
Efficient Approximation of Cross-Validation for Kernel Methods using
Bouligand Influence Function

Yong Liu YONGLIU@TJU.EDU.CN
Shali Jiang SLJIANG@TJU.EDU.CN
Shizhong Liao SZLIAO@TJU.EDU.CN

School of Computer Science and Technology, Tianjin University, Tianjin 300072, P. R. China

Abstract
Model selection is one of the key issues both in
recent research and application of kernel meth-
ods. Cross-validation is a commonly employed
and widely accepted model selection criterion.
However, it requires multiple times of train-
ing the algorithm under consideration, which is
computationally intensive. In this paper, we
present a novel strategy for approximating the
cross-validation based on the Bouligand influ-
ence function (BIF), which only requires the so-
lution of the algorithm once. The BIF measures
the impact of an infinitesimal small amount of
contamination of the original distribution. We
first establish the link between the concept of BIF
and the concept of cross-validation. The BIF is
related to the first order term of a Taylor expan-
sion. Then, we calculate the BIF and higher or-
der BIFs, and apply these theoretical results to
approximate the cross-validation error in prac-
tice. Experimental results demonstrate that our
approximate cross-validation criterion is sound
and efficient.

1. Introduction
Kernel methods, such as SVM (Steinwart & Christmann,
2008; Vapnik, 2000), least squares support vector machine
(LSSVM) (Suykens & Vandewalle, 1999) and support vec-
tor regression (SVR) (Shawe-Taylor & Cristianini, 2000),
have been widely used in data mining and machine learn-
ing. The performance of these kernel methods greatly de-
pends on the choice of some hyper-parameters (such as the
kernel parameter and regularization parameter), therefore
the model selection problem becomes an important topic
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in kernel methods. A related problem is the evaluation of
the generalization ability of the learning algorithms. In fac-
t, it is common to select the optimal hyper-parameters by
choosing the ones with the lowest generalization error.

Obviously, the generalization error is not directly com-
putable, as the probability distribution generating the data
is unknown, therefore it is necessary to resort to estimates
of its value. This error can be estimated either via testing on
some data which has not been used for learning (hold-out
validation or cross-validation techniques) or via a bound
given by theoretical analysis (Chapelle et al., 2002). To es-
tablish the upper bounds of the generalization error, some
measures are introduced: such as VC dimension (Vapnik,
2000), Rademacher complexity (Bartlett & Mendelson,
2002), maximal discrepancy (Bartlett et al., 2002), regular-
ized risk (Schölkopf & Smola, 2002), radius-margin bound
(Vapnik, 2000), compression coefficient (Luxburg et al.,
2004) and eigenvalues perturbation (Liu et al., 2013).

While there have been many interesting attempts to use
the above bounds or other techniques to pick the hyper-
parameters, the most commonly used and widely accept-
ed methods for selecting the hyper-parameters are still
the k-fold cross-validation (KCV) and leave-one-out cross-
validation (LOO). However, KCV and LOO requires the
solution of the algorithm under consideration several times,
which are computationally expensive. For the sake of ef-
ficiency, some approximate LOO criteria for some spe-
cific algorithms are given: such as generalized cross-
validation (GCV) (Golub et al., 1979), influence function
(Debruyne et al., 2008), generalized approximate cross-
validation (GACV) (Wahba et al., 1999) and span bound
(Chapelle et al., 2002).

In this paper, we will present a novel strategy for approxi-
mating the k-fold cross-validation based on the Bouligand
influence function (BIF) (Christmann & Messem, 2008).
To our knowledge, an effective strategy for approximat-
ing the k-fold cross-validation error (for all k) for kernel
methods has never been given before. We establish the link
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between the concept of BIF and the concept of KCV, and
present a novel method to calculate the BIF and higher or-
der BIFs at the continuous distribution. Furthermore, we
evaluate these BIFs at the sample distribution and use these
BIFs to obtain an approximation of KCV. Our method re-
quires the solution of the algorithm only once, which can
dramatically improve the efficiency. Experimental result-
s demonstrate that our BIF criterion is a good choice for
model selection.

Related Work

In recent years, some researchers study the robustness of
the kernel methods. In the field of robust statistics the influ-
ence function (IF) (Hampel et al., 1986) is introduced in or-
der to analyze the effects of outliers on the algorithm. This
influence function is defined for continuous distribution-
s that are slightly perturbed by adding a small amount of
probability mass at a certain place. Christmann and Stein-
wart (Christmann & Steinwart, 2004; 2007), Steinwart and
Christmann (Steinwart & Christmann, 2008), Christmann
et al (Christmann et al., 2009), and Messem and Christ-
mann (Messem & Christmann, 2010) show that SVMs for
classification and regression have a bounded influence
function under some assumptions of the loss function. De-
bruyne et al (Debruyne et al., 2008) presented a method to
estimate the LOO via the influence function. Christmann
and Messem (Christmann & Messem, 2008) generalize the
notion of influence function, and introduce a new notion
from Bouligand-derivatives (Robinson, 1991) called Bouli-
gand influence function (BIF), which measures the impact
of an infinitesimal small amount of contamination of the o-
riginal distribution. They show that SVMs have a bounded
BIF with some weaker assumptions of loss function.

For kernel methods, such as SVM, LSSVM and SVR, the
form of the decision function is f(x) =

∑
i αiK(x,xi) +

b. The above work about the robust statistics of kernel
methods all ignore the bias b. However, sometimes the
bias b plays an important role in the performance of kernel
methods. In this paper, we consider the b, and present a the-
oretical result to calculate the BIF at the continuous distri-
bution. This result generalizes the result of Christmann and
Messem (Christmann & Messem, 2008) with a much sim-
pler proof. Debruyne et al (Debruyne et al., 2008) present
a method to calculate the higher order IFs, and apply these
results to approximate the LOO. We generalize the results
of IFs to BIFs, and apply these results of BIFs to approxi-
mate the cross-validation error.

The rest of the paper is organized as follows. In Section
2, we introduce some elementary facts. In Section 3, we
introduce the concept of BIF, and give a novel strategy for
approximating the cross-validation error. A method to cal-
culate the BIF and higher order BIFs is proposed in Section

4. In Section 5, we show how to use these BIFs to approxi-
mate the cross-validation estimator in practice. We empiri-
cally analyze the performance of our proposed approximate
cross-validation criterion in Section 6. We end in Section 7
with conclusion.

2. Preliminaries
Let S = {(xi, yi)}ni=1 be a sample set of size n drawn
identically and independently from a fixed, but unknown
probability measure P on Z = X × Y , X ⊆ Rd, Y ⊆ R
for regression, and Y ⊆ {+1,−1} for classification. Let
K : X × X → R be a kernel, that is, K is symmetric
and for any finite set of points {x1, . . . ,xn} ⊂ X , the ker-
nel matrix K = [K(xi,xj)]

m
i,j=1 is positive semidefinite.

The reproducing kernel Hilbert space (RKHS) H associ-
ated with the kernel K is defined to be the completion of
the linear span of the set of functions {Φ(x) = K(x, ·) :
x ∈ X} with the inner product denoted as ⟨·, ·⟩K satisfying
⟨Φ(x),Φ(x′)⟩K = K(x,x′) (Aronszajn, 1950).

The operator fλ,K+bλ,K : P → fλ,K,P+bλ,K,P is defined
by fλ,K,P + bλ,K,P =

argmin
f∈H,b∈R

EPV (y − f(x)− b) + λ∥f∥2K ,

where V (·) is a loss function and λ is the regularization
parameter. When the sample distribution Pn is used, one
has that fλ,K,Pn + bλ,K,Pn =

argmin
f∈H,b∈R

1

n

n∑
i=1

V (yi − f(xi)− b) + λ∥f∥2K .

Such estimators have been studied in detail, see for exam-
ple (Wahba, 1990; Vapnik, 2000).

LSSVM (Suykens & Vandewalle, 1999; Cawley & Talbot,
2007), ϵ-insensitive support vector regression (ϵ-SVR)
(Shawe-Taylor & Cristianini, 2000) and quadratic ϵ-
insensitive support vector regression (quadratic ϵ-SVR)
(Shawe-Taylor & Cristianini, 2000) are only different in
the choice of the loss function. For LSSVM, V (r) = r2,
for ϵ-SVR, V (r) = max{|r| − ϵ, 0}, and for quadratic ϵ-
SVR, V (r) = (max{|r| − ϵ, 0})2.

Unless specially stated, we respectively write fλ,K,P and
bλ,K,P as fP and bP in the following.

3. A Strategy for Fast Approximation of
Cross Validation

In this section, we introduce the Bouligand influence func-
tion (BIF) (Christmann & Messem, 2008) and higher order
BIFs, and show how to use these BIFs to approximate the
k-fold cross-validation (KCV).
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3.1. Bouligand Influence Function

Definition 1. Let P be a distribution and T be an operator
T : P → T (P ). Then the Bouligand influence function
(BIF) of T at P in the direction of a distribution Q ̸= P is
defined as

BIF (Q;T, P ) = lim
ϵ→0

T ((1− ϵ)P + ϵQ)− T (P )

ϵ
.

The BIF measures the impact of an infinitesimal smal-
l amount of contamination of the original distribution P
in the direction of Q on the quantity of T (P ).

Denote Pϵ,Q = (1 − ϵ)P + ϵQ. One can see that the BIF
is a first order derivative of T (Pϵ,Q) at ϵ = 0. Higher order
BIFs can be defined too:

Definition 2. Let P be a distribution and T be an operator
T : P → T (P ). Then the kth order BIF of T at P in the
direction of a distribution Q is defined as

BIFk(Q;T, P ) =
∂

∂kϵ
T (Pϵ,Q)|ϵ=0.

If all BIFs exist then the following Taylor expansion holds:

T (Pϵ,Q) = T (P ) +
∞∑
i=1

ϵi

i!
BIFi(Q;T, P ). (1)

3.2. A Strategy for Approximating the KCV using BIF

Assume the sample set S = {(xi, yi)}ni=1 is divided into
k disjoint parts {Si}ki=1. Let P−Si

n be the empirical distri-
bution of the sample S without the observations Si, that is
P−Si
n (x) = 1

n−M if x ∈ S \ Si, otherwise 0, where M is
the size of Si.

For k-fold cross-validation, the T (P−Si
n ) should be com-

puted for every i. This means that the algorithm under
consideration has to be executed k times, which is com-
putationally intensive.

If the BIFs of T can be calculated, we can provide a fast
alternative. First note that

P−Si
n =

(
1−

(
−M

n−M

))
Pn +

−M

n−M
∆Si ,

where ∆Si is the sample distribution corresponding to the
sample Si, that is, ∆Si(x) = 1

M if x ∈ Si, otherwise
0. Thus, taking Q = ∆Si , ϵ = − M

n−M , Pϵ,Q = P−Si
n ,

P = Pn and T = fλ,K + bλ,K , Equation (1) gives

f
P

−Si
n

+ b
P

−Si
n

= fPn + bPn+

∞∑
j=1

(
−M

n−M

)j
BIFj(∆Si ; fλ,K + bλ,K , Pn)

j!
.

(2)

The right hand side now only depends on the full sample
Pn and ∆Si . Given the BIFj(∆Si ; fλ,K + bλ,K , Pn), the
k-fold cross validation error can be written as

k-CV =
1

n

k∑
i=1

∑
xj∈Si

ℓ
(
yj , fPn + bPn+

∞∑
p=1

(
−M

n−M

)p
BIFp(∆Si

; fλ,K + bλ,K , Pn)

p!

)
,

where ℓ(·, ·) is an appropriate loss function. It only requires
the solution of the algorithm once.

Note that −M/(n − M) = −1/(k − 1), the
∣∣∣ (−1)p

(k−1)pp!

∣∣∣ is
very small for some large p. Thus, we can take the low
order approximation of the Taylor expansion to effectively
approximate the k-fold cross-validation:

k-CV ≈ 1

n

k∑
i=1

∑
xj∈Si

ℓ
(
yj , fPn + bPn+

r∑
p=1

(
−M

n−M

)p
BIFp(∆Si ; fλ,K + bλ,K , Pn)

p!

)
.

Remark 1. In our experiments, when the order of Taylor
expansion r ≥ 3, we find that the value of the approximate
cross-validation error is almost the same as original one.

4. The Calculation of BIFs
In this section, we first provide a novel method to calculate
the BIF and higher order BIFs at the continuous distribu-
tion P , and then estimate these BIFs at the specific sample
distribution Pn.

4.1. The Calculation of BIFs at Continuous
Distribution

By the definition of the k-th order BIF of fλ,K + bλ,K ,
k = 1, 2, . . ., it is easy to verify that

BIFk(Q; fλ,K + bλ,K , P ) =
∂

∂kϵ
fPϵ,Q

|ϵ=0 +
∂

∂kϵ
bPϵ,Q

|ϵ=0.

Let VP = V (y − fP (x) − bP )), the first order BIF at the
P will be given in the following theorem.

Theorem 1. Let H be the RKHS of a bounded continuous
kernel K on X . Furthermore, let P be a distribution on
X × Y , then the BIF of fλ,K + bλ,K in the direction of a
distribution Q ̸= P is

[
∂

∂ϵ
fPϵ,Q |ϵ=0,

∂

∂ϵ
bPϵ,Q |ϵ=0] =

L−1[−2λfP + EQ(V
′
PΦ(x)),EQV

′
P ],
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where the operator L : (H,R) → (H,R) is defined by

L(f, b) =
[
2λf + EP (V

′′
P f(x)Φ(x)) + bEP (V

′′
P Φ(x)),

EP (V
′′
P f(x)) + bEP (V

′′
P )

]
.

The proof is given in Appendix A.
Remark 2. The first order BIF of the decision function
without the bias term (bλ,K = 0) has been given in
(Christmann & Messem, 2008). Our above theorem gen-
eralizes their result. Moreover, our proof is much simpler.

The higher order BIF is given in the following theorem:
Theorem 2. Let H be the RKHS of a bounded continuous
kernel K on X . Let V be a convex loss function such that
the third derivative is 0. Furthermore, let P be a distribu-
tion on X × Y , then the (k + 1) order BIF of fλ,K + bλ,K
in the direction of a distribution Q ̸= P is[

∂

∂k+1ϵ
fPϵ,Q |ϵ=0,

∂

∂k+1ϵ
bPϵ,Q |ϵ=0

]
=

(k + 1)L−1
[
2EP (BIFk(Q; fλ,K + bλ,K , P )V ′′

P (Φ(x)))−

EQ(BIFk(Q; fλ,K + bλ,K , P )V ′′
P Φ(x)),

EP (BIFk(Q; fλ,K + bλ,K , P )V ′′
P )−

EQ(BIFk(Q; fλ,K + bλ,K , P )V ′′
P )

]
.

where the operator L : (H,R) → (H,R) is defined by

L(f, b) =
[
2λf + EP (V

′′
P f(x)Φ(x)) + bEP (V

′′
P Φ(x)),

EP (V
′′
P f(x)) + bEP (V

′′
P )

]
.

The proof is given in Appendix B.
Remark 3. For the common loss function V , such as
V (r) = r2 and V (r) = (max(|r|− ϵ, 0)2, the third deriva-
tive is 0. Thus, the assumption of the above Theorem is
feasible.

4.2. The Calculation of BIFs at the Sample Distribution

In this subsection, we will estimate the BIF at the sample
distribution Pn to obtain BIFj(∆Si ; fλ,K + bλ,K , Pn).

4.2.1. LSSVM

First consider taking the least squares loss V (r) = r2.
From Theorem 1, the operator L at Pn maps any (f, b) ∈
(H,R) to

L(f, b) =
[
2λf +

2

n

n∑
j=1

f(xj)Φ(xj) +
2b

n

n∑
j=1

Φ(xj),

2

n

n∑
j=1

f(xj) + 2b
]
.

Denote f = (f(x1), . . . , f(xn))
T, 1 = (1, . . . , 1)T, ker-

nel matrix K = [K(xi,xj)]
n
i,j=1. Note that L(f, b)(x1)

...
L(f, b)(xn)

 = 2

[
λIn + 1

nK
1
nK1

1
n1

T 1

] [
f
b

]
,

which means that the matrix

2Ln := 2

[
λIn + 1

nK
1
nK1

1
n1

T 1

]
is the finite sample version of the operator L at Pn. Denote

∂

∂kϵ
fPϵ,∆Si

|ϵ=0

= (
∂

∂kϵ
fPϵ,∆Si

(x1)|ϵ=0, . . . ,
∂

∂kϵ
fPϵ,∆Si

(xn)|ϵ=0)
T.

From Theorem 1, it is now clear that[
∂
∂ϵfPϵ,∆Si

|ϵ=0

∂
∂ϵbPϵ,∆Si

|ϵ=0

]
= L−1

n

[
1
M [K • Si]g − λfPn

1
M gT

Si
1

]
where g = (g1, . . . , gn)

T, gi = yi− fPn(xi)− bPn , gSi =
(gSi,1, . . . , gSi,n)

T, gSi,j = gj if xj ∈ Si, otherwise 0,
fPn = (fPn(x1), . . . , fPn(xn))

T, Si denote the n × n
matrix as [Si]j,k = 1 if xk ∈ Si, otherwise 0, and • is
the entrywise matrix product (also known as the Hadamard
product).

From Theorem 2, one sees similarly that the higher order
terms can be computed[

∂
∂k+1ϵ

fPϵ,∆Si
|ϵ=0

∂
∂k+1ϵ

bPϵ,∆Si
|ϵ=0

]
=

(k + 1)L−1
n

[
1
nKbk − 1

MK • Sibk
1
n1

Tbk − 1
M 1Tbk,Si

]
,

where

bk =
(
BIFk(∆Si ; fλ,K + bλ,K , Pn)(x1)), . . . ,

BIFk(∆Si
; fλ,K + bλ,K , Pn)(xn)

)T

,

BIFk(∆Si ; fλ,K + bλ,K , Pn)(xj) =

∂

∂kϵ
fϵ,∆Si

(xj)|ϵ=0 +
∂

∂kϵ
bϵ,∆Si

(xj)|ϵ=0,

bk,Si = (bk,Si,1, . . . , bk,Si,n)
T, bk,Si,j = bk,j if xj ∈ Si,

otherwise 0.

For the k-fold cross-validation, define [BIFMLSSVMt]
the k × n matrix with

[BIFMLSSVMt]i,j = BIFt(∆Si ; fλ,K + bλ,K , Pn)(xj).



Efficient Approximation of Cross-Validation for Kernel Methods using Bouligand Influence Function

According to Equation (2), by cutting it off at some step r,
we have

f
P

−Si
n

(xj) + b
P

−Si
n

≈ fPn(xj) + bPn+

r∑
s=1

(
−1

k − 1

)s
1

s!
[BIFMLSSVMs]i,j .

(3)

4.2.2. QUADRATIC ϵ-SVR

For the quadratic ϵ-insensitive loss we have that

V (r) =

{
0, if |r| ≤ ϵ

(r − ϵ)2, if |r| > ϵ

and thus V ′(r) =

{
0, if |r| < ϵ

2(r − ϵ), if |r| > ϵ
, V ′′(r) ={

0, if |r| < ϵ

2, if |r| > ϵ.
Note that the derivatives in r = ϵ do not

exist, but in practice the probability that r = ϵ is 0, so we
can ignore this possibility.

Similar with the least squares loss, it is easy to verify that

Ln :=

[
2λIn + 1

n [K •B] [K •B]1
1
nv

T vT1

]
is the finite sample version of the operator L at sam-
ple Pn, where B denote the matrix containing V ′′(yi −
fPn(xi) − bPn) at every entry in the i-th column, and
v = (v1, . . . , vn)

T, vi = V ′′(yi − fPn(xi)− bPn).

From Theorem 1, we have[
∂
∂ϵfPϵ,∆Si

|ϵ=0

∂
∂ϵbPϵ,∆Si

|ϵ=0

]
= L−1

n

[
1
MK • Siu− λfPn

1
MuT

Si
1

]
where u = (u1, . . . , un), ui = V ′(yi − fPn(xi) −
bPn), uSi = (uSi,1, . . . , uSi,n), uSi,j = uj if xj ∈
Si, otherwise 0. By Theorem 2, the higher order terms can
be computed,[

∂
∂k+1ϵ

fPϵ,∆Si
|ϵ=0

∂
∂k+1ϵ

bPϵ,∆Si
|ϵ=0

]
=

(k + 1)S−1
n

[
1
n [K •B]bk − 1

MK •B • Sibk
1
nv

Tbk − 1
M vT

Si
bk

]
.

where v = (v1, . . . , vn)
T, vi = V ′′(yi − fPn(xi) − bPn),

vSi,j = vj if x ∈ Si, otherwise 0.

For the k-fold cross-validation, let [BIFMSV Rt] be the
k × n matrix with

[BIFMSV Rt]i,j = BIFt(∆Si ; fλ,K + bλ,K , Pn)(xj).

From Equation (2), we have

f
P

−Si
n

(xj) + b
P

−Si
n

≈ fPn(xj) + bPn+

r∑
s=1

(
−1

k − 1

)s
1

s!
[BIFMSV Rs]i,j .

(4)

5. Approximate KCV Criteria
The traditional k-fold cross-validation error is given by

kCV =
1

n

k∑
i=1

∑
xj∈Si

ℓ(yj , fP−Si
n

(xj) + b
P

−Si
n

),

where ℓ(·, ·) is an appropriate loss function. The idea we in-
vestigate is to replace the explicit k-fold cross-validation by
the approximation in (3) for LSSVM and (4) for quadratic
ϵ-SVR.

The t-th order BIF criterion of the approximate k-fold
cross-validation error for LSSVM is defined as

BIF t
k =

1

n

k∑
i=1

∑
xj∈Si

ℓ
(
yj , fλ,K,Pn(xj) + bλ,K,Pn+

t∑
s=1

(
−1

k − 1

)s
1

s!
[BIFMLSSVMs]i,j

)
.

For quadratic ϵ-SVR:

ϵ-BIF t
k =

1

n

k∑
i=1

∑
xj∈Si

ℓ
(
yj , fλ,K,Pn

(xj) + bλ,K,Pn
+

t∑
s=1

(
−1

k − 1

)s
1

s!
[BIFMSV Rs]i,j

)
.

5.1. Time Complexity Analysis

To compute BIF t
k and ϵ-BIF t

k, we need O(n3) to calcu-
late the inversion of Ln

1, and O(kn2 + tn2) to calculate
the BIF matrices, where n is size of the training set, k is
the fold of cross-validation and t is the order of the Taylor
expansion. Thus, the overall time complexity of BIF t

k and
ϵ-BIF t

k are both O(n3 + kn2 + tn2).

For the traditional k-fold cross-validation method, the al-
gorithm under consideration need to be executed k times,
thus for LSSVM and quadratic ϵ-SVR the time complexity
are both O(kn3).

6. Experiments
In this section, we will empirically analyze the perfor-
mance of our proposed approximate k-fold cross-validation
criterion (BIF-kCV).

1If Ln is not invertible, we can use the pseudo-inverse of Ln.
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Table 1. The average testing errors (%) on the classification data sets and the testing mean square error (MSE) on regression
data sets, the order of Taylor expansion t = 3.
Classification EP ELOO 5CV BIF-5CV 10CV BIF-10CV 20CV BIF-20CV

ionosphere 14.74 ± 3.97 6.65 ± 1.47 7.16 ± 1.54 8.18 ± 1.54 7.16 ± 2.07 7.61 ± 1.69 8.18 ± 1.54 8.07 ± 1.68
breast 3.58 ± 0.38 3.07 ± 0.59 3.45 ± 0.81 3.45 ± 0.81 3.45 ± 0.81 3.45 ± 0.81 3.45 ± 0.81 3.45 ± 0.81
diabetes 24.22 ± 1.67 23.83 ± 1.69 22.24 ± 2.47 22.24 ± 2.47 22.66 ± 2.23 22.66 ± 2.23 22.50 ± 2.18 22.50 ± 2.18
fourclass 22.87 ± 0.98 19.49 ± 2.03 18.19 ± 3.32 18.19 ± 3.32 18.19 ± 3.32 18.19 ± 3.32 17.12 ± 2.28 17.12 ± 2.28
australian 13.51 ± 1.38 14.29 ± 1.81 15.19 ± 2.18 15.19 ± 2.18 14.09 ± 1.96 14.09 ± 1.96 14.49 ± 2.35 14.49 ± 2.35
heart 18.96 ± 3.08 19.70 ± 4.19 16.56 ± 3.35 17.41 ± 1.69 16.15 ± 3.33 17.85 ± 2.25 16.15 ± 2.98 17.59 ± 3.07
german 25.84 ± 2.84 26.38 ± 2.31 25.52 ± 1.45 25.52 ± 1.45 25.28 ± 1.38 25.28 ± 1.38 25.28 ± 1.38 25.28 ± 1.38
liver 39.42 ± 4.06 31.39 ± 3.71 29.71 ± 1.86 29.71 ± 1.86 29.25 ± 2.73 31.21 ± 1.29 31.10 ± 3.43 31.10 ± 3.43
sonar 17.12 ± 2.39 16.15 ± 3.65 16.92 ± 4.49 17.88 ± 2.08 17.12 ± 4.58 18.62 ± 2.45 16.92 ± 4.69 17.32 ± 2.45
a2a 20.38 ± 1.68 18.90 ± 1.01 18.98 ± 0.95 18.98 ± 0.95 19.10 ± 0.96 19.10 ± 0.96 19.10 ± 1.05 19.10 ± 1.05

Regression EP ELOO 5CV BIF-5CV 10CV BIF-10CV 20CV BIF-20CV

bodyfat 5.1e-5± 3.1e-5 3.9e-5 ± 9.9e-6 4.5e-5 ± 1.4e-5 4.5e-5 ± 1.4e-5 4.5e-5 ± 1.4e-5 4.5e-5 ± 1.4e-5 4.5e-5 ± 1.4e-5 4.5e-5 ± 1.4e-5
housing 31.3 ± 6.4 24.3 ± 3.4 23.9 ± 3.8 23.9 ± 3.8 23.98 ± 3.8 23.9 ± 3.8 23.9 ± 3.8 23.9 ± 3.8
mpg 12.4 ± 2.2 9.6 ± 1.5 8.7 ± 0.8 8.7 ± 0.8 8.7 ± 0.8 8.6 ± 0.8 8.6 ± 0.8 8.6 ± 0.8
pyrim 1.2e-2 ± 4.0e-3 1.4e-2 ± 4.2e-3 1.0e-2 ± 2.9e-3 1.1e-2 ± 2.4e-3 1.0e-2 ± 2.9e-3 1.1e-2 ± 2.4e-3 1.0e-2 ± 2.9e-3 1.1e-2 ± 2.1e-3
triazines 2.0e-2 ± 2.9e-3 2.2e-2 ± 3.3e-3 2.3e-2 ± 3.6e-3 2.3e-2 ± 4.4e-3 2.2e-2 ± 3.2e-3 2.2e-2 ± 3.7e-3 2.3e-2 ± 3.1e-3 2.3e-2 ± 4.4e-3
eunite 700.4 ± 118.4 625.8 ± 62.1 593.1 ± 95.0 592.5 ± 95.0 596.9 ± 95.8 594.6 ± 96.3 596.9 ± 95.8 594.6 ± 96.2
space-ga 2.7e-2 ± 3.9e-3 1.9e-2 ± 2.0e-3 1.9e-2 ± 2.0e-3 1.9e-2 ± 2.0e-3 1.9e-2 ± 2.0e-3 1.9e-2 ± 2.0e-3 1.9e-2 ± 2.0e-3 1.9e-2 ± 2.0e-3
cpusmall 42.0 ± 13.1 44.5 ± 4.4 42.9 ± 5.9 42.9 ± 5.9 42.9 ± 5.9 42.91 ± 5.9 42.9 ± 5.9 42.9 ± 5.9
mg 1.6e-2 ± 3.3e-4 1.5e-2 ± 7.6e-4 1.5e-2 ± 9.7e-4 1.5e-2 ± 9.7e-4 1.5e-2 ± 9.7e-4 1.5e-2 ± 9.7e-4 1.5e-2 ± 9.7e-4 1.5e-2 ± 9.7e-4
abalone 6.4 ± 0.5 5.7 ± 0.5 5.5 ± 0.3 5.5 ± 0.3 5.5 ± 0.3 5.5 ± 0.3 5.5 ± 0.3 5.5 ± 0.3
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Figure 1. The mean square discrepancies between 5CV and BIF-5CV, 10CV and BIF-10CV, 20CV and BIF-20CV with different t, where
t is the order of Taylor expansion.

The evaluation is made on 20 publicly available data sets
from LIBSVM Data: 10 data sets for classification and 10
data sets for regression seen in Table 1. Experiments are
performed on a Dell Vestro PC with 3.4-GHz 8-core CPU
and 8-GB memory.

We use K(x,x′) = exp(−∥x−x′∥22/2τ) as our candidate
kernels, τ ∈ {2i, i = −6,−5, . . . , 7, 8} 2. The regulariza-
tion parameter λ ∈ {2i, i = −7,−6, . . . , 2}. The learning
algorithm considered in our experiments is LSSVM. For
each data set, we have run all the methods 10 times with

2Note for LSSVM, when τ is too small (e.g. 2−6), our approx-
imation would probably fail due to (near) identity kernel matrix.
But we can easily exclude such small τ (which is unlikely to be
an optimal parameter) by setting our approximate criterion to ∞
if the kernel matrix is near identity.

training and testing data sets be split randomly (50% of all
the examples for training and the other 50% for testing).

Accuracy. We will compare our proposed BIF-kCV with
the traditional k-fold cross-validation (kCV), the efficien-
t leave-one-out cross-validation (ELOO) (Cawley, 2006;
Cawley & Talbot, 2007) and the latest proposed eigenval-
ues perturbation criterion (EP) (Liu et al., 2013).

In our first experiment, we set the order of Taylor expan-
sion t = 3. The average testing errors for classification
and testing mean square error for regression are reported in
Table 1. For each training set, we choose the kernel param-
eter τ and regularization parameter λ by each criterion on
the training set, and evaluate the testing error for the chosen
parameters on the testing set.



Efficient Approximation of Cross-Validation for Kernel Methods using Bouligand Influence Function

Table 2. The average computational time (second), the order of Taylor expansion t = 3
Classification EP ELOO 5CV BIF-5CV 10CV BIF-10CV 20CV BIF-20CV

ionosphere 0.91 ± 0.01 0.43 ± 0.02 0.87 ± 0.02 0.47 ± 0.01 2.02 ± 0.03 0.66 ± 0.01 4.60 ± 0.03 1.02 ± 0.01
breast 2.99 ± 0.05 1.42 ± 0.11 2.88 ± 0.06 1.70 ± 0.04 6.83 ± 0.15 2.20 ± 0.05 14.03 ± 0.23 3.21 ± 0.08
diabetes 3.57 ± 0.04 2.10 ± 0.09 3.30 ± 0.04 2.57 ± 0.03 8.17 ± 0.21 3.46 ± 0.03 21.63 ± 0.11 5.15 ± 0.04
fourclass 4.23 ± 0.02 2.50 ± 0.08 4.40 ± 0.17 3.31 ± 0.09 11.64 ± 0.25 4.39 ± 0.18 26.05 ± 0.48 6.52 ± 0.27
australian 2.82 ± 0.17 1.45 ± 0.23 2.70 ± 0.09 1.71 ± 0.03 6.81 ± 0.04 2.19 ± 0.01 13.76 ± 0.04 3.17 ± 0.08
heart 0.58 ± 0.01 0.30 ± 0.01 0.58 ± 0.01 0.32 ± 0.02 1.31 ± 0.02 0.45 ± 0.01 2.79 ± 0.03 0.73 ± 0.02
german 7.02 ± 0.06 3.85 ± 0.13 6.78 ± 0.12 4.65 ± 0.10 16.89 ± 0.18 6.10 ± 0.11 38.88 ± 0.34 8.99 ± 0.07
liver 1.04 ± 0.04 0.42 ± 0.02 0.81 ± 0.01 0.46 ± 0.01 1.96 ± 0.02 0.62 ± 0.02 4.02 ± 0.08 0.97 ± 0.02
sonar 0.54 ± 0.01 0.25 ± 0.01 0.48 ± 0.01 0.23 ± 0.00 1.05 ± 0.02 0.36 ± 0.02 2.24 ± 0.03 0.57 ± 0.01
a2a 58.44 ± 0.21 31.87 ± 0.20 52.66 ± 0.15 37.50 ± 0.39 142.92 ± 0.70 46.57 ± 0.27 308.06 ± 0.96 64.85 ± 0.38

Regression EP ELOO 5CV BIF-5CV 10CV BIF-10CV 20CV BIF-20CV

bodyfat 0.76 ± 0.01 0.30 ± 0.04 0.59 ± 0.03 0.32 ± 0.02 1.28 ± 0.06 0.45 ± 0.02 2.61 ± 0.16 0.72 ± 0.04
housing 1.78 ± 0.01 0.86 ± 0.03 1.60 ± 0.04 0.91 ± 0.02 3.63 ± 0.12 1.22 ± 0.02 8.38 ± 0.20 1.85 ± 0.01
mpg 1.01 ± 0.02 0.52 ± 0.04 0.99 ± 0.01 0.57 ± 0.01 2.31 ± 0.00 0.77 ± 0.01 4.94 ± 0.02 1.19 ± 0.01
pyrim 0.23 ± 0.01 0.09 ± 0.01 0.20 ± 0.01 0.09 ± 0.01 0.40 ± 0.01 0.15 ± 0.01 0.78 ± 0.01 0.24 ± 0.01
triazines 0.39 ± 0.03 0.22 ± 0.01 0.46 ± 0.01 0.21 ± 0.00 0.94 ± 0.02 0.30 ± 0.00 2.00 ± 0.03 0.50 ± 0.01
eunite 0.17 ± 0.07 0.42 ± 0.03 0.83 ± 0.07 0.43 ± 0.02 1.75 ± 0.08 0.61 ± 0.02 3.83 ± 0.20 0.94 ± 0.04
space-ga 97.77 ± 0.15 64.89 ± 6.29 93.65 ± 0.45 69.84 ± 0.62 252.3 ± 0.77 85.49 ± 0.28 600.1 ± 0.42 117.8 ± 0.2
cpusmall 73.65 ± 0.03 41.69 ± 0.25 68.49 ± 2.48 48.38 ± 1.28 172.2 ± 5.66 60.21 ± 0.82 395.8 ± 11.9 85.01 ± 1.33
mg 16.25± 0.05 8.49 ± 0.17 13.36 ± 0.47 8.99 ± 0.07 37.17 ± 0.46 13.00 ± 0.04 81.72 ± 0.73 19.15 ± 0.02
abalone 275.5± 3.52 152.8 ± 3.45 253.2 ± 2.66 168.7 ± 1.92 730.4 ± 3.62 196.7 ± 1.56 1760.9 ± 8.05 255.1 ± 3.41

The results in Table 1 can be summarized as follows: (a)
On most data sets, BIF-kCV gives almost the same testing
errors as the traditional kCV, k = 5, 10, 20. On breast, dia-
betes, australian, fourclass, german, a2a, bodyfat, housing,
eunite, space-ga, mg and abalone, BIF-kCV gives the same
testing errors as kCV. On the remaining data sets, both BIF-
kCV and kCV give the similar results. Thus, it implicates
that the quality of our approximation based on the Bouli-
gand influence function is quite good. (b) BIF-kCV gives
much better results than EP on most data sets. In particular,
BIF-CV outperforms EP on 16 out of 20 data sets, and also
give results close to results of EP on the remaining 4 sets.
(c) For classification, BIF-kCV and ELOO give compara-
ble results. However, for regression, BIF-kCV outperforms
ELOO on 8 out of 10 data sets.

In the second experiment, we will explore the effect of the
parameter t (the order of Taylor expansion). The discrepan-
cies between kCV and BIF-kCV with different k are given
in Figure 1 (due to space limit, we randomly select 5 clas-
sification data sets and 5 regression data sets). For each
training set, we choose the τ and λ by cross validation
on the training set. Plotted are the mean square error of
the approximate f

P
−Si
n

(x)’s (computed by BIF-kCV) and
f
P

−Si
n

(x)’s (computed by kCV). for the chosen parameters
on the validation sample Si, x ∈ Si, i = 1, . . . , k. We can
find that, on most data sets, the discrepancies between kCV
and BIF-kCV is equal 0 when t ≥ 3. Thus, we can select
t = 3 in practice without sacrificing accuracy.

Efficiency. The running time are reported in Table 2. The
results in Table 2 can be summarized as follows: (a) The
time cost of BIF-kCV is much lower than that of kCV.
Thus, BIF-kCV significantly improves the efficiency of
kCV. (b) BIF-5CV and BIF-10CV are faster than EP, BIF-
20CV and EP are comparable in computing time. (c) BIF-
5CV and ELOO give the similar results.

7. Conclusion
We propose a novel strategy for approximating the k-fold
cross-validation error based on the Bouligand influence
function (BIF), which can be computed efficiently. Link
between the concept of BIF and concept of cross-validation
is considered. The calculation of the higher order BIFs and
a recursive relation are proposed. It is shown that these the-
oretical results can be applied in practice to approximate
the cross-validation error. Experiments indicate that our
proposed criterion based on BIF is a good choice for model
selection.

Future work will extend our method to other kernel based
methods, such as kernel-based logistic regression and
SVM.
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Appendix A: Proof of Theorem 1

Proof. From Theorem 2 in (Vito et al., 2004), we have

2λfP = EP [V
′
PΦ(x)], 0 = EPV

′
P . (5)

Let fϵ = fPϵ,Q
and bϵ = bPϵ,Q

. Note that Pϵ,Q = (1 −
ϵ)P + ϵQ, thus we can obtain that

2λfϵ = (1− ϵ)EP [V
′
ϵΦ(x)] + ϵEQ[V

′
ϵΦ(x)] (6)

0 = (1− ϵ)EPV
′
ϵ + ϵEQV

′
ϵ , (7)

where Vϵ = V (y − fϵ(x)− bϵ).
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Taking the first derivative on both sides of (6) with respect
to ϵ yields

2λ
∂

∂ϵ
fϵ =

(1− ϵ)EP [−(
∂

∂ϵ
fϵ(x) +

∂

∂ϵ
bϵ)V

′′
ϵ Φ(x)]− EP (V

′
ϵΦ(x))

+ ϵEQ[−(
∂

∂ϵ
fϵ(x) +

∂

∂ϵ
bϵ)V

′′
ϵ Φ(x)] + EQ(V

′
ϵΦ(x)).

(8)

Set ϵ = 0 and according to (5), we have

2λ
∂

∂ϵ
fϵ|ϵ=0 + EP [(

∂

∂ϵ
fϵ(x)|ϵ=0 +

∂

∂ϵ
bϵ|ϵ=0)V

′′
P Φ(x)]

= −2λfP + EQ(V
′
PΦ(x)).

(9)

Taking the first derivative on both sides of (7) with respect
to ϵ yields

0 = (1− ϵ)EP [(−
∂

∂ϵ
fϵ(x)−

∂

∂ϵ
bϵ)V

′′
ϵ ]− EPV

′
ϵ

+ ϵEQ[(−
∂

∂ϵ
fϵ(x)−

∂

∂ϵ
bϵ)V

′′
ϵ ] + EQV

′
ϵ .

(10)

Set ϵ = 0 and according to (5),

EP [(
∂

∂ϵ
fϵ(x)|ϵ=0 +

∂

∂ϵ
bϵ|ϵ=0)V

′′
P ] = EQV

′
P . (11)

By the definition of the operator L, the system
of linear equations, (9) and (11), can be writ-
ten as L

[
∂
∂ϵfϵ|ϵ=0,

∂
∂ϵbϵ|ϵ=0

]
=

[
− 2λfP +

EQ(V
′
PΦ(x)),EQ(V

′
P )

]
.

Appendix B: Proof of the Theorem 2

Proof. First we prove the following for all 2 ≤ k ∈ N:

2λ
∂

∂kϵ
fϵ =(1− ϵ)EP [−(

∂

∂kϵ
fϵ(x) +

∂

∂kϵ
bϵ)V

′′
ϵ Φ(x)]+

kEP [(
∂

∂k−1ϵ
fϵ(x) +

∂

∂k−1ϵ
bϵ)V

′′
ϵ Φ(x)]−

kEQ[(
∂

∂k−1ϵ
fϵ(x) +

∂

∂k−1ϵ
bϵ)V

′′
ϵ Φ(x)]−

ϵEQ[(
∂

∂kϵ
fϵ(x) +

∂

∂kϵ
bϵ)V

′′
ϵ Φ(x)].

(12)

Taking the derivative on both sides of (8) with respec-
t to ϵ yields 2λ ∂

∂2ϵfϵ = (1 − ϵ)EP [−( ∂
∂2ϵfϵ(x) +

∂
∂2ϵbϵ)V

′′
ϵ Φ(x)] + 2EP

[
( ∂
∂ϵfϵ(x) +

∂
∂ϵbϵ)V

′′
ϵ Φ(x)

]
+

ϵEQ[−( ∂
∂2ϵfϵ(x) +

∂
∂2ϵbϵ)V

′′
ϵ Φ(x)] + 2EQV

′′
ϵ ( ∂

∂ϵfϵ(x) +
∂
∂ϵbϵ)Φ(x). Thus for k = 2, the Equation (12) is satisfied.

Taking the derivatives of both sides in (12),

2λ
∂

∂k+1ϵ
fϵ

= (1− ϵ)EP [−(
∂

∂k+1ϵ
fϵ(x) +

∂

∂k+1ϵ
bϵ)V

′′
ϵ Φ(x)]

+ (k + 1)EP [(
∂

∂kϵ
fϵ(x) +

∂

∂kϵ
bϵ)V

′′
ϵ Φ(x)]

− (k + 1)EQ(
∂

∂kϵ
fϵ(x) +

∂

∂kϵ
bϵ)V

′′
ϵ Φ(x)

− ϵEQ(
∂

∂k+1ϵ
fϵ(X) +

∂

∂k+1ϵ
bϵ)V

′′
ϵ Φ(x)

from which it follows that (12) holds for k + 1 indeed. Set
ϵ = 0:

2λ
∂

∂k+1ϵ
fϵ|ϵ=0+

EP [(
∂

∂k+1ϵ
fϵ(x)|ϵ=0 +

∂

∂k+1ϵ
bϵ|ϵ=0)V

′′
P Φ(x)] =

(k + 1)EP [(
∂

∂kϵ
fϵ(x)|ϵ=0 +

∂

∂kϵ
bϵ|ϵ=0)V

′′
P Φ(x)]−

(k + 1)EQ(
∂

∂kϵ
fϵ(x)|ϵ=0 +

∂

∂kϵ
bϵ|ϵ=0)V

′′
P Φ(x).

Taking the derivative on both sides of (10) and setting ϵ =
0, we have

EP [−(
∂

∂2ϵ
fϵ(x)|ϵ=0 −

∂

∂2ϵ
bϵ|ϵ=0)V

′′
P ] =

EP (
∂

∂ϵ
fϵ(x)|ϵ=0 +

∂

∂ϵ
bϵ|ϵ)2V ′′′

P +

2EP [(
∂

∂ϵ
fϵ(x)|ϵ=0 +

∂

∂ϵ
bϵ|ϵ=0)V

′′
P ]−

2EQ[(
∂

∂ϵ
fϵ(x)|ϵ=0 +

∂

∂ϵ
bϵ|ϵ=0)V

′′
ϵ ].

(13)

Similar to the above proof, it is easy to verify that

EP [(
∂

∂k+1ϵ
fϵ(X)|ϵ=0 +

∂

∂k+1ϵ
bϵ|ϵ=0)V

′′
P ] =

(k + 1)EP [(
∂

∂kϵ
fϵ(X)|ϵ=0 +

∂

∂kϵ
bϵ|ϵ=0)V

′′
P ]−

(k + 1)EQ(
∂

∂kϵ
fϵ(X)|ϵ=0 +

∂

∂kϵ
bϵ|ϵ=0)V

′′
P .

Thus, we have

L

[
∂

∂k+1ϵ
fϵ|ϵ=0,

∂

∂k+1ϵ
bϵ|ϵ=0

]
= (k + 1)

[
EP (BIFk(Q; (fλ,K), P ))V ′′

P (Φ(x))

− EQ(BIFk(Q; (fλ,K), P )V ′′
P )Φ(x),

+ EP (BIFk(Q; (fλ,K), P ))V ′′
P

− EQ(BIFk(Q; (fλ,K), P )V ′′
P )

]
.



Efficient Approximation of Cross-Validation for Kernel Methods using Bouligand Influence Function

References
Aronszajn, Nachman. Theory of reproducing kernels.

Transactions of the American Mathematical Society, 68:
337–404, 1950.

Bartlett, Peter L. and Mendelson, Shahar. Rademacher and
gaussian complexities: Risk bounds and structural re-
sults. The Journal of Machine Learning Research, 3:
463–482, 2002.

Bartlett, Peter L., Boucheron, Stéphane, and Lugosi,
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