An Adaptive Accelerated Proximal Gradient Method and its Homotopy
Continuation for Sparse Optimization

QihangLin
The University of lowa, lowa City, IA 52245 USA

Lin Xiao
Microsoft Research, Redmond, WA 98052 USA

Abstract

We first propose an adaptive accelerated prox-
imal gradient (APG) method for minimizing
strongly convex composite functions with un-
known convexity parameters. This method in-
corporates a restarting scheme to automatical-
ly estimate the strong convexity parameter and
achieves a nearly optimal iteration complexi-
ty. Then we consider thé,-regularized least-
squares{;-LS) problem in the high-dimensional
setting. Although such an objective function
is not strongly convex, it has restricted strong
convexity over sparse vectors. We exploit this
property by combining the adaptive APG method
with a homotopy continuation scheme, which
generates a sparse solution path towards optimal-
ity. This method obtains a global linear rate of
convergence and its overall iteration complexity
has a weaker dependency on the restricted condi-
tion number than previous work.

1. Introduction

We consider first-order methods for minimizingmposite
objective functions, i.e., the problem of

minimize {(b(:v) £ f(z) + \Il(x)}, 1
where f(z) and ¥(z) are lower-semicontinuous, proper
convex functions Rockafellar 197Q Section 7). We as-
sume thatf is differentiable on an open set containing
dom ¥ and its gradientV f is Lipschitz continuous on
dom V, i.e., there exists a constabf such that

IVf(@)=VIWll2 < Lelle—yll2, Yo,y € dom ¥. (2)
Proceedings of the31** International Conference on Machine

Learning Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

QIHANG-LIN @UIOWA.EDU

LIN.XIAO @MICROSOFTEDU

We also assum@ (z) is simple(Nesteroy2013, meaning
that for anyy € dom W, the following auxiliary problem
can be solved efficiently or in closed-form:

Tu(y) = avgain { V)" + £l — 3+ ¥(o) .

®)
This is the case, e.g., whdn(z) = A||z|[; forany A > 0,
or ¥(z) is the indicator function of a closed convex set that
admits an easy projection mapping.

The so-calledoroximal gradient(PG) method simply us-
es @) as its update rulex**+Y = Ty (), for k =
0,1,2,..., whereL is set toL; or determined by a lin-
ear search procedure. The iteration complexity for the PG
method isO(L/¢) (Nesteroy 2004 2013, which mean-

s, to obtain ar-optimal solution (whose objective value is
within e of the optimum), the PG method nee@$L  /¢)
iterations. A far better iteration complexit§)(\/Ly/c),

can be obtained by accelerated proximal gradient (APG)
methods Nesteroy 2013 Beck & Teboulle 2009 Tseng
2008.

The iteration complexities above imply that both PG and
APG methods have a sublinear convergence rate. However,
if f is strongly convex, i.e., there exists a consfant> 0
(theconvexity parametgisuch that

f@) > fW) +(Vi@)a—y) + e —yl3 @

for all xz,y € dom WV, then both PG and APG method-
s will achieve a linear convergence rate with the iteration
complexities being)(x log(1/¢)) andO(,/Fy log(1/¢))
(Nesteroy 2004 2013, respectively. Heresy = L¢/puy

is calledcondition numbeof the functionf. Sincexy is
typically a large number, the iteration complexity of the
APG methods can be significantly better than that of the
PG method for ill-conditioned problems. However, in or-
der to obtain this better complexity, the APG methods need
to use the convexity parametef, or a lower bound of it,
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explicitly in their updates. In many applications, an effec definitions, we have

tive lower bound of:; can be hard to estimate.
. . . . . . 1253 < p,(A,S) < er(AaS) < Lfa Vs> 0.
To address this problem, our first contribution in this pa-

per is an adaptive APG method for solving probleth ( As discussed before, we haue = 0 for m < n. Butitis
whenf is strongly convex byt is unknown. This method still possible thatp_(4,s) > 0 holds for somes < m.
incorporates a restart scheme that can automatically estin this case, we say that the matrik satisfies there-
matey ¢ on the fly and achieves an iteration complexity of stricted eigenvalue conditioat the sparsity levet. Let
O (\/Frlogry -log(1/e)). supp(z) = {j : z; # 0}, and assume that,y € R"

Evenif f is not strongly convex(; = 0), problem () may sa_tlsfy|supp(x) Usupp(y)| < s. Then it can be shown
. . Xiao & Zhang 2013 Lemma 3) that

have special structure that may still allow the developmen{

of first-order methods with linear convergence. This is the p_(A,s) 5

case for the/;-regularized least-square(g;-LS) problem,  f(2) = f(y) + (Vf(y), = —y) + ———lz — .

defined as ) o ) )
The above inequality gives the notion @stricted strong

minimize ¢y (z) £ 1||Aa: — b2+ Nzlli, (5) convexity(cf. strong convexity defined idl). Intuitively, if
* 2 the iterates of the PG method become sparse and their sup-
where4 € R™*" andb € R™ are the problem data, and Ports do not fluctuate much from each other, then restricted

A > 0'is a regularization parameter. The problem has im-Strong convexity leads to (local) linear convergence. This
portant applications in machine learning, signal processiS exactly what happens when the PG method speeds up
ing, and statistics; see, e.gibshirani(1996; Chen etal. While getting close to the optimal solution.

(1998; Bruckstein et al(2009. We are especially inter-  noreover, such a local linear convergence can be exploited
ested in solving this problem in the hlgh-dlmensm‘nal Casgy a homotopy continuation strategy to obtain much faster
(m < n) and when the solution, denoted @5)), is s-  global convergenceHale et al, 2008 Wright et al, 2009

parse. Xiao & Zhang 2013. The basic idea is to solve thg-LS
In terms of the general model i), we havef(z) = problem §) with a large value of\ first, and then grad-
(1/2)||Az — b||2 and W (z) = A||z||;. Here f(z) has a ually decreases the value afuntil the target regulariza-
constant Hessiaiv2f(z) = AT A, and we havel; = tion is reached. For each value kfXiao & Zhang(2013

pmax(ATA) and jif = prmin(AT A) Where pax(-) and  €mploy the PG method to solv)(up to an adequate pre-
pmin(-) denote the largest and smallest eigenvalues, recision, and then use the resulting approximate solution to
spectively, of a symmetric matrix. Under the assumptionvarm start the PG method fog)with the next value of.

m < n, the matrixA” A is singular, hencg; = 0 (i.e., fis It is shown Kiao & Zhang 2013 that under suitable as-
not strongly convex). Therefore, we only expect sublineasumptions for sparse recovery (mainly the restricted eigen

convergence rates (at least globally) when using firstrordevalue condition), an appropriate homotopy strategy can en-
optimization methods. sure all iterates of the PG method be sparse, hence linear

) convergence at each stage can be established. As a result,
Nevertheless, even in the casesof < n, when the so-  he gyeralliteration complexity of such a proximal-gradie
lution z*(\) is sparse, the PG method often exhibits faSthomotopy (PGH) method ié(ns log(l/e)) wherex, de-

convergence when it gets close to the optimal solution. Inygtes thaestricted condition numbeat some sparsity level
deed, local linear convergence can be established for the () je.

PG method provided that the active submatrix (columns
of A corresponding to the nonzero entries of the sparse it- ke 2 k(A s) = )
erates) is well conditioned.(lo & Tseng 1992 Hale et al, ? ’ p_(A,s)

2008 Bredies & Lorenz2008. To explain this more for- ~

mally, we define theestricted eigenvaluesf A atthe spar- and the notatio(-) hides additionalog(.) factors.
sity levels as

er(Av S)

Our second contribution in this paper is to show that, by
2T AT Az using the adaptive APG method developed in this paper in
sup {# rx # 0, [lzflo < S} : a homotopy continuation scheme, we can further improve
the iteration complexity for solving thé -LS problem to
[ 2T AT Ax O(\/Fs log(1/€)), where the sparsity leve! is slightly
p-(A,s) = mf{ oI 7 # 0, [lzllo < S} ' Iar(g}é:han (th/e )o)ne for the PGH method. We note that this
(6) resultis not atrivial extension from the convergence ttssul
wheres is a positive integer anfilz||o denotes the number for the PGH method iXiao & Zhang(2013. In particular,
of nonzero entries of a vectar € R”. From the above the adaptive APG method does not have the property of

p+(A,s) =
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monotone decreasing, which was important for the analysia|gorithm 1 {z, M} «+ scAPG(z(®), Ly, 1, €)

of the PGH method. In order to overcome this difficulty, we
had to show a “non-blowout” property of our adaptive APG
method, which is interesting in its own right.

2. An APG method for minimizing strongly
convex functions

The main iteration of the APG method is based on a
composite gradient mapping introduced by Nesterov in
(Nesteroy 2013. For any fixed pointy and a given con-
stantL > 0, we define a local model af(x) aroundy

parameter: Lin 2> > 0, Ydec = 1
(=1 (0
a_1 = 1
repeat
(fork=0,1,2,...)
{x(kﬂ),Mk,ak,g(k),Sk}
« Accel Li neSear ch(z®, 2 =Y Ly u ap 1)
LkJrl — maX{Lmim Mk/'ydcc}
until w(z®+D) < é
& kD)
M « M

using a quadratic approximation gfbut keepingV¥ intact:

Algorithm 2 {z*+V M.y, g™, i)
+~ Accel Li neSear ch(z® 2=V L,y ap_1)
parameter: yinc > 1

Yy ) = F) + VF ) (@~ ) + 5 e — g3+ W(a).

According to @), we have

L+ Lk/'yinc
T (y) = argmin ¢, (y; ). (8) repeat
* L+ L’Yinc
Then thecomposite gradient mappirgf f aty is defined ak =/
as y(k) < x(k) + 706’“(1?10“&71% (x(k) — x(k_l))
Qg1 Qg

gr(y) = L(y — T1(y)).

Following (Nesteroy 2013, we also define a local Lips-
chitz parameter

D) Ty (y(R)
until p(z*+1D)) < opp (y*); zk+1)
Mk — L
g(k) — Mk (y(k) _ I(k+1))

Sk < S, (y(k))

VT ) ~ V)l

Si) OEDT

With the machinery of composite gradient mapping,Parametef.s. The scAPG method generates the following
Nesterov(2004 2013 developed several variants of the three sequences:
APG methods. As discussed in the introduction, compared m
to the PG method, the iteration complexity of the acceler- Qg = \/ﬁ,
k
ated methods have a better dependence on the acauracy
when f is not strongly convex, and a better dependence on yF) = 50 M(x(k) — (1),
the condition numbex s when f is strongly convex. How- oe—1(1 + o)
ever, in contrast with the PG method, the better complexity — z(*+Y) = 1, (y*).

bound of the APG method in the strongly convex case re-

lies on the knowledge of the convexity parametgr or an where M, is found by the line-search procedure in Algo-
effective lower bound of it. both of which can be hard to rithm 2. The line search procedure starts with an estimat-
obtain in practice ’ ed Lipschitz constanL;, and increases its value by the

factor yine until ¢p(z*+1) < oy, (y*); 2FHD), which

To address this problem, we propose an adaptive APGs sufficient to guarantee the convergence. In each itera-
method that can be applied without knowing and still  tion of Algorithm 1, the scAPG method tries to start the
obtains alinear convergence rate. To do so, we first preselihe search at a smaller initial value by settihg, ; to be

an APG method in Algorithnd and in Algorithm2 up-  min{ Lyin, My /Ydec}-

on which the development of the adaptive APG method is

based. We name this method ScAPG. where “sc” standsfo-Fhe SCAPG algorithm can be considered as an extension
“stronély convex” ' of the constant step scheme Mésterov(2004 for mini-

mizing composite functions irLf whengp; > 0. Indeed, if

To use this algorithm, we need to first choose an initialy;, — Ly, we havey, = /1 /Ly for all k and the update
optimistic estimateL,,i, for the Lipschitz constant: for y(*) becomes '

0 < Lmin < Ly, and two adjustment parametegg. > 1
and~;,. > 1. In addition, this method requires an input pa- ) = 20 4 Ly — /iy (sc(k) B x(kq))
rametery, > 0, which is an estimate of the true convexity ‘ L+ /o7 ’

9)

(10)
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which is the same as Algorithm (2.2.11) iNesterov 3. An Adaptive APG method with restart

2004. Note that, one can not directly apply Algorithin . S
(2009 i in When applied to strongly convex minimization problem-

or Nesterov’s constant scheme to problems without strong- )
ly convexity by simply setting: — 0. s, Nesterov’s constant step scheré)(needs to usd.;

andyu s as input parameters. Thanks to the line-search tech-
Another difference from Nesterov's method is that Algo- nique, Algorithm1 does not need to know ; explicitly.
rithm 1 has an explicit stopping criterion based ondp#i-  However, it still need to know the convexity parametegr
mality residues(z(*+1)), which is defined as or a nontrivial lower bound of it in order to guarantee the

. eometric convergence rate given in Theorkm
2 min [|[Vf(2) + €|, ay 9 J J

v (I) £eov¥(x)

Compared to line search aby, estimatingu; on-the-fly
whered¥(z) is the subdifferential oft atz. The opti-  is much more sophisticatedNesterov(2013 suggested a
mality residue measures how close a solutiois to the  restarting scheme to estimatg, which does not require

optimality condition of () in the sense that(z*) = 0 if any lower bound ofu, and can be shown to have linear
and only if2* is an solution to %). convergence (up to a logarithmic factor). In this section,

. . . we adapt his restarting technique to Algoritirand obtain
The following theorem states that,ifis a positive lower 5, qantive APG method. This method has the same con-
bound ofyy, the SCAPG converges geometrically and ithas, g rgence guarantees as Nesterov's scheme. However, there
an iteration complexity) (/w7 log(1/e)). are two important differences, which we will elaborate on
Theorem 1. Suppose:* is the optimal solution ofl) and  at the end of this section.

0 < u¢. Then Algorithnmil guarantees that . . L
SHS By g 9 We first describe the basic idea of the restart scheme for

* * lu * i i F . i i i
¢(x(k))_¢(x ) < T [¢(x(o))_¢(x )+—||:1c(0) o Hg}’ estimatingus. Suppose we 5|mply run Algorithrh W|_th
2 a guessed valug. At each iteration, we can check if the
(12) inequality (L2) is satisfied. If not, we must haye> ;. ; ac-
l’[’ * * ‘LL * i -
Zly® -t )2 < 7 [¢(I(0))_¢(x )+ 2@ — g ||§}’ cording to _Theorenl, andthgrefore need to redycéo en
2 2 sure Algorithml converges in a linear rate. Howevet2[

(13) can not be evaluated becauseis unknown. Fortunately,
where we can show in the following lemma that, jif < ., the
1 k=0, norm of the gradient mapping” = g, (y*)) generated
Te = { Hf:_ol (1—a;) k>1. (14) in Algorithm 1 also decreases at a linear rate.

Lemma 2. Suppose0 < pu < puy and the ini-

Moreover, . . . ; .
)k tial point (9 of Algorithm 1 is obtained by call-

ing Algorithm 2, i.e., {z(®, M _1,a_ 1,909,851} «
Accel Li neSear ch(z™, 2™ Li,;, u, 1) with an arbi-
trary 2™ € R™ and Li,; > L. Then, for anyk > 0
in Algorithm1, we have

y2i
<(1-
k= ( Lf'}/inc

In addition to the geometric convergencedf:(*)), this
theorem states that the auxiliary sequent®e also con-
verges to the unique optimizer with a geometric rate. |9z (y<k))H2 < zm% (1 + %) Hg(fl)H? (16)

If 1+ does not satisfies < ¢, Theoreml may not hold g '

anymore. However, we can show that, in this case, AlgoUnlike the inequality {2), the inequality {6) can be
rithm 1 will at least not blowout. More precisely, we show checked explicitly and, if it does not hold, we kngwv> T

thatg(z ) < ¢((?) forallk > 1 aslongag: < Luin,  and need to reduge

which can be easily enforced in implementation of the al- )
Now we are ready to develop the adaptive APG method.

orithm.
g . Letfs. € (0, 1) be a desired shrinking factor. We check the
Lemma 1. Supposd) < u < Lmin. Then Algorithml ¢, 0ing two conditions at iteratioi of Algorithm 1:
guarantees that

o Algan ()l < bucllg™0 ],

M, 2
¢(x(k+1)) < ¢(I(0)) _ THx(kH) —x(k)||2. (15)
e B: 2,27 —Aik (1 + ]\SLII) < Osc-

The non-blowout property is also critical in our analysis of

the homotopy method for solving the-LS problem pre- If A is satisfied first, then we restart Algorithrh with
sented in Sectiod. In particular, it helps to show the spar- z(**1) as the new starting point, sét = 0, and update
sity of z(*) oncez(9) is sparse. (All proofs for our results the three quantitieg(~"), S_; and M_; accordingly (a-
are given in the supporting materials). gainusea_; = 1 andry = 1). If A is not satisfied but
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Algorithm 3 {&, M, ji} < AdapAPG(z™, Liyi, 10, €)
par ameter: Liin > 10, Ydee > 1, Yse > 1, fsc € (0,1)
{a:<0),M,1,a,1,g(*1>,S,1}

+ Accel Li neSear ch(z™ 2 Ly, pio, 1)
2D 2O My, 14— o
a_1 <1, 191,k 0
repeat
{x(kJrl),Mk, Oék,g(k), Sk}
+~ Accel Li neSear ch(z® 2=V L,y ap_1)
Th+1 < Tk(l — Oék)
if condition A holdsthen
20 kD) (=D (D) T = M
g(il) — g(k), M_1 + My, S_1 < Sk
k<+0
else
if condition B holdsthen
4= 1 Yse
k+0
else
Lk+1 <~ maX{Lmim J\/[k/'ydec}
k+—k+1
end if
end if
until w(z®+D) < é
& 2t M — My, o+ p

B is satisfied first, it means that is larger thanus. In

fact, if © < p¢, then combining condition B with Lemma
2 would imply that A also holds. This contradiction indi-

cates that if B is satisfied first, we must have> ¢, and
we have to reducg, say by a factor,. > 1. In this case,
we restart Algorithmi still at (%) and keepg(—"), S_;

andM _; unchanged. If neither conditions are satisfied, we'
continue Algorithml to its next iterate until the optimality

This is the same complexity as for the restart scheme pro-
posed by Nesterov for his accelerated dual gradient (ADG)
method Nesteroy2013 Section 5.3). Despite using a sim-
ilar restart scheme and having the same complexity bound,
here we elaborate on some important differences between
our method from Nesterov’s.

e Nesterov's ADG method exploits strong convexity
in ¥ instead off. In order to use it under our assump-
tion (thatf is strongly convex), one needs to relocate
a strong convexity term fronfi to ¥, and this relocat-
ed term needs to be adjusted whenever the estimate
is reduced.

e The restart scheme suggestediie$teroy2013 Sec-
tion 5.3) uses an extra line-search at each iteration,
solely for the purpose of computing the gradient map-
ping atz®). Our method directly use the gradient
mapping ay(*), which does not require the extra line-
search, therefore the computational cost per iteration
is lower.

4. Homotopy continuation for sparse
optimization

In this section, we focus on tifg-regularized least-squares
(¢1-LS) problem B) in the high-dimensional setting i.e.,
with m < n. This is a special case o), but the func-
tion f(z) = (1/2)|| Az — b||3 is not strongly convex when

m < n. Therefore, we only expect a sublinear convergence
rate (at least globally) when using traditional first-ordpf
timization methods.

Nevertheless, as explained in the introduction, one can use
a homotopy continuation strategy to obtain much faster
convergence. The key idea is to solve theLS prob-

residue is smaller than a prescribed value. We present tH§M With a large regularization parameterfirst, and then

above procedure formally in Algorithi3, whose iteration
complexity is given by the following theorem.

Theorem 2. Assumeuy > uy > 0. Letg™ denotes the

first g(—1) computed by Algorithr8, and Ny and Ng the

number of times that conditions A and B are satisfied, re

spectively. ThenVy < [logl/esc((l

Ly \ L™
+ Lmin) é

and Ng <
tions is at most

L inc’fsc L inc’)sc ? L ?
(Na+Ng), | L inedse 1 8(#) <1+ f)
1253 Nfgsc Lin

Note that if0 < 110 < py, thenNp = 0.

The total number of iterations given in Theoreinis
asymptotically

0 (H}/Q log(k#)log (%)) +0 (H}/Q log(mf)) .

log. (42 )| and the total number of itera-
Ysc \ pf

gradually decreases the value)ofintil the target regular-
ization is reached. IXiao & Zhang(2013, the PG method

is employed to solve thé -LS problem for a fixed\ up to

an adequate precision, then the solution is used to warm

start the next stage. It was shown that under a restricted

eigenvalue condition oA, such a homotopy scheme guar-
antees that all iterates generated by the method are suf-
ficiently sparse, which implies restricted strong convexi-
ty. As a result, a linear rate of convergence can be estab-
lished for each homotopy stage, and the overall complexity
is O(kslog(1/€)) for certain sparsity leved, wherek; is

the restricted condition number defined if),(and the no-
tationO(+) hides additionalog(x ) factors.

In this section, we show that, by combining the adaptive
APG method (AlgorithnB) with the same homotopy con-
tinuation scheme, the iteration complexity for solving the
(1-LS problem can be improved @( /= log(1/¢)), with

s’ slightly larger thars.
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Algorithm 4 (Y « APGHonot opy (A, b, At €, Lo, fio)

input:A € R™*" b € R", Lo > fig >0
parameter: n € (0,1),d € (0,1)
initialize: Ao < [[ATb]|oc, 2@ 0, My « Lo
N« [In(Xo/Age) /In(1/m))
for K =0,1,2,...,N —1do

AK+1 ¢ NAK

€K+1 < OAK 41

{25FD, Mycyn, furc 1} .

+ AdapAPG(2 ), My, figc, ek 1, A1)

end for R R
{28 My} «+ AdapAPG(2 ™M), My, fin, €, Aigt)
return;(tst)

The APG homotopy method is presented in AlgoritAm
To avoid confusion over the notations, we usg; to de-
note the target regularization parameterip he method
starts with\ = || A7b||, which is the smallestsuch that
the ¢1-LS problem has the trivial solutiof (by examin-
ing the optimality condition). This method has two extra
parameters) € (0,1) andd € (0,1). They control the
algorithm as follows:

e The sequence of values for the regularization parame-

ter is determined a¥, = n*\o fork = 1,2, ..., until

the target valué\,; is reached.

e For each)\, excepth., we solve problemg) with
a proportional precisioi\,. For the last stage with
Atet, We SOlVe to the absolute precisien

all iterates along the solution path are sparse. We note
that Assumptionl is very similar to Assumption 1 in
Xiao & Zhang (2013 (they differ only in the constants in
the conditions), and interpretations and remarks made ther
also apply here. More specifically,

e The existence of satisfying the conditions likel®)
is necessary and standard in sparse recovery analysis.
It is closely related to the restricted isometry proper-
ty (RIP) of Candés & Taq2005 which assumes that
there exist some > 0, andv € (0,1) such that
k(A,s) < (14v)/(1—v). SeeXiao & Zhang(2013
Section 3) for an example of sufficient RIP conditions.
Another sufficient condition ig(A, 5 + 33) < C35/3
with C' = 1/(24(1 + 7)(3 + 7inc)), Which is more
accessible but can be very conservative.

The RIP-like condition18) can be much stronger than
the corresponding conditions established in the sparse
recovery literature (see, e.d.i,& Mo (2011 and ref-
erences therein), which are only concerned about the
recovery property of the optimal solutiari. In con-
trast, our condition needs to guarantee sparsity for all
iterates along the solution path, thus is “dynamic” in
nature. In particular, in addition to the matrik it

also depends on algorithmic parametgrs, n andd
(Theorem4 will relate n) to § andd’).

Ouir first result below concerns the local linear convergence
of Algorithm 3 when applied to solve thé -LS problem

at each stage of the homotopy method. Basically, if the
starting pointz(?) is sparse and the optimality condition

Our convergence analysis of the APG homotopy methods satisfied with adequate precision, then all iteratesgalon
is based on the following assumption, which involves thethe solution path are sparse. This implies that restricted

restricted eigenvalues defined ) (

Assumption 1. Supposé = AZ + z. LetS = supp(Z)
ands = |S|. There existy > 0 andd’ € (0,0.2] such that
v>(14+46)/(1-¢)and

v+1
(1=3)y —(1+9)

Atgt > 4max{2, }||ATZ|OO.

(17)
Moreover, we assume there exists an integauch that
p—(A,5+35) >0and

5> 24(’7incp+(Aa 5+ 35) + 3p+(Aa 5))

S (A513) (1+~)s. (18)

We also assume thdt,i, < Yincp+ (A4, 5+ 35).

According toZhang & Huang(2008, the above assump-
tion implies|jz*(\)g-|lo < § wheneverx > A (here
S¢ denotes the complement of the support Sgt We
will show that by choosing the parametersand? in Al-
gorithm 4 appropriately, these conditions also imply that

strong convexity holds and Algorith@actually has linear
convergence.

Theorem 3. Suppose Assumptidhholds. If the initial
pointz™ in Algorithm3 satisfies

ini

|8 w(a™) < &'\,

L <5, (19)
then for allk > 0, we havd]:vg?uo < 5. Moreover, all the
three conclusions of Theore2rholds by replacing.  and
py with p4 (A, 5+ 35) andp_ (A, 5 + 35), respectively.

Our next result gives the overall iteration complexity of th
APG homotopy method in Algorithm. To simplify pre-
sentation, we let’ = 5 + 35, and use the following nota-
tions:

p+(s) = pi(A 5+ 33),
p—(s) = p-(A5+33),
_ — ~ p+(A7_+3§)
Ky = K(A’S—’—?’S)_p,(/l,s 35)"
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Roughly speaking, if the parametefsandn are chosen the PG and PGH methodXiéo & Zhang 2013, we also
appropriately, then the total number of proximal-gradientcompare our method with FISTABéck & Teboullg 2009
steps in Algorithm4 for finding ane-optimal solution is  and its homotopy variants.

O(v/Es In(1/€)). . , We implemented FISTA with an adaptive line-search over
Theorem 4. Suppose Assumptioh holds for somey’,  the Lipschitz constant.;, but it does not use or esti-

v and 5, and the parameters and 7 in Algorithm 4 mate the convexity parametgr. Hence it has a sublin-

146 _
are chosen such that; < 7 < 1. Let N = g5 complexityO(+/Ls/¢). In our experiments, we al-
[In (Ao/Asgt) /Inn~* ] as in the algorithm. Then: so compare with a simple restart scheme for FISTA sug-

N _ gested byO’'Donoghue & Cande$2012: restart FISTA
1. Condition 9) holds for each call of Algorithr8. For  whenever it exhibits nonmonotone behaviors. In particu-

K =0,...,N — 1, the number of gradient steps in |ar, we implemented thgradientscheme: restart when-
each call of Algorithn8 is no more than ever gr, (yFNT (2® — (1) > 0, wherez® and
C y*) are two sequences generated by FISTA, similar to
<1ogt (§> + D> VK VincYse those in our AdapAPG methodO’Donoghue & Candés
(2012 show that for strongly convex pure quadratic func-
Ks'YincYsc p+( " 2 tions, this restart scheme leads to the optimal complexi-
< In (8 ( 0.0 ) (1 o ) ) ’ ty of O (/F7In(1/€)). However, their analysis doe®t

hold for the/,-LS problem or other non-quadratic func-
where ¢ — (1 n p+(s )) 87mer (11 7)5 and tions. We call this method FISTA+RS (meaning FISTA
Lnin with ReStart).

D= [log%(p (S)ﬂ+1 Itis independent of k.

For our AdapAPG method (Algorithi8) and APG homo-
2. For eachK > 0, the outer iterates:(X) satisfies topy method (Algorithmd), we use the following values of
- the parameters unless otherwise stated:

. 4.5(14)\3s
K 2(K+1 0
¢>\tgt (x( )) - Qb;tgt < ( ) 7p_ (A, E §) s parameters Yine | Vdec Osc Yse n )

values 2 2 |/01]10|08|02

and the following bound on sparse recovery holds
_ To make the comparison clear, we generate an ill-
— Z||p < pfF! M, conditioned random matri¥d following the experimental
p-(A,5+35) setup inAgarwal et al(2012:

||I(K)

3. When Algorithm4 terminates, the total number of
proximal-gradient steps i®) (/% In(1/e€)), More-
over, the output(tst) satisfies

e Generate a random matrix € R™*™ with B;; fol-
lowing i.i.d. standard normal distribution.

e Choosew € [0,1), and fori = 1,...,m, generate
QbA ( tgt)) ¢* < 4(1 + V)Atgtg 6 each rOWAZ-V: by Ai,l = Bi,l/\/ 1—w? andAi7j+1 =
Mt = p (A,545) wA;j+B;jforj=2,....n

Our O (/s In(1/€)) complexity of the APG homotopy It can be shown that the eigenvaluesR{fA” 4] lie within
method improves th® (x;In(1/e)) complexity of PGH  the interval| - 2 .fw=0,thenAd = B
. N " I+@0)% T—w)?(1+w)
in the dependence on restricted condition number. We T
nd the covariance matrid* A is well conditioned. As
note that this result is not a simple extension of those |n
— 1, it becomes progressively more ill-conditioned. In

Xiao & Zhang(2013. In particular, the AdapAPG method % our experiments, we generate the mattiith m — 1000,
do not have the property of monotone decreasing, Wh|ch — 5000, andw — 0.9.

is key for establishing the complexity of the PGH method”"
in Xiao & Zhang(2013. Instead, our proof relies on the Figure1l shows the computational results of the four dif-
non-blowout property (Lemma) to show that all iterates ferent methods: PG, FISTA, FISTA+RS, AdapAPG, and
along the solution path are sparse (details are given in théheir homotopy continuation variants (denoted by “+H").

supporting materials). For each method, we initialize the Lipschitz constant by
Lo = maxjeq1,. 0y | A: 5113 For the AdapAPG method,
5. Numerical experiments we initialize the estimate of convexity parameter with two

different valuesyy = Lo/10 andpy = Lo/100, and de-
In this section, we present preliminary numerical experi-note their results by AdapAPG1 and AdapAPG2, respec-
ments to support our theoretical analysis. In addition tatively.
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Figure 1.Solving an ill-conditioned;-LS problem. AdapAPG1 starts wifly = Lo /10, and AdapAPG2 uses, = Lo /100.

From the top-left plot, we observe that PG, FISTA+RS andcal Lipschitz constand/, and the restricted convexity pa-
AdapAPG all go through a slow plateau before reachingameteru. We see that the homotopy methods (bottom-
fast local linear convergence. FISTA without restart doegight plot) have relatively smallev/,, and largei: than the
not exploit the strong convexity and is the slowest asymp-ones without using homotopy continuation (top-right plot)
totically. Their homotopy continuation variants shown in which means much better conditioning along the iterates.
the bottom-left plot are much faster. Each vertical jumplIn particular, the homotopy AdapAPG method used fewer
on the curves indicates a change in the value @f the  number of reductions qi, for both initializations ofu.

homotopy scheme. In particular, it is clear that all excep-
t FISTA+H enter the final homotopy stage with fast lin- Overall, we observe that for ##-LS problem, the homo

ear convergence. In the final stage, the PGH method haté)on continuation scheme IS Very effective in spee_dlng_up
. I o Ifferent methods. Even with the overhead of estimating
a rather flat slope due to ill-conditioning of the matrix;

in contrast, FISTA+RS and AdapAPG have much steepe?nd tuningy, the AdapAPG+H method is close in efficien-

slopes due to their accelerated schemes. AdapAPG1 starty comp:car_ed W't? theﬁFIﬁTA+F;S+H method_. If th: 'T)'t'al
ed with a modest slope, and then detected thaj:tialue guess ofu is not far off, then AdapAPG+H gives the best

was too big and reduced it by a factor-af, — 10, which performance. Finally, we note that unlike the AdapAPG

. ethod, the optimal complexity of the FISTA+RS method
resulted in the same fast convergence rate as AdapAP : C
after that. as not been established for minimizing general strongly

convex functions (including;-LS). Although often quite

The two plots in the middle show the sparsity of each iter-competitive in practice, we have observed non-quadratic

ates along the solution paths of these methods. We obsereases in which FISTA+RS demonstrate less desirable con-
that FISTA+RS and AdapAPG entered fast local conververgence (see examplesin the supporting materials and also
gence precisely when their iterates became sufficiently ssomments irD’'Donoghue & Candef012).

parse, i.e., whetjz(¥) ||, became close to that of the final

soIL_mon. In contrgst, the homotopy va_rlants of these aI'ReferenceS

gorithms kept all iterates sparse by using the warm start
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ity hold along the whole path and linear convergence was Fast global convergence of gradient methods for high-
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The right column shows the automatic tuning of the lo- ®)
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