, solely for the purpose of computing the
gradient mapping at x(k). Our method directly
use the gradient mapping at y(k), which does not
require the extra line-search, therefore the com-
putational cost per iteration is lower.

4. Homotopy continuation for sparse

optimization

In this section, we focus on the ℓ1-regularized least-
squares (ℓ1-LS) problem (5) in the high-dimensional
setting i.e., with m < n. This is a special case of (1),
but the function f(x) = (1/2)‖Ax−b‖22 is not strongly
convex when m < n. Therefore, we only expect a sub-
linear convergence rate (at least globally) when using
traditional first-order optimization methods.

Nevertheless, as explained in the introduction, one can
use a homotopy continuation strategy to obtain much
faster convergence. The key idea is to solve the ℓ1-LS
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Algorithm 4 x̂(tgt) ← APGHomotopy(A, b, λtgt, ǫ, L0, µ̂0)

input:A ∈ R
m×n, b ∈ R

n, L0 ≥ µ̂0 > 0
parameter: η ∈ (0, 1), δ ∈ (0, 1)
initialize: λ0 ← ‖AT b‖∞, x̂(0) ← 0, M̂0 ← L0

N ← ⌊ln(λ0/λtgt) / ln(1/η)⌋
for K = 0, 1, 2, . . . , N − 1 do

λK+1 ← ηλK
ǫ̂K+1 ← δλK+1

{x̂(K+1), M̂K+1, µ̂K+1}
← AdapAPG

(
x̂(K), M̂K , µ̂K , ǫ̂K+1, λK+1

)

end for

{x̂(tgt), M̂tgt} ← AdapAPG
(
x̂(N), M̂N , µ̂N , ǫ, λtgt

)

return:x̂(tgt)

problem with a large regularization parameter λ0 first,
and then gradually decreases the value of λ until the
target regularization is reached. For a fixed λ, adap-
tive APG method (Algorithm 3) is employed to solve
the ℓ1-LS problem up to an adequate precision, then
the solution is used to warm start the next stage. We
show that such a homotopy scheme guarantees that all
iterates generated are sufficiently sparse, which implies
restricted strong convexity. As a result, a linear rate
of convergence can be established for each homotopy
stage, and the overall complexity is Õ

(√
κs′ log(1/ǫ)

)

with s′ slightly larger than s in the complexity of PGH.

The APG homotopy method is presented in Algorith-
m 4. To avoid confusion over the notations, we use
λtgt to denote the target regularization parameter in
(5). The method starts with λ0 = ‖AT b‖∞ which is
the smallestλ such that the ℓ1-LS problem has the triv-
ial solution 0 (by examining the optimality condition).
This method has two extra parameters η ∈ (0, 1) and
δ ∈ (0, 1). They control the algorithm as follows: The
sequence of values for the regularization parameter is
determined as λk = ηkλ0 for k = 1, 2, . . ., until the tar-
get value λtgt is reached. For each λk except λtgt, we
solve problem (5) with a proportional precision δλk.
For the last stage with λtgt, we solve to the absolute
precision ǫ.

Our convergence analysis of the APG homotopy
method is based on the following assumption, which
involves the restricted eigenvalues defined in (6).

Assumption 1. Suppose b = Ax̄+z. Let S̄ = supp(x̄)
and s̄ = |S̄|. There exist γ > 0 and δ′ ∈ (0, 0.2] such
that γ > (1 + δ′)/(1− δ′) and

λtgt ≥ 4max

{
2,

γ + 1

(1− δ′)γ − (1 + δ′)

}
‖AT z‖∞.

(17)
Moreover, we assume there exists an integer s̃ such

that ρ−(A, s̄+ 3s̃) > 0 and

s̃ >
24
(
γincρ+(A, s̄+ 3s̃) + 3ρ+(A, s̃)

)

ρ−(A, s̄+ s̃)
(1+γ)s̄. (18)

We also assume that Lmin ≤ γincρ+(A, s̄+ 3s̃).

We will show that by choosing the parameters η and δ
in Algorithm 4 appropriately, these conditions also im-
ply that all iterates along the solution path are sparse.
We note that Assumption 1 is very similar to Assump-
tion 1 in Xiao & Zhang (2013) (they differ only in the
constants in the conditions), and interpretations and
remarks made there also apply here. More specifically,

• The existence of s̃ satisfying the conditions
like (18) is necessary and standard in sparse recov-
ery analysis. It is closely related to the restricted
isometry property (RIP) of Candès & Tao (2005)
which assumes that there exist some s > 0, and
ν ∈ (0, 1) such that κ(A, s) < (1 + ν)/(1− ν).

• The RIP-like condition (18) can be much stronger
than the corresponding conditions established in
the sparse recovery literature (see, e.g., Li & Mo
(2011) and references therein), which are only
concerned about the recovery property of the opti-
mal solution x⋆. In contrast, our condition need-
s to guarantee sparsity for all iterates along the
solution path, thus is “dynamic” in nature. In
particular, in addition to the matrix A, it also
depends on algorithmic parameters γinc, η and δ
(Theorem 4 will relate η to δ and δ′).

Our first result below concerns the local linear conver-
gence of Algorithm 3 when applied to solve the ℓ1-LS
problem at each stage of the homotopy method. Ba-
sically, if the starting point x(0) is sparse and the op-
timality condition is satisfied with adequate precision,
then all iterates along the solution path are sparse.
This implies that restricted strong convexity holds and
Algorithm 3 actually has linear convergence.

Theorem 3. Suppose Assumption 1 holds. If the ini-
tial point xini in Algorithm 3 satisfies

∥∥xiniS̄c

∥∥
0
≤ s̃, ω(xini) ≤ δ′λ, (19)

then for all k ≥ 0, we have
∥∥x(k)

S̄c

∥∥
0
≤ s̃. Moreover,

all the three conclusions of Theorem 2 holds by replac-
ing Lf and µf with ρ+(A, s̄ + 3s̃) and ρ−(A, s̄ + 3s̃),
respectively.

Our next result gives the overall iteration complexity
of the APG homotopy method in Algorithm 4. To
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simplify presentation, we let s′ = s̄ + 3s̃, and use the
following notations:

ρ+(s
′) = ρ+(A, s̄+ 3s̃),

ρ−(s
′) = ρ−(A, s̄+ 3s̃),

κs′ = κ(A, s̄+ 3s̃) =
ρ+(A, s̄+ 3s̃)

ρ−(A, s̄+ 3s̃)
.

Roughly speaking, if the parameters δ and η are cho-
sen appropriately, then the total number of proximal-
gradient steps in Algorithm 4 for finding an ǫ-
optimal solution is Õ(

√
κs′ ln(1/ǫ)), which improves

the Õ (κs ln(1/ǫ)) complexity of PGH in the depen-
dence on restricted condition number.

Theorem 4. Suppose Assumption 1 holds for some
δ′, γ and s̃, and the parameters δ and η in Algo-
rithm 4 are chosen such that 1+δ

1+δ′ ≤ η < 1. Let

N =
⌊
ln (λ0/λtgt) / ln η

−1
⌋
as in the algorithm. Then:

1. Condition (19) holds for each call of Algorithm 3.
For K = 0, . . . , N − 1, the number of gradient
steps in each call of Algorithm 3 is no more than

(
log 1

θsc

(
C

δ

)
+D

)√
κs′γincγsc

× ln

(
8

(
κs′γincγsc

θsc

)2(
1 +

ρ+(s
′)

Lmin

)2
)
,

where C =
(
1 + ρ+(s′)

Lmin

)√
8γincκs′(1 + γ)s̄ and

D=
⌈
logγsc

(
µ̂0

ρ−(s′)

)⌉
+1. It is independent of λK .

2. For each K ≥ 0, the outer iterates x̂(K) satisfies

φλtgt
(x̂(K))− φ⋆λtgt

≤ η2(K+1) 4.5(1 + γ)λ20s̄

ρ−(A, s̄+ s̃)
,

and the following bound on sparse recovery holds

‖x̂(K) − x̄‖2 ≤ ηK+1 2λ0
√
s̄

ρ−(A, s̄+ s̃)
.

3. When Algorithm 4 terminates, the total num-
ber of proximal-gradient steps is Õ

(√
κs′ ln(1/ǫ)

)
,

Moreover, the output x̂(tgt) satisfies

φλtgt
(x̂(tgt))− φ⋆λtgt

≤ 4(1 + γ)λtgts̄

ρ−(A, s̄+ s̃)
ǫ.

We note that our result is not a simple extension of
those in Xiao & Zhang (2013). In particular, the Ada-
pAPG method do not have the property of monotone
decreasing, which is key for establishing the complex-
ity of the PGH method in Xiao & Zhang (2013). In-
stead, our proof relies on the non-blowout property
(Lemma 1) to show that all iterates along the solution
path are sparse (details are given in the supporting
materials).

5. Numerical experiments

In this section, we present preliminary numerical ex-
periments to support our theoretical analysis. In ad-
dition to the PG and PGH methods (Xiao & Zhang,
2013), we also compare our method with FISTA
(Beck & Teboulle, 2009) and its homotopy variants.

We implemented FISTA with an adaptive line-search
over the Lipschitz constant Lf , but it does not use or
estimate the convexity parameter µf . Hence it has a

sublinear complexity O(
√
Lf/ǫ). In our experiments,

we also compare with a simple restart scheme for
FISTA suggested by O’Donoghue & Candès (2012):
restart FISTA whenever it exhibits nonmonotone be-
haviors. In particular, we implemented the gradient
scheme: restart whenever gLk

(y(k−1))T (x(k)−x(k−1)) >
0, where x(k) and y(k) are two sequences generated
by FISTA, similar to those in our AdapAPG method.
O’Donoghue & Candès (2012) show that for strongly
convex pure quadratic functions, this restart scheme
leads to the optimal complexity of O

(√
κf ln(1/ǫ)

)
.

However, their analysis does not hold for the ℓ1-LS
problem or other non-quadratic functions. We call this
method FISTA+RS (meaning FISTA with ReStart).

For our AdapAPG method (Algorithm 3) and APG
homotopy method (Algorithm 4), we use the following
values of the parameters unless otherwise stated:

parameters γinc γdec θsc γsc η δ
values 2 2 0.1 10 0.8 0.2

To make the comparison clear, we generate an ill-
conditioned random matrix A following the experi-
mental setup in Agarwal et al. (2012):

• Generate a random matrix B ∈ R
m×n with Bij

following i.i.d. standard normal distribution.

• Choose ω ∈ [0, 1), and for i = 1, . . . ,m, gener-
ate each row Ai,: by Ai,1 = Bi,1/

√
1− ω2 and

Ai,j+1 = ωAi,j +Bi,j for j = 2, . . . , n.

It can be shown that the eigenvalues of E[ATA] lie

within the interval
[

1
(1+ω)2 ,

2
(1−ω)2(1+ω)

]
. If ω = 0,

then A = B and the covariance matrix ATA is well
conditioned. As ω → 1, it becomes progressively more
ill-conditioned. In our experiments, we generate the
matrix A with m = 1000, n = 5000, and ω = 0.9.

Figure 1 shows the computational results of the four d-
ifferent methods: PG, FISTA, FISTA+RS, AdapAPG,
and their homotopy continuation variants (denoted by
“+H”). For each method, we initialize the Lipschitz
constant by L0 = maxj∈{1,...,n} ‖A:,j‖22. For the Ada-
pAPG method, we initialize the estimate of convexity
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Figure 1. Solving an ill-conditioned ℓ1-LS problem. AdapAPG1 starts with µ0=L0/10, and AdapAPG2 uses µ0=L0/100.

parameter with two different values, µ0 = L0/10 and
µ0 = L0/100, and denote their results by AdapAPG1
and AdapAPG2, respectively.

From the top-left plot, we observe that PG,
FISTA+RS and AdapAPG all go through a slow
plateau before reaching fast local linear convergence.
FISTA without restart does not exploit the strong con-
vexity and is the slowest asymptotically. Their ho-
motopy continuation variants shown in the bottom-
left plot are much faster. Each vertical jump on the
curves indicates a change in the value of λ in the homo-
topy scheme. In particular, it is clear that all except
FISTA+H enter the final homotopy stage with fast lin-
ear convergence. In the final stage, the PGH method
has a rather flat slope due to ill-conditioning of the A
matrix; in contrast, FISTA+RS and AdapAPG have
much steeper slopes due to their accelerated schemes.
AdapAPG1 started with a modest slope, and then de-
tected that the µ value was too big and reduced it by
a factor of γsc = 10, which resulted in the same fast
convergence rate as AdapAPG2 after that.

The two plots in the middle show the sparsity of each
iterates along the solution paths of these methods. We
observe that FISTA+RS and AdapAPG entered fast
local convergence precisely when their iterates became
sufficiently sparse, i.e., when ‖x(k)‖0 became close to
that of the final solution. In contrast, the homotopy
variants of these algorithms kept all iterates sparse by

using the warm start from previous stages. Therefore,
restricted strong convexity hold along the whole path
and linear convergence was maintained at each stage.

The right column shows the automatic tuning of the
local Lipschitz constantMk and the restricted convex-
ity parameter µ. We see that the homotopy method-
s (bottom-right plot) have relatively smaller Mk and
larger µ than the ones without using homotopy con-
tinuation (top-right plot), which means much better
conditioning along the iterates. In particular, the ho-
motopy AdapAPG method used fewer number of re-
ductions of µ, for both initializations of µ0.

Overall, we observe that for the ℓ1-LS problem, the ho-
motopy continuation scheme is very effective in speed-
ing up different methods. Even with the overhead of
estimating and tuning µ, the AdapAPG+H method is
close in efficiency compared with the FISTA+RS+H
method. If the initial guess of µ is not far off, then
AdapAPG+H gives the best performance. Finally, we
note that unlike the AdapAPG method, the optimal
complexity of the FISTA+RS method has not been es-
tablished for minimizing general strongly convex func-
tions (including ℓ1-LS). Although often quite competi-
tive in practice, we have observed non-quadratic cases
in which FISTA+RS demonstrate less desirable con-
vergence (see examples in the supporting materials and
also comments in O’Donoghue & Candès (2012)).
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6. Appendix

6.1. Proof of Theorem 1

We will also need the following notations and results to prove Theorem 1.

Lemma 3. Suppose µ ≤ µf and the inequality φ(TL(y)) ≤ ψL(y;TL(y)) holds for y. Then, for any x ∈ R
n, we

have

φ(x) ≥ φ(TL(y)) + 〈gL(y), x− y〉+
1

2L
‖gL(y)‖2 +

µ

2
‖x− y‖2. (20)

We omit the proof of this lemma since it is almost identical to that of (Nesterov, 2004, Theorem 2.2.7 ), in which
Ψ is restricted to be the indicator function of a closed convex set. A variant of this lemma corresponding to
µ = 0 appeared in (Beck & Teboulle, 2009, Lemma 2.3).

The proof of Theorem 1 is based on the notion of estimate sequence developed by Nesterov (Nesterov, 2004).
We first give its definition and a few lemmas that are necessary for our proof.

Definition 1. (Nesterov, 2004, Definition 2.2.1) A pair of sequences {Vk(x)}k≥0 and {τk}k≥0, τk ≥ 0, is called
an estimate sequence of the function φ(x) if

τk → 0

and for any x ∈ R
n and all k ≥ 0, we have

Vk(x) ≤ (1− τk)φ(x) + τkV0(x). (21)

Lemma 4. (Nesterov, 2004, Lemma 2.2.1) Suppose x⋆ is an optimal solution to (1). Let the pair {Vk(x)}k≥0

and {τk}k≥0 be an estimate sequence of φ(x). If we have some sequence {xk}k≥0 satisfying

φ(x(k)) ≤ V ⋆
k := min

x∈Rn
Vk(x), (22)

then
φ(x(k))− φ(x⋆) ≤ τk [V0(x⋆)− φ(x⋆)] . (23)

Lemma 5. Assume that f(x) has Lipschitz continuous gradient and is strongly convex with convexity parameter
µf > 0. Moreover, assume 0 < µ ≤ µf and

1. {y(k)}k≥0 is an arbitrary sequence in R
n,

2. {Mk}k≥0 is a sequence such that φ
(
TMk

(y(k))
)
≤ ψMk

(
y(k);TMk

(y(k))
)
,

3. {αk}k≥0 is a sequence that satisfies αk ∈ (0, 1) and
∑∞

k=0 αk =∞.

Define the sequence {Vk(x)}k≥0 by letting V0(x) be an arbitrary function on R
n and for k ≥ 0,

Vk+1(x) = (1 − αk)Vk(x) (24)

+ αk

[
φ
(
TMk

(y(k))
)
+
〈
gMk

(y(k)), x− y(k)
〉
+

1

2Mk

∥∥gMk
(y(k))

∥∥2
2
+
µ

2
‖x− y(k)‖22

]
,

and define the sequence {τk}k≥0 by setting τ0 = 1 and

τk+1 = τk(1− αk), k ≥ 0. (25)

Then the pair {Vk(x)}k≥0 and {τk}k≥0 is an estimate sequence of φ(x).

Proof. First we show that the inequality (21) holds for all k ≥ 0. It holds for k = 0 since τ0 = 1. Suppose it
holds for some k ≥ 0. Then the assumption on {Mk}k≥0 and Lemma 3 imply

Vk+1(x) ≤ (1− αk)Vk(x) + αkφ(x)

= (1− (1 − αk)τk)φ(x) + (1− αk)(Vk(x) − (1− τk)φ(x))
≤ (1− (1 − αk)τk)φ(x) + (1− αk)τkV0(x)

= (1− τk+1)φ(x) + τk+1V0(x).
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In addition, we note that the sequence {τk}k≥0 defined by (25) is the same as the one given in (14), and the
assumptions αk ∈ (0, 1) and

∑∞
k=0 αk =∞ ensures τk → 0. Therefore, by Definition 1, {Vk(x)}k≥0 and {τk}k≥0

is an estimate sequence of φ(x).

Lemma 6. Let V0(x) = φ(x(0)) + µ
2 ‖x− x(0)‖22 where x(0) is an arbitrary point in R

n. If we choose αk =
√

µ
Mk

for k ≥ 0, then the sequence {Vk(x)}k≥0 defined by (24) can be written as

Vk(x) = V ⋆
k +

µ

2
‖x− v(k)‖22, (26)

where the sequences {v(k)} and {V ⋆
k } are defined as v(0) = x(0), V ⋆

0 = φ(x(0)), and for k ≥ 0,

v(k+1) = (1 − αk)v
(k) + αky

(k) − 1

αkMk
gMk

(y(k)), (27)

V ⋆
k+1 = (1 − αk)V

⋆
k + αkφ

(
TMk

(y(k))
)
− 1− αk

2Mk

∥∥gMk
(y(k))

∥∥2
2

(28)

+αk(1− αk)
(µ
2
‖y(k) − v(k)‖22 +

〈
gMk

(y(k)), v(k) − y(k)
〉)

.

Proof. Follow similar algebraic derivations as in (Nesterov, 2004, Lemma 2.2.3), omitted here.

In order to prove Theorem 1, we first notice that the three sequences generated by the scAPG method (Algo-
rithms 2 and 1), {y(k)}, {Mk} and {αk}, satisfy the assumptions in Lemma 5. More specifically, Lemma 5 does
not have any restriction on {y(k)}, the condition on {Mk} is exactly the stopping criterion in Algorithm 2, and
also

αk =

√
µ

Mk
≥
√

µ

γincLf
=⇒ αk ∈ (0, 1),

∞∑

k=0

αk =∞.

Therefore, we can use them to construct an estimate sequence as in (24) and (25). Next we need to show that
the choice of x(k+1) = TMk

(y(k)) guarantees the condition (22), so that we can invoke Lemma 4 to prove the
convergence rate.

To proceed, we split the update of y(k), i.e.,

y(k) = x(k) +
αk(1− αk−1)

αk−1(1 + αk)
(x(k) − x(k−1)), (29)

into the following two steps:

v(k) = x(k) +
1− αk−1

αk−1
(x(k) − x(k−1)), (30)

y(k) =
αkv

(k) + x(k)

αk + 1
. (31)

It is straightforward to check that substituting the expression of v(k) in (30) into (31) yields (29). Also it is no
coincidence that we used the same notation v(k) as the minimizer of Vk(x): together with (31), the update of
v(k) in (27) is equivalent to (30). To see this, we first check that with the choice of α−1 = 1 and x(−1) = x(0)

in Algorithm 1, it holds that y(0) = v(0) = x(0). Then, with the choice of x(k+1) = TMk
(y(k)) for k ≥ 0, the

expression of v(k+1) in (27) becomes

v(k+1) = (1− αk)v
(k) + αky

(k) − 1

αkMk
gMk

(y(k))

= (1− αk)v
(k) + αky

(k) − 1

αkMk
Mk(y

(k) − x(k+1))

= (1− αk)v
(k) +

(
α2
k − 1

αk

)
y(k) +

1

αk
x(k+1).
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Now replacing y(k) in the above expression with the right-hand side of (31) yields

v(k+1) = (1− αk)v
(k) +

(
α2
k − 1

αk

)
αkv

(k) + x(k)

αk + 1
+

1

αk
x(k+1)

= x(k+1) +
1− αk

αk
(x(k+1) − x(k)),

which is the same as (30). Therefore, the sequence yk generated in Algorithm 2 is a convex combination of the
current iterate x(k) and v(k), which is the minimizer of the function Vk(x),

Finally, we are ready to prove that (22) holds for all k ≥ 0. It holds for k = 0 simply by the definition of V ⋆
0 .

Given that it holds for some k, i.e., V ⋆
k ≥ φ(x(k)), the expression of V ⋆

k+1 in (28) implies

V ⋆
k+1 ≥ (1− αk)φ(x

(k)) + αkφ(x
(k+1))− 1− αk

2Mk
‖gMk

(y(k))‖22

+αk(1− αk)
〈
gMk

(y(k)), v(k) − y(k)
〉
. (32)

According to Lemma 3, we have

φ(x(k)) ≥ φ(x(k+1)) +
〈
gMk

(y(k)), x(k) − y(k)
〉
+

1

2Mk
‖gMk

(y(k))‖22 +
µ

2
‖x(k) − y(k)‖22

≥ φ(x(k+1)) +
〈
gMk

(y(k)), x(k) − y(k)
〉
+

1

2Mk
‖gMk

(y(k))‖22.

Applying this to φ(x(k)) in (32) yields

V ⋆
k+1 ≥ φ(x(k+1)) + (1− αk)

〈
gMk

(y(k)), αk(v
(k) − y(k)) + x(k) − y(k)

〉

= φ(x(k+1)) + (1− αk)
〈
gMk

(y(k)),
(
αkv

(k) + x(k)
)
− (αk + 1)y(k)

〉

= φ(x(k+1)),

where the last equality is due to (31). We have shown that (22) holds for all k ≥ 0. Therefore, the result (12) of
Theorem 1 follows from Lemma 4 and the definition of V0(x).

It remains to prove (13). Using strong convexity of φ and (12), we have

µ

2
‖x(k) − x⋆‖22 ≤ φ(x(k))− φ(x⋆) ≤ τk

[
φ(x(0))− φ(x⋆) + µ

2
‖x(0) − x⋆‖22

]
= τk (V0(x

⋆)− φ(x⋆)) .

According to (26),
µ

2
‖v(k) − x⋆‖22 = Vk(x

⋆)− V ⋆
k .

Since the relationship φ(x(k)) ≤ V ⋆
k implies φ(x⋆) ≤ V ⋆

k , we have

µ

2
‖v(k) − x⋆‖22 ≤ Vk(x

⋆)− φ(x⋆)
≤ (1− τk)φ(x⋆) + τkV0(x

⋆)− φ(x⋆)
= τk (V0(x

⋆)− φ(x⋆)) ,
where in the second inequality we used the fact that {Vk(x)} and {τk} is an estimate sequence of φ(x). Finally,
by convexity of the function µ

2 ‖ · −x⋆‖22 and (31),

µ

2
‖y(k) − x⋆‖22 ≤ αk

αk + 1
· µ
2
‖v(k) − x⋆‖22 +

1

αk + 1
· µ
2
‖x(k) − x⋆‖22

≤ αk

αk + 1
τk (V0(x

⋆)− φ(x⋆)) + 1

αk + 1
τk (V0(x

⋆)− φ(x⋆))

= τk (V0(x
⋆)− φ(x⋆))

= τk

[
φ(x(0))− φ(x⋆) + µ

2
‖x(0) − x⋆‖22

]
.

This finishes the proof of Theorem 1.
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6.2. Proof of Lemma 1

We first need to prove the following lemma.

Lemma 7. Suppose 0 < µ ≤ Lmin. Then Algorithm 1 guarantees that

φ(x(k+1)) ≤ φ(x(k)) + Mk−1

2

∥∥x(k) − x(k−1)
∥∥2
2
− Mk

2

∥∥x(k+1) − x(k)
∥∥2
2
. (33)

Proof. According to the optimality of x(k+1) = TMk
(y(k)) in minimizing the function ψ(y(k), ·), there exists a

ξ ∈ ∂Ψ(x(k+1)) such that
∇f(y(k)) + ξ +Mk(x

(k+1) − y(k)) = 0. (34)

Let βk = αk(1−αk−1)
αk−1(1+αk)

. Using the assumed property of f(x), we have

φ(x(k+1)) ≤ f(y(k)) + 〈∇f(y(k)), x(k+1) − y(k)〉+ Mk

2
‖x(k+1) − y(k)‖22 +Ψ(x(k+1))

= f(y(k)) + 〈∇f(y(k)), x(k+1) − x(k)〉

+〈∇f(y(k)), x(k) − y(k)〉+ Mk

2
‖x(k+1) − y(k)‖22 +Ψ(x(k+1))

= f(y(k))− 〈ξ +Mk(x
(k+1) − y(k)), x(k+1) − x(k)〉

+〈∇f(y(k)), x(k) − y(k)〉+ Mk

2
‖x(k+1) − y(k)‖22 +Ψ(x(k+1))

= f(y(k)) + 〈∇f(y(k)), x(k) − y(k)〉+Ψ(x(k+1)) + 〈ξ, x(k) − x(k+1)〉

+
Mk

2
‖x(k+1) − y(k)‖22 −Mk〈x(k+1) − y(k), x(k+1) − x(k)〉

≤ f(x(k))− µf

2
‖x(k) − y(k)‖22 +Ψ(x(k))

+
Mk

2
‖x(k+1) − y(k)‖22 −Mk〈x(k+1) − y(k), x(k+1) − x(k)〉.

Here, the first inequality is due to the stopping condition for searching Mk in algorithm 1. The first and third
equalities are just reorganizing terms while the second one is due to (34). The last inequality are guaranteed by
the strong convexity of f(x) and the convexity of Ψ(x). Given that y(k) = x(k)+βk(x

(k)−x(k−1)), the inequality
above implies

φ(x(k+1)) ≤ φ(x(k))− µfβ
2
k

2
‖x(k) − x(k−1)‖22 +

Mk

2
‖x(k+1) − x(k) − βk(x(k) − x(k−1))‖22

−Mk〈x(k+1) − x(k) − βk(x(k) − x(k−1)), x(k+1) − x(k)〉

= φ(x(k)) +
(Mk − µf )β

2
k

2
‖x(k) − x(k−1)‖22 −

Mk

2
‖x(k+1) − x(k)‖22.

Using the fact α2
kMk = µ, we can show that

(Mk − µf )β
2
k = (Mk − µf )

(1− αk−1)
2α2

k

(1 + αk)2α2
k−1

= (Mk − µf )
(1− αk−1)

2Mk−1

(1 + αk)2Mk

=

(
1− µf

Mk

)
(1− αk−1)

2

(1 + αk)2
Mk−1 ≤ Mk−1,

which implies our conclusion.

Then, Lemma 1 can be easily proved by applying inequality (33) recursively to obtain

φ(x(k+1)) ≤ φ(x(0)) +
M−1

2
‖x(0) − x(−1)‖22 −

Mk

2
‖x(k+1) − x(k)‖22

= φλ(x
(0))− Mk

2
‖x(k+1) − x(k)‖22.

Here the last equality holds because x(0) = x(−1).
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6.3. Proof of Lemma 2

We will need the following properties of composite gradient mapping shown in (Nesterov, 2007):

Lemma 8. (Part of (Nesterov, 2007, Theorem 2)) For any y ∈ domΨ and any L > 0,

ψL(y;TL(y)) ≤ φ(y)−
1

2L
‖gL(y)‖22.

Lemma 9. (Part of (Nesterov, 2007, Theorem 1)) For any x, y ∈ domΨ and any L > 0, we have

〈
φ′(TL(y)), x − TL(y)

〉
≥ −

(
1 +

1

L
SL(y)

)
· ‖gL(y)‖2 · ‖TL(y)− x‖2.

Lemma 10. (Nesterov, 2007, Lemma 2) Suppose φ is strongly convex with convexity parameter µ > 0, and let
x⋆ be the unique minimizer of φ. Then for any y ∈ domΨ and any L > 0, we have

‖TL(y)− x⋆‖2 ≤
1

µ

(
1 +

1

L
SL(y)

)
‖gL(y)‖2.

By definition of the gradient mapping,

∥∥gMk
(y(k))

∥∥
2
=
∥∥Mk

(
y(k) − x(k+1)

)∥∥
2
≤Mk

(∥∥y(k) − x⋆
∥∥
2
+
∥∥x(k+1) − x⋆

∥∥
2

)
,

where x⋆ is the unique minimizer of φ. By strong convexity of φ, we have

µ

2

∥∥x(k+1) − x⋆
∥∥
2
≤ φ(x(k+1))− φ(x⋆).

Then using Theorem 1, we obtain

‖gMk
(y(k))‖2 ≤ Mk

(√
2τk +

√
2τk+1

)√ 1

µ

(
φ(x(0))− φ(x⋆) + µ

2
‖x(0) − x⋆‖22

)

≤ 2Mk

√
2τk

√
1

µ

(
φ(x(0))− φ(x⋆) + µ

2
‖x(0) − x⋆‖22

)
. (35)

On the other hand, also by strong convexity of φ, we have

φ(x(0))− φ(x⋆) + µ

2

∥∥x⋆ − x(0)
∥∥2
2
≤ −

〈
φ′(x(0)), x⋆ − x(0)

〉
,

where φ′(x(0)) is a subgradient of φ at x(0). According to the updating schemes within the subroutine
{x(0),M−1, α−1, g

(−1), S−1} ← AccelLineSearch(xini, xini, Lini, µ, 1), we have x(0) = TM−1
(xini), S−1 =

SM−1
(xini) and g(−1) = gM−1

(xini). According to Lemma 9, we have

〈
φ′(x(0)), x⋆ − x(0)

〉
≥ −

(
1 +

S−1

M−1

)∥∥g(−1)
∥∥
2
·
∥∥x(0) − x⋆

∥∥
2
.

Therefore,

φ(x(0))− φ(x⋆) + µ

2

∥∥x(0) − x⋆
∥∥2
2
≤
(
1 +

S−1

M−1

)∥∥g(−1)
∥∥
2
·
∥∥x(0) − x⋆

∥∥
2
.

Moreover, by Lemma 10,
∥∥x(0) − x⋆

∥∥
2
≤ 1

µ

(
1 +

S−1

M−1

)
‖g(−1)‖2.

The above two inequalities imply

φ(x(0))− φ(x⋆) + µ

2

∥∥x(0) − x⋆
∥∥2
2
≤ 1

µ

(
1 +

S−1

M−1

)2 ∥∥g(−1)
∥∥2
2
.

Combining this with the inequality (35) gives the desired result.



An Adaptive APG method and its Homotopy Continuation for Sparse Optimization

6.4. Proof of Theorem 2

To prove Theorem 2, we need the following lemma which shows that we can measure how close TL(y) is from
satisfying the optimality condition by using the norm of the composite gradient mapping at y.

Lemma 11. (Xiao & Zhang, 2013, Lemma 2) If f has Lipschitz continuous gradients with Lipschitz constant Lf ,
then

ω(TL(y)) ≤
(
1 +

SL(y)

L

)
‖gL(y)‖2 ≤

(
1 +

Lf

L

)
‖gL(y)‖2.

By Lemma 11 and the facts that Mk ≥ Lmin and SMk
(y(k)) ≤ Lf , we have

ω(x(k+1)) ≤
(
1 +

Lf

Lmin

)∥∥gMk
(y(k))

∥∥
2
.

According to the stopping criterion ω(x(k+1)) ≤ ǫ̂, the algorithm stops after the condition A is satisfied NA times
if (

1 +
Lf

Lmin

)∥∥gMk
(y(k))

∥∥
2
≤
(
1 +

Lf

Lmin

)
θNA
sc ‖gini‖2 ≤ ǫ̂.

Therefore, NA is at most
⌈
log1/θsc

((
1 +

Lf

Lmin

)
‖gini‖2

ǫ̂

)⌉
.

Note that condition B can be satisfied only when µ > µf . Once µ = µ0/γ
NB
sc ≤ µf , it will no longer be satisfied.

Therefore, NB is at most
⌈
logγsc

(
µ0

µf

)⌉
and we always have µ ≥ µf/γsc.

Next we bound the number of iterations before either condition A or B must be satisfied. It suffices to find the
bound for condition B. For this purpose, we first upper bound the squared left-hand side of condition B:

8τk

(
Mk

µ

)2(
1 +

S−1

M−1

)2

≤ 8

(
1−

√
µ

Lfγinc

)k (
Lfγinc
µ

)2(
1 +

Lf

Lmin

)2

≤ 8

(
1−

√
µf/γsc
Lfγinc

)k (
Lfγinc
µf/γsc

)2(
1 +

Lf

Lmin

)2

.

Setting the above upper bound be less than θ2sc, we find that either condition A or B must be satisfied after the
following number of iterations:

ln

(
8

(
Lfγincγsc
µfθsc

)2(
1 +

Lf

Lmin

)2
)/

ln

(
1
/(

1−
√

µf

Lfγincγsc

))

≤
√
Lfγincγsc

µf
ln

(
8

(
Lfγincγsc
µfθsc

)2(
1 +

Lf

Lmin

)2
)
.

Hence, the total number iterations of Algorithm 3 is bounded by the above upper bound multiplied by (NA+NB).

6.5. Proof of Theorem 3

Since the ℓ1-LS problem (5) depends on the parameter λ, some of the notations we introduced before can be
further parametrized by λ. More specifically, we define

ψλ,L(y;x) = f(y) +∇f(y)T (x− y) + L

2
‖x− y‖22 + λ‖x‖1

Tλ,L(y) = argmin
x

ψλ,L(y;x)

gλ,L(y) = L
(
y − Tλ,L(y)

)

ωλ(x) = min
ξ∈∂‖x‖1

‖∇f(x) + λξ‖∞

Sλ,L(y) =
‖∇f(Tλ,L(y))−∇f(y)‖2

‖Tλ,L(y)− y‖2
.
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Similarly, we use AdapAPG(xini, Lini, µ0, ǫ̂, λ) to represent applying Algorithm 3 to (5) whose regularization pa-
rameter is λ. Given the gradient ∇f(x), the optimality residue ωλ(x) can be easily computed with O(n) flops.
For the ℓ1-LS problem, the proximal gradient step, Tλ,L(x), has the closed-form solution given as

Tλ,L(x) = shrink

(
x− 1

L
∇f(x), λ

L

)
, (36)

where shrink : Rn × R
+ → R

n is the well-known shrinkage or soft-thresholding operator, defined as

(shrink(x, α))i = sgn(xi)max {|xi| − α, 0} , i = 1, . . . , n. (37)

One of the key steps to prove Theorem 3 is showing the path of solutions in Algorithm 3 will be sparse if
Assumption 1 and (19) holds. As a preparation for showing this property, in the next subsection, we present
some technical lemmas regarding the sparsity of Tλ,L(y), given that y is sparse and close enough to the optimality.

6.5.1. Sparsity along the solution path

First, we list some useful inequalities that are direct consequences of (17) and δ′ ∈ (0, 0.2]:

(1− δ′)λ− 4‖AT z‖∞ > 0 (38)

(1 + δ′)λ+ ‖AT z‖∞ ≤ 1.4λ (39)

λ+ ‖AT z‖∞ ≤ (1.4− δ′)λ (40)

(1 + δ′)λ+ ‖AT z‖∞
(1− δ′)λ− ‖AT z‖∞

≤ γ. (41)

The following result means that if x is sparse, and it satisfies an approximate optimality condition for minimizing
φλ, then φλ(x) is not much larger than φλ(x̄).

Lemma 12 (Lemma 4 in (Xiao & Zhang, 2013)). Suppose Assumption 1 holds for some x̄, δ′, γ and s̃, and
λ ≥ λtgt. If x is sparse, i.e., ‖xS̄c‖0 ≤ s̃, and it satisfies the approximate optimality condition

min
ξ∈∂‖x‖1

∥∥AT (Ax− b) + λξ
∥∥
∞
≤ δ′λ, (42)

then we have

‖(x− x̄)S̄c‖1 ≤ γ‖(x− x̄)S̄‖1 (43)

and

‖x− x̄‖2 ≤
1.4λ

√
s̄

ρ−(A, s̄+ s̃)
(44)

and

φλ(x) ≤ φλ(x̄) +
1.4 δ′(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
. (45)

The next lemma means that if x is sparse, and φλ(x) is not much larger than φλ(x̄), then both ‖x − x̄‖2 and
‖x− x̄‖1 are small.

Lemma 13 (Lemma 5 in (Xiao & Zhang, 2013)). Suppose Assumption 1 holds for some x̄, δ′, γ and s̃, and
λ ≥ λtgt. Consider x such that

‖xS̄c‖0 ≤ s̃, φλ(x) ≤ φλ(x̄) +
1.4 δ′(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
,

then

max

{
1

2.8λ
‖A(x− x̄)‖22, ‖x− x̄‖1

}
≤ 1.4 (1 + γ)λs̄

ρ−(A, s̄+ s̃)
.
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The next lemma implies that if both x(k) and x(k−1) are sparse and their objective values are not much larger
than φλ(x̄), then the next iterate x(k+1) generated by the accelerated line search procedure (Algorithm 2) is also
sparse. Its proof uses similar arguments as in (Xiao & Zhang, 2013, Lemma 6).

Lemma 14. Suppose Assumption 1 holds for some x̄, δ′, γ and s̃, and λ ≥ λtgt. Suppose x and x′ satisfies

‖xS̄c‖0 ≤ s̃, φλ(x) ≤ φλ(x̄) + 2δ′(1+γ)λ2 s̄
ρ−(A,s̄+s̃) , (46)

‖x′S̄c‖0 ≤ s̃, φλ(x
′) ≤ φλ(x̄) + 2δ′(1+γ)λ2s̄

ρ−(A,s̄+s̃) ,

and y = x+ β(x− x′) with 0 ≤ β ≤ 1. Then for any L < γincρ+(A, s̄+ 3s̃), we have

∥∥(Tλ,L(y)
)
S̄c

∥∥
0
< s̃.

Proof. Recall that Tλ,L can be computed by the soft-thresholding operator as in (36). That is,

(TL(y))i = sgn(ỹi)max

{
|ỹi| −

λ

L
, 0

}
, i = 1, . . . , n,

where

ỹ = y − 1

L
AT (Ay − b) = y − 1

L
ATA(y − x̄) + 1

L
AT z.

In order to upper bound the number of nonzero elements in (TL(y))S̄c , we split the truncation threshold λ/L on
elements of ỹS̄c into three parts:

• 0.175λ/L on elements of yS̄c ,

• 0.125λ/L on elements of (1/L)AT z, and

• 0.7λ/L on elements of (1/L)ATA(y − x̄).

Since by assumption ‖AT z‖∞ ≤ λ/8, we have
∣∣{j : ((1/L)AT z)j > 0.125λ/L}

∣∣ = 0. Therefore,

∥∥(Tλ,L(y)
)
S̄c

∥∥
0
≤
∣∣{j ∈ S̄c : |yj | > 0.175λ/L

}∣∣+
∣∣{j :

∣∣(ATA(y − x̄)
)
j

∣∣ ≥ 0.7λ
}∣∣.

Note that

∣∣{j ∈ S̄c : |yj | ≥ 0.175λ/L}
∣∣ =

∣∣{j ∈ S̄c : |(y − x̄)j | ≥ 0.175λ/L}
∣∣

≤
∣∣{j : |(y − x̄)j | ≥ 0.175λ/L}

∣∣

≤ L(0.175λ)−1‖y − x̄‖1
≤ L(0.175λ)−1((1 + β)‖x− x̄‖1 + β‖x′ − x̄‖1)

≤ 1.4L(1 + 2β)(1 + γ)λs̄

0.175λρ−(A, s̄+ s̃)
(47)

≤ 24L(1 + γ)s̄

ρ−(A, s̄+ s̃)
, (48)

where the second-to-the-last inequality follows from Lemma 13, and the last one used β ∈ [0, 1].

For the last part, consider S with maximum size s = |S| ≤ s̃ such that

S ⊂ {j : |(ATA(y − x̄))j | ≥ 0.7λ}.

Then there exists u such that ‖u‖∞ = 1 and ‖u‖0 = s, and 0.7 sλ ≤ uTATA(y − x̄). Moreover,

0.7 sλ ≤ uTATA(y − x̄) ≤ ‖Au‖2‖A(y − x̄)‖2 ≤
√
ρ+(A, s)

√
s(1 + 2β)

√
2 · 1.42 (1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
,
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where the last inequality again follows from Lemma 13. Taking squares of both sides of the above inequality
gives

s ≤ 8 ρ+(A, s)(1 + γ)s̄(1 + 2β)2

ρ−(A, s̄+ s̃)
≤ 72 ρ+(A, s̃)(1 + γ)s̄

ρ−(A, s̄+ s̃)
< s̃,

where the last inequality is due to (18). Since s = |S| achieves the maximum possible value such that s ≤ s̃ for
any subset S of {j : |(ATA(y − x̄))j | ≥ 0.7λ}, and the above inequality shows that s < s̃, we must have

S = {j : |(ATA(y − x̄))j | ≥ 0.7λ},
and thus

s =
∣∣{j : |(ATA(y − x̄))j | ≥ 0.7λ}

∣∣ ≤
⌊
72 ρ+(A, s̃)(1 + γ)s̄

ρ−(A, s̄+ s̃)

⌋
.

Finally, combining the above bound with the bound in (48) gives

∥∥(Tλ,L(x)
)
S̄c

∥∥
0
≤ 24 (L+ 3ρ+(A, s̃))

ρ−(A, s̄+ s̃)
(1 + γ)s̄.

Under the assumption L < γincρ+(A, s̄+3s̃) and (18), the right-hand side of the above inequality is less than s̃.
This proves the desired result.

Finally, we are ready to prove Theorem 3 in the next subsection.

6.5.2. Proof of Theorem 3

It can be shown that (Nesterov, 2007), the PG method keeps the value of objective function decreasing mono-
tonically. This is the key property for the PGH method in (Xiao & Zhang, 2013) to enforce all the iterates along
the solution path to be sufficiently sparse. Unfortunately, the scAPG and AdapAPG methods do not have such a
monotone decreasing property. As an alternative, we proved that they have a non-blowout property (Lemma 1);
that is, the objective value at any intermediate step will not exceed the initial objective value. This is the key in
showing that all the iterates along the solution path are sufficiently sparse for the AdapAPG method, provided
that the initial point is sparse and not far from optimality.

Lemma 15. Suppose Assumption 1 holds for some x̄, δ′, γ and s̃. In addition, assume λ ≥ λtgt and µ ≤ Lmin.
If the initial point xini in Algorithm 3 satisfies

∥∥xiniS̄c

∥∥
0
≤ s̃, ωλ(x

ini) ≤ δ′λ,

then for all k ≥ 0, we have ∥∥x(k)
S̄c

∥∥
0
≤ s̃,

∥∥y(k)
S̄c

∥∥
0
≤ 2s̃.

Proof. According to Lemma 12, the assumptions on xini implies

φλ(x
ini) ≤ φλ(x̄) +

1.4 δ′(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
.

Because x(0) = Tλ,M (xini), we have φλ(x
(0)) ≤ φλ(xini) so that

φλ(x
(0)) ≤ φλ(x̄) +

1.4 δ′(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
.

Although Algorithm 3 is not monotone decreasing, the non-blowout property in Lemma 1 guarantees that, for
all k ≥ 0,

φλ(x
(k+1)) ≤ φλ(x̄) +

1.4 δ′(1 + γ)λ2s̄

ρ−(A, s̄+ s̃)
.

Because
∥∥xini

S̄c

∥∥
0
≤ s̃, we have

∥∥x(−1)

S̄c

∥∥
0
=
∥∥x(0)

S̄c

∥∥
0
≤ s̃ according to Lemma 14. Suppose

∥∥x(k)
S̄c

∥∥
0
≤ s̃ and∥∥x(k−1)

S̄c

∥∥
0
≤ s̃. Since y(k+1) = x(k) + βk(x

(k) − x(k−1)) and x(k+1) = TMk
(y(k)), Lemma 14 again implies∥∥x(k+1)

S̄c

∥∥
0
≤ s̃. By induction, we have

∥∥x(k)
S̄c

∥∥
0
≤ s̃ holds for all k, which further implies

∥∥y(k)
S̄c

∥∥
0
≤ 2s̃ for all

k.
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According to Lemma 12, under the condition (19), Algorithm 3 essentially operates only on vectors with at most
either s̃ or 2s̃ nonzero components. Therefore, we are solving the ℓ1-LS problem restricted in a sparse subspace,
where the restricted smoothness and restricted strong convexity are available, that is,

f(x) ≥ f(y) + 〈∇f(y), x− y〉+ ρ−(A, s̄+ 3s̃)

2
‖x− y‖22,

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ ρ+(A, s̄+ 3s̃)

2
‖x− y‖22.

Here, the effective sparse level is s′ = s̄+ 3s̃ because when the above two inequalities are used in Section 2 and
Section 3, they are always applied to x and y with

∥∥xS̄c

∥∥
0
≤ s̃ and

∥∥yS̄c

∥∥
0
≤ 2s̃. To show Theorem 3, we just

need to repeat the proof of Theorem 2 by replacing Lf and µf with ρ+(A, s̄+3s̃) and ρ−(A, s̄+3s̃), respectively.

6.6. Proof of Theorem 4

In Algorithm 4, x̂(K) denotes an approximate solution for minimizing the function φλK
. A key idea of the APG

homotopy method is to use x̂(K) as the starting point in the AdapAPG method for minimizing the next function
φλK+1

. The following lemma shows that if we choose the parameters δ and η appropriately, then x̂(K) satisfies
the approximate optimality condition for λK+1 that guarantees local geometric convergence.

Lemma 16 (Lemma 7 in (Xiao & Zhang, 2013)). Suppose x̂(K) satisfies the approximate optimality condition

ωλK
(x̂(K)) ≤ δλK

for some δ < δ′. Let λK+1 = ηλK for some η that satisfies

1 + δ

1 + δ′
≤ η < 1. (49)

Then we have
ωλK+1

(x̂(K)) ≤ δ′λK+1.

Lemma 17 (Lemma 8 in (Xiao & Zhang, 2013)). Suppose Assumption 1 holds for some x̄, δ′, γ and s̃, and
λ ≥ λtgt. If x satisfies

ωλ(x) ≤ δ′λ,
then for all λ′ ∈ [λtgt, λ], we have

φλ′ (x)− φλ′ (x⋆(λ′)) ≤ 2(1 + γ)(λ+ λ′)(ωλ(x) + λ− λ′)s̄
ρ−(A, s̄+ s̃)

.

Now we are ready to give an estimate of the overall complexity of the APG homotopy method (Algorithm 4).
First, we need to bound the number of iterations within each call of Algorithm 3. According to Theorem 3 and
Theorem 2, the total number of iterations in each call of AdapAPG

(
x̂(K), M̂K , µ̂K , ǫ̂K+1, λK+1

)
is no more than

(NA +NB)
√
κs′γincγsc ln

(
8

(
κs′γincγsc

θsc

)2(
1 +

ρ+(s
′)

Lmin

)2
)
, (50)

where NA is the number of times that condition A is satisfied first, which is bounded as

NA ≤
⌈
log 1

θsc

((
1 +

ρ+(s
′)

Lmin

) ‖gλK+1,M (x̂(K))‖2
ǫ̂

)⌉

with M generated from {x(0),M, α−1, g
(−1), S−1} ← AceelLineSearch(x̂(K), x̂(K), M̂K , µ̂K , 1), and NB is the

number of times that condition B is satisfied first, which is bounded as

NB ≤
⌈
logγsc

(
µ̂K

ρ−(s′)

)⌉
≤
⌈
logγsc

(
µ̂0

ρ−(s′)

)⌉
.
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The bound on NA depends on ‖gλK+1,M (x̂(K))‖2, which we can further bound using Lemma 8 to obtain

∥∥gλK+1,M (x̂(K))
∥∥2
2
≤ 2M

(
φλK+1

(x̂(K))− φ⋆λK+1

)

≤ 2γincρ+(s
′)
(
φλK+1

(x̂(K))− φ⋆λK+1

)
,

where φ⋆λK+1
= minx φλK+1

(x). We still need to bound the gap φλK+1
(x̂(K))−φ⋆λK+1

. Since Lemma 16 implies that

ωλK+1
(x̂(K)) ≤ δ′λK+1, we can obtain directly from Lemma 17 the following inequality by setting λ′ = λ = λK+1

and x = x̂(K):

φλK+1
(x̂(K))− φ⋆λK+1

≤ 4(1 + γ)λ2K+1s̄

ρ−(A, s̄+ s̃)
≤ 4(1 + γ)λ2K+1s̄

ρ−(s′)
.

Therefore, the bound on NA can be relaxed as

NA ≤
⌈
log 1

θsc

((
1 +

ρ+(s
′)

Lmin

) ‖gλK+1,M (x̂(K))‖2
δλK+1

)⌉

≤



log 1

θsc



(
1 +

ρ+(s
′)

Lmin

)
√
2γincρ+(s′)

(
φλK+1

(x̂(K))− φ⋆λK+1

)

δλK+1






≤



log 1

θsc



(
1 +

ρ+(s
′)

Lmin

)
√
8γincρ+(s′)(1 + γ)λ2K+1s̄

δλK+1

√
ρ−(s′)






=

⌈
log 1

θsc

((
1 +

ρ+(s
′)

Lmin

) √
8γincκs′(1 + γ)s̄

δ

)⌉
.

Combining the above bounds on NA and NB with (50) yields Part 1 of Theorem 4. We note that this bound is
independent of λK+1.

In the homotopy method (Algorithm 4), after K outer iterations for K ≤ N − 1, we have from Lemma 16 that
ωλK+1

(x̂(K)) ≤ δ′λK+1. The sparse recovery performance bound

‖x̂(K) − x̄‖2 ≤ 2ηK+1λ0
√
s̄/ρ−(A, s̄+ s̃)

follows directly from Lemma 12 and λK+1 = ηK+1λ0. Moreover, from Lemma 17 with λ′ = λtgt, λ = λK+1, and
x = x̂(K), we obtain

φλtgt
(x̂(K))− φ⋆λtgt

≤ 4.5(1 + γ)λ2K+1s̄

ρ−(A, s̄+ s̃)
= η2(K+1) 4.5(1 + γ)λ20s̄

ρ−(A, s̄+ s̃)
.

This proves Part 2 of Theorem 4.

In Algorithm 4, the number of homotopy stages, excluding the last one for λtgt, is

N =

⌊
ln(λ0/λtgt)

ln(1/η)

⌋
.

The last iteration for λtgt uses an absolute precision ǫ instead of the relative precision δλtgt. Therefore, the
overall complexity is bounded by

(

ln(λ0/λtgt)

ln(1/η)

(

log 1
θsc

(

C

δ

)

+D

)

+ logγsc max

(

1,
λtgtC

ǫ

)

+D

)

√
κs′γincγsc ln

(

8

(

κs′γincγsc
θsc

)2(

1 +
ρ+(s

′)

Lmin

)2
)

,

which is Õ
(√
κs′ ln(1/ǫ)

)
. Finally, when Algorithm 4 terminates, we have ωλtgt

(x̂(tgt)) ≤ ǫ. Therefore we can

apply Lemma 17 with λ = λ′ = λtgt and x = x̂(tgt) to obtain the last desired bound in Part 3 of Theorem 4.
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Figure 2. Minimizing a random instance of the log-sum-exp function.
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Figure 3. Minimizing another random instance of the log-sum-exp function.

6.7. Experiments on the AdapAPG method

In this subsection, we present extra numerical examples to show that the FISTA+RS method can have less
desirable performance compared to the AdaptAPG method when applied to non-quadratic minimizations. We
consider the problem of minimizing the log-sum-exp function, i.e.,

minimize
x∈Rn

f(x) , ρ log

(
m∑

i=1

exp

(
1

ρ
(aTi x− bi)

))

where all ai ∈ R
n and bi ∈ R, for i = 1, . . . ,m. This corresponds to problem (1) with Ψ(x) = 0. In our

experiments we took n = 200 and m = 10000, and generated the ai’s and bi’s randomly with independent,
standard normal distribution. Note that this is not really a strongly convex function, since it grows linearly
asymptotically. However it is smooth and the region around the optimum may be well approximated by a
strongly convex quadratic function. The parameter ρ controls the smoothness of f and is set to ρ = 0.1.

Figure 2 shows the convergence characteristics of five different methods on a random instance, and the AdapAPG
method was initialized with two different values of µ0. All methods are equipped with a line search procedure
on the Lipschitz constant with the initial value L0 = 10000. We see that the PG method converged with a
slow linear rate. FISTA was much faster than PG in the beginning but slowed down eventually due to its lack
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of capability of exploiting strong convexity; it also demonstrated nonmotone ripples or bumps in the objective
value. FISTA+RS converged fast with a linear rate. For the first run of the AdapAPG method, we intentionally
chose a large initial value µ0 = 200 to test its automatic tuning capability. In fact this initial value is even larger
than the restricted Lipschitz constant Mk in later iterations found by the line search procedure; see the right
plot in Figure 2. For the second run, we set µ0 to the final estimate of µ by the first run.

In the left plot in Figure 2, each marker on the curves indicates a restart of the corresponding algorithm. We see
that FISTA+RS had three restarts, which was activated by the condition gLk

(y(k−1))T (x(k)−x(k−1)) > 0. Out
of the seven restarts of the AdapAPG method with µ0 = 200, four of them was due to condition A, and three
of them was due to condition B (see Algorithm 3). Correspondingly, the right plot in Figure 2 shows that the
estimate of the convexity parameter µ was reduced three times, each by a factor of 10, and the final estimate
was 0.2. After the last reduction of µ (around k = 120), AdapAPG converged fast with a linear rate that is similar
to FISTA+RS. For the second run of the AdapAPG method, we used the initial estimate µ0 = 0.2 directly. As a
consequence, all of the five restarts in this case was due to condition A, and the value of µ stayed at the constant
0.2. Without the need for tuning µ, the second run of the AdapAPG converged as fast as FISTA+RS.

From the above comparison, it looks that FISTA+RS is the best method for this particular problem instance,
since it demonstrated the fastest convergence without explicit tuning of the convexity parameter. AdapAPG
may achieve the same convergence speed, but needs to be initialized with a good estimate of µ to avoid the extra
effort involved in tuning it. In general, the procedure of tuning µ costs extra number of iterations, but with a
quite modest degradation of performance. For example, Figure 2 showed that AdapAPG with µ0 = 200 needed
an extra 50% iterations while reducing µ by three orders of magnitude.

However, the performance of FISTA+RS vary substantially even on the same class of log-sum-exp functions.
Figure 3 illustrates the situation with another random instance in this problem class, in which we simply changed
the random seed for generating the problem with the same size. For this instance, the non-monotone behaviour
of FISTA appeared quite late, so the first restart of FISTA+RS occurred after k = 170. By that time both runs
of the AdapAPG method had already finished with high precision (even for the first run which needed to reduce µ
three times by a total factor of 1000). Therefore, the AdapAPG method often has a more robust performance
guarantee, which is backed by our convergence analysis for general convex functions. In contrast, the FISTA+RS
scheme is motivated by the analysis on the quadratic functions, and its behavior on non-quadratics can be hard
to predict.


