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Abstract
We first propose an adaptive accelerated prox-
imal gradient (APG) method for minimizing
strongly convex composite functions with un-
known convexity parameters. This method in-
corporates a restarting scheme to automatical-
ly estimate the strong convexity parameter and
achieves a nearly optimal iteration complexi-
ty. Then we consider theℓ1-regularized least-
squares (ℓ1-LS) problem in the high-dimensional
setting. Although such an objective function
is not strongly convex, it has restricted strong
convexity over sparse vectors. We exploit this
property by combining the adaptive APG method
with a homotopy continuation scheme, which
generates a sparse solution path towards optimal-
ity. This method obtains a global linear rate of
convergence and its overall iteration complexity
has a weaker dependency on the restricted condi-
tion number than previous work.

1. Introduction

We consider first-order methods for minimizingcomposite
objective functions, i.e., the problem of

minimize
x∈Rn

{
φ(x) , f(x) + Ψ(x)

}
, (1)

wheref(x) and Ψ(x) are lower-semicontinuous, proper
convex functions (Rockafellar, 1970, Section 7). We as-
sume thatf is differentiable on an open set containing
domΨ and its gradient∇f is Lipschitz continuous on
domΨ, i.e., there exists a constantLf such that

‖∇f(x)−∇f(y)‖2 ≤ Lf‖x−y‖2, ∀x, y ∈ domΨ. (2)
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We also assumeΨ(x) is simple(Nesterov, 2013), meaning
that for anyy ∈ domΨ, the following auxiliary problem
can be solved efficiently or in closed-form:

TL(y) = argmin
x

{
∇f(y)Tx+

L

2
‖x− y‖22 +Ψ(x)

}
.

(3)
This is the case, e.g., whenΨ(x) = λ‖x‖1 for anyλ > 0,
orΨ(x) is the indicator function of a closed convex set that
admits an easy projection mapping.

The so-calledproximal gradient(PG) method simply us-
es (3) as its update rule:x(k+1) = TL(x

(k)), for k =
0, 1, 2, . . ., whereL is set toLf or determined by a lin-
ear search procedure. The iteration complexity for the PG
method isO(Lf/ǫ) (Nesterov, 2004; 2013), which mean-
s, to obtain anǫ-optimal solution (whose objective value is
within ǫ of the optimum), the PG method needsO(Lf/ǫ)

iterations. A far better iteration complexity,O
(√

Lf/ǫ
)
,

can be obtained by accelerated proximal gradient (APG)
methods (Nesterov, 2013; Beck & Teboulle, 2009; Tseng,
2008).

The iteration complexities above imply that both PG and
APG methods have a sublinear convergence rate. However,
if f is strongly convex, i.e., there exists a constantµf > 0
(theconvexity parameter) such that

f(x) ≥ f(y) + 〈∇f(y), x − y〉+ µf

2
‖x− y‖22, (4)

for all x, y ∈ domΨ, then both PG and APG method-
s will achieve a linear convergence rate with the iteration
complexities beingO(κf log(1/ǫ)) andO(

√
κf log(1/ǫ))

(Nesterov, 2004; 2013), respectively. Here,κf = Lf/µf

is calledcondition numberof the functionf . Sinceκf is
typically a large number, the iteration complexity of the
APG methods can be significantly better than that of the
PG method for ill-conditioned problems. However, in or-
der to obtain this better complexity, the APG methods need
to use the convexity parameterµf , or a lower bound of it,
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explicitly in their updates. In many applications, an effec-
tive lower bound ofµf can be hard to estimate.

To address this problem, our first contribution in this pa-
per is an adaptive APG method for solving problem (1)
whenf is strongly convex butµf is unknown. This method
incorporates a restart scheme that can automatically esti-
mateµf on the fly and achieves an iteration complexity of
O
(√
κf log κf · log(1/ǫ)

)
.

Even iff is not strongly convex (µf = 0), problem (1) may
have special structure that may still allow the development
of first-order methods with linear convergence. This is the
case for theℓ1-regularized least-squares(ℓ1-LS) problem,
defined as

minimize
x

φλ(x) ,
1

2
‖Ax− b‖22 + λ‖x‖1, (5)

whereA ∈ R
m×n andb ∈ R

m are the problem data, and
λ > 0 is a regularization parameter. The problem has im-
portant applications in machine learning, signal process-
ing, and statistics; see, e.g.,Tibshirani(1996); Chen et al.
(1998); Bruckstein et al.(2009). We are especially inter-
ested in solving this problem in the high-dimensional case
(m < n) and when the solution, denoted asx⋆(λ), is s-
parse.

In terms of the general model in (1), we havef(x) =
(1/2)‖Ax − b‖22 andΨ(x) = λ‖x‖1. Heref(x) has a
constant Hessian∇2f(x) = ATA, and we haveLf =
ρmax(A

TA) and µf = ρmin(A
TA) whereρmax(·) and

ρmin(·) denote the largest and smallest eigenvalues, re-
spectively, of a symmetric matrix. Under the assumption
m < n, the matrixATA is singular, henceµf = 0 (i.e.,f is
not strongly convex). Therefore, we only expect sublinear
convergence rates (at least globally) when using first-order
optimization methods.

Nevertheless, even in the case ofm < n, when the so-
lution x⋆(λ) is sparse, the PG method often exhibits fast
convergence when it gets close to the optimal solution. In-
deed, local linear convergence can be established for the
PG method provided that the active submatrix (columns
of A corresponding to the nonzero entries of the sparse it-
erates) is well conditioned (Luo & Tseng, 1992; Hale et al.,
2008; Bredies & Lorenz, 2008). To explain this more for-
mally, we define therestricted eigenvaluesofA at the spar-
sity levels as

ρ+(A, s) = sup

{
xTATAx

xTx
: x 6= 0, ‖x‖0 ≤ s

}
,

ρ−(A, s) = inf

{
xTATAx

xTx
: x 6= 0, ‖x‖0 ≤ s

}
,

(6)
wheres is a positive integer and‖x‖0 denotes the number
of nonzero entries of a vectorx ∈ R

n. From the above

definitions, we have

µf ≤ ρ−(A, s) ≤ ρ+(A, s) ≤ Lf , ∀ s > 0.

As discussed before, we haveµf = 0 for m < n. But it is
still possible thatρ−(A, s) > 0 holds for somes < m.
In this case, we say that the matrixA satisfies there-
stricted eigenvalue conditionat the sparsity levels. Let
supp(x) = {j : xj 6= 0}, and assume thatx, y ∈ R

n

satisfy |supp(x) ∪ supp(y)| ≤ s. Then it can be shown
(Xiao & Zhang, 2013, Lemma 3) that

f(x) ≥ f(y) + 〈∇f(y), x− y〉+ ρ−(A, s)

2
‖x− y‖22.

The above inequality gives the notion ofrestricted strong
convexity(cf. strong convexity defined in (4)). Intuitively, if
the iterates of the PG method become sparse and their sup-
ports do not fluctuate much from each other, then restricted
strong convexity leads to (local) linear convergence. This
is exactly what happens when the PG method speeds up
while getting close to the optimal solution.

Moreover, such a local linear convergence can be exploited
by a homotopy continuation strategy to obtain much faster
global convergence (Hale et al., 2008; Wright et al., 2009;
Xiao & Zhang, 2013). The basic idea is to solve theℓ1-LS
problem (5) with a large value ofλ first, and then grad-
ually decreases the value ofλ until the target regulariza-
tion is reached. For each value ofλ, Xiao & Zhang(2013)
employ the PG method to solve (5) up to an adequate pre-
cision, and then use the resulting approximate solution to
warm start the PG method for (5) with the next value ofλ.
It is shown (Xiao & Zhang, 2013) that under suitable as-
sumptions for sparse recovery (mainly the restricted eigen-
value condition), an appropriate homotopy strategy can en-
sure all iterates of the PG method be sparse, hence linear
convergence at each stage can be established. As a result,
the overall iteration complexity of such a proximal-gradient
homotopy (PGH) method is̃O

(
κs log(1/ǫ)

)
whereκs de-

notes therestricted condition numberat some sparsity level
s > 0, i.e.,

κs , κ(A, s) =
ρ+(A, s)

ρ−(A, s)
, (7)

and the notatioñO(·) hides additionallog(κs) factors.

Our second contribution in this paper is to show that, by
using the adaptive APG method developed in this paper in
a homotopy continuation scheme, we can further improve
the iteration complexity for solving theℓ1-LS problem to
Õ
(√
κs′ log(1/ǫ)

)
, where the sparsity levels′ is slightly

larger than the one for the PGH method. We note that this
result is not a trivial extension from the convergence results
for the PGH method inXiao & Zhang(2013). In particular,
the adaptive APG method does not have the property of
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monotone decreasing, which was important for the analysis
of the PGH method. In order to overcome this difficulty, we
had to show a “non-blowout” property of our adaptive APG
method, which is interesting in its own right.

2. An APG method for minimizing strongly
convex functions

The main iteration of the APG method is based on a
composite gradient mapping introduced by Nesterov in
(Nesterov, 2013). For any fixed pointy and a given con-
stantL > 0, we define a local model ofφ(x) aroundy
using a quadratic approximation off but keepingΨ intact:

ψL(y;x) = f(y) +∇f(y)T (x− y) + L

2
‖x− y‖22 +Ψ(x).

According to (3), we have

TL(y) = argmin
x

ψL(y;x). (8)

Then thecomposite gradient mappingof f at y is defined
as

gL(y) = L(y − TL(y)).
Following (Nesterov, 2013), we also define a local Lips-
chitz parameter

SL(y) =
‖∇f(TL(y))−∇f(y)‖2

‖TL(y)− y‖2
.

With the machinery of composite gradient mapping,
Nesterov(2004; 2013) developed several variants of the
APG methods. As discussed in the introduction, compared
to the PG method, the iteration complexity of the acceler-
ated methods have a better dependence on the accuracyǫ
whenf is not strongly convex, and a better dependence on
the condition numberκf whenf is strongly convex. How-
ever, in contrast with the PG method, the better complexity
bound of the APG method in the strongly convex case re-
lies on the knowledge of the convexity parameterµf , or an
effective lower bound of it, both of which can be hard to
obtain in practice.

To address this problem, we propose an adaptive APG
method that can be applied without knowingµf and still
obtains a linear convergence rate. To do so, we first present
an APG method in Algorithm1 and in Algorithm2 up-
on which the development of the adaptive APG method is
based. We name this method scAPG, where “sc” stands for
“strongly convex.”

To use this algorithm, we need to first choose an initial
optimistic estimateLmin for the Lipschitz constantLf :
0 < Lmin ≤ Lf , and two adjustment parametersγdec ≥ 1
andγinc > 1. In addition, this method requires an input pa-
rameterµ > 0, which is an estimate of the true convexity

Algorithm 1 {x̂, M̂} ← scAPG(x(0), L0, µ, ǫ̂)

parameter: Lmin ≥ µ > 0, γdec ≥ 1
x(−1) ← x(0)

α−1 = 1
repeat

( for k = 0, 1, 2, . . .)
{x(k+1),Mk, αk, g

(k), Sk}
← AccelLineSearch(x(k), x(k−1), Lk, µ, αk−1)

Lk+1 ← max{Lmin,Mk/γdec}
until ω(x(k+1)) ≤ ǫ̂
x̂← x(k+1)

M̂ ←Mk

Algorithm 2 {x(k+1),Mk, αk, g
(k), Sk}

← AccelLineSearch(x(k), x(k−1), Lk, µ, αk−1)

parameter: γinc > 1
L← Lk/γinc
repeat
L← Lγinc
αk ←

√
µ
L

y(k) ← x(k) + αk(1−αk−1)
αk−1(1+αk)

(x(k) − x(k−1))

x(k+1) ← TL(y
(k))

until φ(x(k+1)) ≤ ψL(y
(k);x(k+1))

Mk ← L
g(k) ←Mk(y

(k) − x(k+1))
Sk ← SL(y

(k))

parameterµf . The scAPG method generates the following
three sequences:

αk =

√
µ

Mk
,

y(k) = x(k) +
αk(1 − αk−1)

αk−1(1 + αk)
(x(k) − x(k−1)), (9)

x(k+1) = TMk
(y(k)).

whereMk is found by the line-search procedure in Algo-
rithm 2. The line search procedure starts with an estimat-
ed Lipschitz constantLk, and increases its value by the
factor γinc until φ(x(k+1)) ≤ ψMk

(y(k);x(k+1)), which
is sufficient to guarantee the convergence. In each itera-
tion of Algorithm 1, the scAPG method tries to start the
line search at a smaller initial value by settingLk+1 to be
min{Lmin,Mk/γdec}.
The scAPG algorithm can be considered as an extension
of the constant step scheme ofNesterov(2004) for mini-
mizing composite functions in (1) whenµf > 0. Indeed, if
Mk = Lf , we haveαk =

√
µf/Lf for all k and the update

for y(k) becomes

y(k) = x(k) +

√
Lf −√µf√
Lf +

√
µf

(x(k) − x(k−1)), (10)
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which is the same as Algorithm (2.2.11) inNesterov
(2004). Note that, one can not directly apply Algorithm1
or Nesterov’s constant scheme to problems without strong-
ly convexity by simply settingµ = 0.

Another difference from Nesterov’s method is that Algo-
rithm 1 has an explicit stopping criterion based on theopti-
mality residueω(x(k+1)), which is defined as

ω(x) , min
ξ∈∂Ψ(x)

‖∇f(x) + ξ‖∞, (11)

where∂Ψ(x) is the subdifferential ofΨ at x. The opti-
mality residue measures how close a solutionx is to the
optimality condition of (1) in the sense thatω(x⋆) = 0 if
and only ifx⋆ is an solution to (1).

The following theorem states that, ifµ is a positive lower
bound ofµf , the scAPG converges geometrically and it has
an iteration complexityO(

√
κf log(1/ǫ)).

Theorem 1. Supposex⋆ is the optimal solution of (1) and
0 < µ ≤ µf . Then Algorithm1 guarantees that

φ(x(k))−φ(x⋆) ≤ τk
[
φ(x(0))−φ(x⋆)+µ

2
‖x(0)−x⋆‖22

]
,

(12)
µ

2
‖y(k)−x⋆‖22 ≤ τk

[
φ(x(0))−φ(x⋆)+µ

2
‖x(0)−x⋆‖22

]
,

(13)

where

τk =

{
1 k = 0,∏k−1

i=0 (1− αi) k ≥ 1.
(14)

Moreover,

τk ≤
(
1−

√
µ

Lfγinc

)k

.

In addition to the geometric convergence ofφ(x(k)), this
theorem states that the auxiliary sequencey(k) also con-
verges to the unique optimizerx⋆ with a geometric rate.

If µ does not satisfiesµ ≤ µf , Theorem1 may not hold
anymore. However, we can show that, in this case, Algo-
rithm 1 will at least not blowout. More precisely, we show
thatφ(x(k)) ≤ φ(x(0)) for all k ≥ 1 as long asµ ≤ Lmin,
which can be easily enforced in implementation of the al-
gorithm.

Lemma 1. Suppose0 < µ ≤ Lmin. Then Algorithm1
guarantees that

φ(x(k+1)) ≤ φ(x(0))− Mk

2

∥∥x(k+1) − x(k)
∥∥2
2
. (15)

The non-blowout property is also critical in our analysis of
the homotopy method for solving theℓ1-LS problem pre-
sented in Section4. In particular, it helps to show the spar-
sity of x(k) oncex(0) is sparse. (All proofs for our results
are given in the supporting materials).

3. An Adaptive APG method with restart

When applied to strongly convex minimization problem-
s, Nesterov’s constant step scheme (10) needs to useLf

andµf as input parameters. Thanks to the line-search tech-
nique, Algorithm1 does not need to knowLf explicitly.
However, it still need to know the convexity parameterµf

or a nontrivial lower bound of it in order to guarantee the
geometric convergence rate given in Theorem1.

Compared to line search onLf , estimatingµf on-the-fly
is much more sophisticated.Nesterov(2013) suggested a
restarting scheme to estimateµf , which does not require
any lower bound ofµf , and can be shown to have linear
convergence (up to a logarithmic factor). In this section,
we adapt his restarting technique to Algorithm1 and obtain
an adaptive APG method. This method has the same con-
vergence guarantees as Nesterov’s scheme. However, there
are two important differences, which we will elaborate on
at the end of this section.

We first describe the basic idea of the restart scheme for
estimatingµf . Suppose we simply run Algorithm1 with
a guessed valueµ. At each iteration, we can check if the
inequality (12) is satisfied. If not, we must haveµ > µf ac-
cording to Theorem1, and therefore need to reduceµ to en-
sure Algorithm1 converges in a linear rate. However, (12)
can not be evaluated becausex⋆ is unknown. Fortunately,
we can show in the following lemma that, ifµ ≤ µf , the
norm of the gradient mappingg(k) = gMk

(y(k)) generated
in Algorithm 1 also decreases at a linear rate.
Lemma 2. Suppose0 < µ ≤ µf and the ini-
tial point x(0) of Algorithm 1 is obtained by call-
ing Algorithm 2, i.e., {x(0),M−1, α−1, g

(−1), S−1} ←
AccelLineSearch(xini, xini, Lini, µ, 1) with an arbi-
trary xini ∈ R

n andLini ≥ Lmin. Then, for anyk ≥ 0
in Algorithm1, we have

∥

∥gMk
(y(k))

∥

∥

2
≤ 2
√
2τk

Mk

µ

(

1 +
S
−1

M
−1

)

∥

∥g(−1)
∥

∥

2
. (16)

Unlike the inequality (12), the inequality (16) can be
checked explicitly and, if it does not hold, we knowµ > µf

and need to reduceµ.

Now we are ready to develop the adaptive APG method.
Let θsc ∈ (0, 1) be a desired shrinking factor. We check the
following two conditions at iterationk of Algorithm 1:

• A:
∥∥gMk

(y(k))
∥∥
2
≤ θsc

∥∥g(−1)
∥∥
2
.

• B: 2
√
2τk

Mk

µ

(
1 + S−1

M−1

)
≤ θsc.

If A is satisfied first, then we restart Algorithm1 with
x(k+1) as the new starting point, setk = 0, and update
the three quantitiesg(−1), S−1 andM−1 accordingly (a-
gain useα−1 = 1 andτ0 = 1). If A is not satisfied but
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Algorithm 3 {x̂, M̂ , µ̂} ← AdapAPG (xini, Lini, µ0, ǫ̂)

parameter:Lmin ≥ µ0, γdec ≥ 1, γsc > 1, θsc ∈ (0, 1)

{x(0),M−1, α−1, g
(−1), S−1}

← AccelLineSearch(xini, xini, Lini, µ0, 1)
x(−1) ← x(0), L−1 ←M−1, µ← µ0

α−1 ← 1, τ0 ← 1, k ← 0
repeat
{x(k+1),Mk, αk, g

(k), Sk}
← AccelLineSearch(x(k), x(k−1), Lk, µ, αk−1)

τk+1 ← τk(1− αk)
if condition A holds,then
x(0) ← x(k+1), x(−1) ← x(k+1), L−1 =Mk

g(−1) ← g(k), M−1 ←Mk, S−1 ← Sk

k ← 0
else

if condition B holds,then
µ← µ/γsc
k ← 0

else
Lk+1 ← max{Lmin,Mk/γdec}
k ← k + 1

end if
end if

until ω(x(k+1)) ≤ ǫ̂
x̂← x(k+1), M̂ ←Mk, µ̂← µ

B is satisfied first, it means thatµ is larger thanµf . In
fact, if µ ≤ µf , then combining condition B with Lemma
2 would imply that A also holds. This contradiction indi-
cates that if B is satisfied first, we must haveµ > µf , and
we have to reduceµ, say by a factorγsc > 1. In this case,
we restart Algorithm1 still at x(0) and keepg(−1), S−1

andM−1 unchanged. If neither conditions are satisfied, we
continue Algorithm1 to its next iterate until the optimality
residue is smaller than a prescribed value. We present the
above procedure formally in Algorithm3, whose iteration
complexity is given by the following theorem.

Theorem 2. Assumeµ0 > µf > 0. Let gini denotes the
first g(−1) computed by Algorithm3, andNA andNB the
number of times that conditions A and B are satisfied, re-

spectively. ThenNA ≤
⌈
log1/θsc

((
1+

Lf

Lmin

)
‖gini‖2

ǫ̂

)⌉

andNB ≤
⌈
logγsc

(
µ0

µf

)⌉
and the total number of itera-

tions is at most

(NA+NB)

√

Lfγincγsc
µf

ln

(

8

(

Lfγincγsc
µfθsc

)2(

1 +
Lf

Lmin

)2
)

.

Note that if0 < µ0 ≤ µf , thenNB = 0.

The total number of iterations given in Theorem2 is
asymptotically

O
(
κ
1/2
f log(κf ) log

(κf
ǫ̂

))
+O

(
κ
1/2
f log(κf )

)
.

This is the same complexity as for the restart scheme pro-
posed by Nesterov for his accelerated dual gradient (ADG)
method (Nesterov, 2013, Section 5.3). Despite using a sim-
ilar restart scheme and having the same complexity bound,
here we elaborate on some important differences between
our method from Nesterov’s.

• Nesterov’s ADG method exploits strong convexity
in Ψ instead off . In order to use it under our assump-
tion (thatf is strongly convex), one needs to relocate
a strong convexity term fromf to Ψ, and this relocat-
ed term needs to be adjusted whenever the estimateµ
is reduced.

• The restart scheme suggested in (Nesterov, 2013, Sec-
tion 5.3) uses an extra line-search at each iteration,
solely for the purpose of computing the gradient map-
ping at x(k). Our method directly use the gradient
mapping aty(k), which does not require the extra line-
search, therefore the computational cost per iteration
is lower.

4. Homotopy continuation for sparse
optimization

In this section, we focus on theℓ1-regularized least-squares
(ℓ1-LS) problem (5) in the high-dimensional setting i.e.,
with m < n. This is a special case of (1), but the func-
tion f(x) = (1/2)‖Ax− b‖22 is not strongly convex when
m < n. Therefore, we only expect a sublinear convergence
rate (at least globally) when using traditional first-orderop-
timization methods.

Nevertheless, as explained in the introduction, one can use
a homotopy continuation strategy to obtain much faster
convergence. The key idea is to solve theℓ1-LS prob-
lem with a large regularization parameterλ0 first, and then
gradually decreases the value ofλ until the target regular-
ization is reached. InXiao & Zhang(2013), the PG method
is employed to solve theℓ1-LS problem for a fixedλ up to
an adequate precision, then the solution is used to warm
start the next stage. It was shown that under a restricted
eigenvalue condition onA, such a homotopy scheme guar-
antees that all iterates generated by the method are suf-
ficiently sparse, which implies restricted strong convexi-
ty. As a result, a linear rate of convergence can be estab-
lished for each homotopy stage, and the overall complexity
is Õ(κs log(1/ǫ)) for certain sparsity levels, whereκs is
the restricted condition number defined in (7), and the no-
tationÕ(·) hides additionallog(κs) factors.

In this section, we show that, by combining the adaptive
APG method (Algorithm3) with the same homotopy con-
tinuation scheme, the iteration complexity for solving the
ℓ1-LS problem can be improved tõO

(√
κs′ log(1/ǫ)

)
, with

s′ slightly larger thans.
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Algorithm 4 x̂(tgt) ← APGHomotopy(A, b, λtgt, ǫ, L0, µ̂0)

input:A ∈ R
m×n, b ∈ R

n, L0 ≥ µ̂0 > 0
parameter: η ∈ (0, 1), δ ∈ (0, 1)
initialize: λ0 ← ‖AT b‖∞, x̂(0) ← 0, M̂0 ← L0

N ← ⌊ln(λ0/λtgt) / ln(1/η)⌋
for K = 0, 1, 2, . . . , N − 1 do
λK+1 ← ηλK
ǫ̂K+1 ← δλK+1

{x̂(K+1), M̂K+1, µ̂K+1}
← AdapAPG

(
x̂(K), M̂K , µ̂K , ǫ̂K+1, λK+1

)

end for
{x̂(tgt), M̂tgt} ← AdapAPG

(
x̂(N), M̂N , µ̂N , ǫ, λtgt

)

return:x̂(tgt)

The APG homotopy method is presented in Algorithm4.
To avoid confusion over the notations, we useλtgt to de-
note the target regularization parameter in (5). The method
starts withλ0 = ‖AT b‖∞ which is the smallestλ such that
the ℓ1-LS problem has the trivial solution0 (by examin-
ing the optimality condition). This method has two extra
parametersη ∈ (0, 1) andδ ∈ (0, 1). They control the
algorithm as follows:

• The sequence of values for the regularization parame-
ter is determined asλk = ηkλ0 for k = 1, 2, . . ., until
the target valueλtgt is reached.

• For eachλk exceptλtgt, we solve problem (5) with
a proportional precisionδλk. For the last stage with
λtgt, we solve to the absolute precisionǫ.

Our convergence analysis of the APG homotopy method
is based on the following assumption, which involves the
restricted eigenvalues defined in (6).

Assumption 1. Supposeb = Ax̄ + z. Let S̄ = supp(x̄)
and s̄ = |S̄|. There existγ > 0 andδ′ ∈ (0, 0.2] such that
γ > (1 + δ′)/(1− δ′) and

λtgt ≥ 4max

{
2,

γ + 1

(1 − δ′)γ − (1 + δ′)

}
‖AT z‖∞.

(17)
Moreover, we assume there exists an integers̃ such that
ρ−(A, s̄+ 3s̃) > 0 and

s̃ >
24
(
γincρ+(A, s̄+ 3s̃) + 3ρ+(A, s̃)

)

ρ−(A, s̄+ s̃)
(1+γ)s̄. (18)

We also assume thatLmin ≤ γincρ+(A, s̄+ 3s̃).

According toZhang & Huang(2008), the above assump-
tion implies‖x⋆(λ)S̄c‖0 ≤ s̃ wheneverλ ≥ λtgt (here
S̄c denotes the complement of the support setS̄). We
will show that by choosing the parametersη andδ in Al-
gorithm 4 appropriately, these conditions also imply that

all iterates along the solution path are sparse. We note
that Assumption1 is very similar to Assumption 1 in
Xiao & Zhang(2013) (they differ only in the constants in
the conditions), and interpretations and remarks made there
also apply here. More specifically,

• The existence of̃s satisfying the conditions like (18)
is necessary and standard in sparse recovery analysis.
It is closely related to the restricted isometry proper-
ty (RIP) of Candès & Tao(2005) which assumes that
there exist somes > 0, and ν ∈ (0, 1) such that
κ(A, s) < (1+ ν)/(1− ν). SeeXiao & Zhang(2013,
Section 3) for an example of sufficient RIP conditions.
Another sufficient condition isκ(A, s̄ + 3s̃) ≤ Cs̃/s̄
with C = 1/(24(1 + γ)(3 + γinc)), which is more
accessible but can be very conservative.

• The RIP-like condition (18) can be much stronger than
the corresponding conditions established in the sparse
recovery literature (see, e.g.,Li & Mo (2011) and ref-
erences therein), which are only concerned about the
recovery property of the optimal solutionx⋆. In con-
trast, our condition needs to guarantee sparsity for all
iterates along the solution path, thus is “dynamic” in
nature. In particular, in addition to the matrixA, it
also depends on algorithmic parametersγinc, η andδ
(Theorem4 will relateη to δ andδ′).

Our first result below concerns the local linear convergence
of Algorithm 3 when applied to solve theℓ1-LS problem
at each stage of the homotopy method. Basically, if the
starting pointx(0) is sparse and the optimality condition
is satisfied with adequate precision, then all iterates along
the solution path are sparse. This implies that restricted
strong convexity holds and Algorithm3 actually has linear
convergence.

Theorem 3. Suppose Assumption1 holds. If the initial
pointxini in Algorithm3 satisfies

∥∥xiniS̄c

∥∥
0
≤ s̃, ω(xini) ≤ δ′λ, (19)

then for allk ≥ 0, we have
∥∥x(k)

S̄c

∥∥
0
≤ s̃. Moreover, all the

three conclusions of Theorem2 holds by replacingLf and
µf with ρ+(A, s̄+ 3s̃) andρ−(A, s̄+ 3s̃), respectively.

Our next result gives the overall iteration complexity of the
APG homotopy method in Algorithm4. To simplify pre-
sentation, we lets′ = s̄ + 3s̃, and use the following nota-
tions:

ρ+(s
′) = ρ+(A, s̄+ 3s̃),

ρ−(s
′) = ρ−(A, s̄+ 3s̃),

κs′ = κ(A, s̄+ 3s̃) =
ρ+(A, s̄+ 3s̃)

ρ−(A, s̄+ 3s̃)
.
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Roughly speaking, if the parametersδ and η are chosen
appropriately, then the total number of proximal-gradient
steps in Algorithm4 for finding anǫ-optimal solution is
Õ(
√
κs′ ln(1/ǫ)).

Theorem 4. Suppose Assumption1 holds for someδ′,
γ and s̃, and the parametersδ and η in Algorithm 4
are chosen such that1+δ

1+δ′ ≤ η < 1. Let N =⌊
ln (λ0/λtgt) / ln η

−1
⌋

as in the algorithm. Then:

1. Condition (19) holds for each call of Algorithm3. For
K = 0, . . . , N − 1, the number of gradient steps in
each call of Algorithm3 is no more than

(
log 1

θsc

(
C

δ

)
+D

)√
κs′γincγsc

× ln

(
8

(
κs′γincγsc

θsc

)2(
1 +

ρ+(s
′)

Lmin

)2
)
,

where C =
(
1 + ρ+(s′)

Lmin

)√
8γincκs′(1 + γ)s̄ and

D=
⌈
logγsc

(
µ̂0

ρ−(s′)

)⌉
+1. It is independent ofλK .

2. For eachK ≥ 0, the outer iterateŝx(K) satisfies

φλtgt
(x̂(K))− φ⋆λtgt

≤ η2(K+1) 4.5(1 + γ)λ20s̄

ρ−(A, s̄+ s̃)
,

and the following bound on sparse recovery holds

‖x̂(K) − x̄‖2 ≤ ηK+1 2λ0
√
s̄

ρ−(A, s̄+ s̃)
.

3. When Algorithm4 terminates, the total number of
proximal-gradient steps is̃O

(√
κs′ ln(1/ǫ)

)
, More-

over, the output̂x(tgt) satisfies

φλtgt
(x̂(tgt))− φ⋆λtgt

≤ 4(1 + γ)λtgts̄

ρ−(A, s̄+ s̃)
ǫ.

Our Õ
(√
κs′ ln(1/ǫ)

)
complexity of the APG homotopy

method improves thẽO (κs ln(1/ǫ)) complexity of PGH
in the dependence on restricted condition number. We
note that this result is not a simple extension of those in
Xiao & Zhang(2013). In particular, the AdapAPG method
do not have the property of monotone decreasing, which
is key for establishing the complexity of the PGH method
in Xiao & Zhang(2013). Instead, our proof relies on the
non-blowout property (Lemma1) to show that all iterates
along the solution path are sparse (details are given in the
supporting materials).

5. Numerical experiments

In this section, we present preliminary numerical experi-
ments to support our theoretical analysis. In addition to

the PG and PGH methods (Xiao & Zhang, 2013), we also
compare our method with FISTA (Beck & Teboulle, 2009)
and its homotopy variants.

We implemented FISTA with an adaptive line-search over
the Lipschitz constantLf , but it does not use or esti-
mate the convexity parameterµf . Hence it has a sublin-
ear complexityO(

√
Lf/ǫ). In our experiments, we al-

so compare with a simple restart scheme for FISTA sug-
gested byO’Donoghue & Candès(2012): restart FISTA
whenever it exhibits nonmonotone behaviors. In particu-
lar, we implemented thegradient scheme: restart when-
ever gLk

(y(k−1))T (x(k) − x(k−1)) > 0, wherex(k) and
y(k) are two sequences generated by FISTA, similar to
those in our AdapAPG method.O’Donoghue & Candès
(2012) show that for strongly convex pure quadratic func-
tions, this restart scheme leads to the optimal complexi-
ty of O

(√
κf ln(1/ǫ)

)
. However, their analysis doesnot

hold for theℓ1-LS problem or other non-quadratic func-
tions. We call this method FISTA+RS (meaning FISTA
with ReStart).

For our AdapAPG method (Algorithm3) and APG homo-
topy method (Algorithm4), we use the following values of
the parameters unless otherwise stated:

parameters γinc γdec θsc γsc η δ
values 2 2 0.1 10 0.8 0.2

To make the comparison clear, we generate an ill-
conditioned random matrixA following the experimental
setup inAgarwal et al.(2012):

• Generate a random matrixB ∈ R
m×n with Bij fol-

lowing i.i.d. standard normal distribution.

• Chooseω ∈ [0, 1), and fori = 1, . . . ,m, generate
each rowAi,: byAi,1 = Bi,1/

√
1− ω2 andAi,j+1 =

ωAi,j +Bi,j for j = 2, . . . , n.

It can be shown that the eigenvalues ofE[ATA] lie within

the interval
[

1
(1+ω)2 ,

2
(1−ω)2(1+ω)

]
. If ω = 0, thenA = B

and the covariance matrixATA is well conditioned. As
ω → 1, it becomes progressively more ill-conditioned. In
our experiments, we generate the matrixAwithm = 1000,
n = 5000, andω = 0.9.

Figure1 shows the computational results of the four dif-
ferent methods: PG, FISTA, FISTA+RS, AdapAPG, and
their homotopy continuation variants (denoted by “+H”).
For each method, we initialize the Lipschitz constant by
L0 = maxj∈{1,...,n} ‖A:,j‖22. For the AdapAPG method,
we initialize the estimate of convexity parameter with two
different values,µ0 = L0/10 andµ0 = L0/100, and de-
note their results by AdapAPG1 and AdapAPG2, respec-
tively.
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Figure 1.Solving an ill-conditionedℓ1-LS problem. AdapAPG1 starts withµ0=L0/10, and AdapAPG2 usesµ0=L0/100.

From the top-left plot, we observe that PG, FISTA+RS and
AdapAPG all go through a slow plateau before reaching
fast local linear convergence. FISTA without restart does
not exploit the strong convexity and is the slowest asymp-
totically. Their homotopy continuation variants shown in
the bottom-left plot are much faster. Each vertical jump
on the curves indicates a change in the value ofλ in the
homotopy scheme. In particular, it is clear that all excep-
t FISTA+H enter the final homotopy stage with fast lin-
ear convergence. In the final stage, the PGH method has
a rather flat slope due to ill-conditioning of theA matrix;
in contrast, FISTA+RS and AdapAPG have much steeper
slopes due to their accelerated schemes. AdapAPG1 start-
ed with a modest slope, and then detected that theµ value
was too big and reduced it by a factor ofγsc = 10, which
resulted in the same fast convergence rate as AdapAPG2
after that.

The two plots in the middle show the sparsity of each iter-
ates along the solution paths of these methods. We observe
that FISTA+RS and AdapAPG entered fast local conver-
gence precisely when their iterates became sufficiently s-
parse, i.e., when‖x(k)‖0 became close to that of the final
solution. In contrast, the homotopy variants of these al-
gorithms kept all iterates sparse by using the warm start
from previous stages. Therefore, restricted strong convex-
ity hold along the whole path and linear convergence was
maintained at each stage.

The right column shows the automatic tuning of the lo-

cal Lipschitz constantMk and the restricted convexity pa-
rameterµ. We see that the homotopy methods (bottom-
right plot) have relatively smallerMk and largerµ than the
ones without using homotopy continuation (top-right plot),
which means much better conditioning along the iterates.
In particular, the homotopy AdapAPG method used fewer
number of reductions ofµ, for both initializations ofµ0.

Overall, we observe that for theℓ1-LS problem, the homo-
topy continuation scheme is very effective in speeding up
different methods. Even with the overhead of estimating
and tuningµ, the AdapAPG+H method is close in efficien-
cy compared with the FISTA+RS+H method. If the initial
guess ofµ is not far off, then AdapAPG+H gives the best
performance. Finally, we note that unlike the AdapAPG
method, the optimal complexity of the FISTA+RS method
has not been established for minimizing general strongly
convex functions (includingℓ1-LS). Although often quite
competitive in practice, we have observed non-quadratic
cases in which FISTA+RS demonstrate less desirable con-
vergence (see examples in the supporting materials and also
comments inO’Donoghue & Candès(2012)).
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