Supplementary Material

A. Proof of Theorem 1

We begin with three technical lemmas.

Lemma 2 Let $\mathbf{y} \neq \mathbf{0}$ and $0 < \lambda_1 \leq ||X^T \mathbf{y}||_{\infty}$. We have

$$\langle \frac{\mathbf{y}}{\lambda_1} - \boldsymbol{\theta}_1^*, \boldsymbol{\theta}_1^* \rangle \ge 0.$$
 (45)

Proof Since the Euclidean projection of $\frac{\mathbf{y}}{\lambda_1}$ onto $\{\boldsymbol{\theta}: \|X^T\boldsymbol{\theta}\|_{\infty} \leq 1\}$ is $\boldsymbol{\theta}_1^*$, it follows from Lemma 1 that

$$\langle \boldsymbol{\theta}_1^* - \frac{\mathbf{y}}{\lambda_1}, \boldsymbol{\theta} - \boldsymbol{\theta}_1^* \rangle \ge 0, \forall \boldsymbol{\theta} : \| X^T \boldsymbol{\theta} \|_{\infty} \le 1.$$
 (46)

As $0 \in \{\theta : ||X^T \theta||_{\infty} \le 1\}$, we have Eq. (45).

Lemma 3 Let $\mathbf{y} \neq \mathbf{0}$ and $0 < \lambda_1 \leq \|X^T \mathbf{y}\|_{\infty}$. If $\boldsymbol{\theta}_1^*$ parallels to \mathbf{y} in that it can be written as $\boldsymbol{\theta}_1^* = \gamma \mathbf{y}$ for some γ , then $\gamma = \frac{1}{\|X^T \mathbf{y}\|_{\infty}}$.

Proof Since $\frac{\mathbf{y}}{\|X^T\mathbf{y}\|_{\infty}}$ satisfies the condition in Eq. (11), we have

$$\langle \gamma \mathbf{y} - \frac{\mathbf{y}}{\lambda_1}, \frac{\mathbf{y}}{\|X^T \mathbf{y}\|_{\infty}} - \gamma \mathbf{y} \rangle = (\gamma - \frac{1}{\lambda_1}) (\frac{1}{\|X^T \mathbf{y}\|_{\infty}} - \gamma) \|\mathbf{y}\|_2^2 \ge 0$$

$$(47)$$

which leads to $\gamma \in [\frac{1}{\|X^T\mathbf{y}\|_{\infty}}, \frac{1}{\lambda_1}]$. In addition, since $\|X^T\boldsymbol{\theta}_1^*\|_{\infty} \leq 1$, we have $\gamma = \frac{1}{\|X^T\mathbf{y}\|_{\infty}}$. This completes the proof. \square

Lemma 4 Let $\mathbf{y} \neq \mathbf{0}$. If $0 < \lambda_1 \leq ||X^T \mathbf{y}||_{\infty}$, we have

$$\langle \frac{\mathbf{y}}{\lambda_1} - \boldsymbol{\theta}_1^*, \mathbf{y} \rangle \ge 0,$$
 (48)

where the equality holds if and only if $\lambda_1 = ||X^T \mathbf{y}||_{\infty}$.

Proof We have

$$\langle \frac{\mathbf{y}}{\lambda_1} - \boldsymbol{\theta}_1^*, \frac{\mathbf{y}}{\lambda_1} \rangle - \langle \frac{\mathbf{y}}{\lambda_1} - \boldsymbol{\theta}_1^*, \boldsymbol{\theta}_1^* \rangle = \langle \frac{\mathbf{y}}{\lambda_1} - \boldsymbol{\theta}_1^*, \frac{\mathbf{y}}{\lambda_1} - \boldsymbol{\theta}_1^* \rangle \ge 0, \tag{49}$$

where the equality holds if and only if $\frac{\mathbf{y}}{\lambda_1} = \boldsymbol{\theta}_1^*$. Incorporating Eq. (45) in Lemma 2 and Eq. (49), we have Eq. (48). The equality in Eq. (49) holds if and only if $\frac{\mathbf{y}}{\lambda_1} = \boldsymbol{\theta}_1^*$. According to Lemma 3, if $\boldsymbol{\theta}_1^* = \frac{\mathbf{y}}{\lambda_1}$, then $\boldsymbol{\theta}_1^* = \frac{\mathbf{y}}{\|X^T\mathbf{y}\|_{\infty}}$, which leads to $\lambda_1 = \|X^T\mathbf{y}\|_{\infty}$. This ends the proof.

Now, we are ready to prove Theorem 1. If follows from Eq. (17) and Eq. (48)

$$\langle \mathbf{b}, \mathbf{a} \rangle = \left(\frac{1}{\lambda_2} - \frac{1}{\lambda_1}\right) \left\langle \frac{\mathbf{y}}{\lambda_1} - \boldsymbol{\theta}_1^*, \mathbf{y} \right\rangle + \left\| \frac{\mathbf{y}}{\lambda_1} - \boldsymbol{\theta}_1^* \right\|_2^2$$
 (50)

$$\|\mathbf{b}\|_{2}^{2} = \|(\frac{\mathbf{y}}{\lambda_{2}} - \frac{\mathbf{y}}{\lambda_{1}})\|_{2}^{2} + 2(\frac{1}{\lambda_{2}} - \frac{1}{\lambda_{1}})\langle \frac{\mathbf{y}}{\lambda_{1}} - \boldsymbol{\theta}_{1}^{*}, \mathbf{y} \rangle + \|\frac{\mathbf{y}}{\lambda_{1}} - \boldsymbol{\theta}_{1}^{*}\|_{2}^{2} \ge 0.$$
 (51)

It follows from Lemma 4 that 1) $\langle \mathbf{b}, \mathbf{a} \rangle \geq 0$ and the equality holds if and only if $\frac{\mathbf{y}}{\lambda_1} = \boldsymbol{\theta}_1^*$, and 2) $\|\mathbf{b}\|_2^2 > 0$, which leads to $\mathbf{b} \neq \mathbf{0}$. According to Lemma 3, if $\boldsymbol{\theta}_1^*$ parallels to \mathbf{y} , then $\boldsymbol{\theta}_1^* = \frac{\mathbf{y}}{\|X^T\mathbf{y}\|_{\infty}}$. Therefore, if $0 < \lambda_1 < \|X^T\mathbf{y}\|_{\infty}$, then $\langle \mathbf{b}, \mathbf{a} \rangle > 0$ and $\mathbf{a} \neq 0$.

B. Proof of Theorem 2

If $\lambda_1 = \|X^T \mathbf{y}\|_{\infty}$, the primal and dual optimals can be analytically computed as: $\boldsymbol{\beta}_1^* = \mathbf{0}$ and $\boldsymbol{\theta}_1^* = \frac{\mathbf{y}}{\|X^T \boldsymbol{\theta}\|_{\infty}}$. Thus, we have $\mathbf{a} = \mathbf{0}$. It is easy to get that $\mathbf{r} = -\frac{\mathbf{x}\|\mathbf{b}\|_2}{\|\mathbf{x}\|_2}$ minimizes Eq. (20) with the minimum function value being

$$\langle \mathbf{x}, \mathbf{r} \rangle = -\|\mathbf{x}\|_2 \|\mathbf{b}\|_2. \tag{52}$$

In our following discussion, we focus on the case $0 < \lambda_1 < \|X^T \mathbf{y}\|_{\infty}$ and we have $\mathbf{a} \neq \mathbf{0}$ according to Theorem 1.

The Lagrangian of Eq. (20) can be written as

$$L(\mathbf{r}, \alpha, \beta) = \langle \mathbf{x}, \mathbf{r} \rangle + \alpha \langle \mathbf{a}, \mathbf{r} + \mathbf{b} \rangle + \frac{\beta}{2} (\|\mathbf{r}\|_{2}^{2} - \|\mathbf{b}\|_{2}^{2}), \tag{53}$$

where $\alpha, \beta \geq 0$ are introduced for the two inequalities, respectively. It is clear that the minimal value of Eq. (20) is lower bounded (the minimum is no less than $-\|\mathbf{b}\|_2\|\mathbf{x}\|_2$ by only considering the constraint $\|\mathbf{r}\|_2^2 \leq \|\mathbf{b}\|_2^2$). Therefore, the optimal dual variable β is always positive; otherwise, minimizing Eq. (53) with regard to \mathbf{r} achieves $-\infty$.

Setting the derivative with regard to r to zero, we have

$$\mathbf{r} = \frac{-\mathbf{x} - \alpha \mathbf{a}}{\beta}.\tag{54}$$

Plugging Eq. (54) into Eq. (53), we obtain the dual problem of Eq. (20) as:

$$\max_{\alpha,\beta} \quad \alpha \langle \mathbf{a}, \mathbf{b} \rangle - \frac{1}{2\beta} \|\mathbf{x} + \alpha \mathbf{a}\|_{2}^{2} - \frac{\beta}{2} \|\mathbf{b}\|_{2}^{2}$$
subject to $\alpha \geq 0, \beta \geq 0$. (55)

For a given β , we have

$$\alpha = \max\left(\frac{\beta\langle \mathbf{a}, \mathbf{b}\rangle - \langle \mathbf{x}, \mathbf{a}\rangle}{\|\mathbf{a}\|_2^2}, 0\right).$$
 (56)

We consider two cases. In the first case, we assume that $\alpha = 0$. We have

$$\mathbf{r} = \frac{-\mathbf{x}}{\beta}, \beta \le \frac{\langle \mathbf{x}, \mathbf{a} \rangle}{\langle \mathbf{a}, \mathbf{b} \rangle}.$$
 (57)

By using the complementary slackness condition (note that the optimal β does not equal to zero), we have

$$\|\mathbf{r}\|_2 = \left\|\frac{-\mathbf{x}}{\beta}\right\|_2 = \|\mathbf{b}\|_2. \tag{58}$$

Thus, we have

$$\beta = \frac{\|\mathbf{x}\|_2}{\|\mathbf{b}\|_2}.\tag{59}$$

Incorporating Eq. (57) and Eq. (59), we have

$$\frac{\langle \mathbf{b}, \mathbf{a} \rangle}{\|\mathbf{b}\|_2 \|\mathbf{a}\|_2} \le \frac{\langle \mathbf{x}, \mathbf{a} \rangle}{\|\mathbf{x}\|_2 \|\mathbf{a}\|_2},\tag{60}$$

so that the angle between $\bf a$ and $\bf b$ is equal to or larger than the angle between $\bf x$ and $\bf a$. Note that $\langle {\bf b}, {\bf a} \rangle \geq 0$ according to Theorem 1. In Figure 2, EX_2 and EX_3 illustrate the case that $\bf x$ satisfies Eq. (60), while EX_1 and EX_4 show the opposite cases. In addition, we have

$$\langle \mathbf{x}, \mathbf{r} \rangle = -\|\mathbf{x}\|_2 \|\mathbf{b}\|_2. \tag{61}$$

In the second case, Eq. (60) does not hold. We have

$$\alpha = \frac{\beta \langle \mathbf{a}, \mathbf{b} \rangle - \langle \mathbf{x}, \mathbf{a} \rangle}{\|\mathbf{a}\|_2^2}.$$
 (62)

Plugging Eq. (62) into Eq. (54), we have

$$\mathbf{r} = -\frac{\mathbf{x} \|\mathbf{a}\|_{2}^{2} + \beta \langle \mathbf{a}, \mathbf{b} \rangle \mathbf{a} - \langle \mathbf{x}, \mathbf{a} \rangle \mathbf{a}}{\beta \|\mathbf{a}\|_{2}^{2}}$$
(63)

Since $\|\mathbf{r}\|_2^2 = \|\mathbf{b}\|_2^2$, we have

$$\beta = \sqrt{\frac{\|\mathbf{x}\|_{2}^{2} \|\mathbf{a}\|_{2}^{2} - \langle \mathbf{x}, \mathbf{a} \rangle^{2}}{\|\mathbf{b}\|_{2}^{2} \|\mathbf{a}\|_{2}^{2} - \langle \mathbf{b}, \mathbf{a} \rangle^{2}}} = \frac{\|\mathbf{x}^{\perp}\|_{2}}{\sqrt{\|\mathbf{b}\|_{2}^{2} - \frac{\langle \mathbf{b}, \mathbf{a} \rangle^{2}}{\|\mathbf{a}\|_{2}^{2}}}},$$
(64)

where we have used Eq. (21) to get the second equality. In addition, we have

$$\langle \mathbf{x}, \mathbf{r} \rangle = -\|\mathbf{x}^{\perp}\|_{2} \sqrt{\|\mathbf{b}\|_{2}^{2} - \frac{\langle \mathbf{b}, \mathbf{a} \rangle^{2}}{\|\mathbf{a}\|_{2}^{2}}} - \frac{\langle \mathbf{a}, \mathbf{b} \rangle \langle \mathbf{x}, \mathbf{a} \rangle}{\|\mathbf{a}\|_{2}^{2}}.$$
 (65)

In summary, Eq. (20) equals to $-\|\mathbf{x}\|_2\|\mathbf{b}\|_2$, if $\frac{\langle \mathbf{b}, \mathbf{a} \rangle}{\|\mathbf{b}\|_2} \le \frac{\langle \mathbf{x}, \mathbf{a} \rangle}{\|\mathbf{x}\|_2}$, and $-\|\mathbf{x}^{\perp}\|_2\sqrt{\|\mathbf{b}\|_2^2 - \frac{\langle \mathbf{b}, \mathbf{a} \rangle^2}{\|\mathbf{a}\|_2^2}} - \frac{\langle \mathbf{a}, \mathbf{b} \rangle \langle \mathbf{x}, \mathbf{a} \rangle}{\|\mathbf{a}\|_2^2}$ otherwise. This ends the proof of this theorem.

C. Proof of Theorem 3

We prove the four cases one by one as follows.

Case 1 If $\mathbf{a} \neq \mathbf{0}$ and $\frac{\langle \mathbf{b}, \mathbf{a} \rangle}{\|\mathbf{b}\|_2} > \frac{|\langle \mathbf{x}_j, \mathbf{a} \rangle|}{\|\mathbf{x}_j\|_2}$, i.e., Eq. (60) does not hold with $\mathbf{x} = \pm \mathbf{x}_j$. We have

$$u_{j}^{+}(\lambda_{2}) = \max_{\boldsymbol{\theta}: \langle \boldsymbol{\theta}_{1}^{*} - \frac{\mathbf{y}}{\lambda_{1}}, \boldsymbol{\theta} - \boldsymbol{\theta}_{1}^{*} \rangle \geq 0, \langle \boldsymbol{\theta} - \frac{\mathbf{y}}{\lambda_{2}}, \boldsymbol{\theta}_{1}^{*} - \boldsymbol{\theta} \rangle \geq 0} \langle \mathbf{x}_{j}, \boldsymbol{\theta} \rangle$$

$$= \frac{1}{2} \max_{\mathbf{r}: \langle \mathbf{a}, \mathbf{r} + \mathbf{b} \rangle \leq 0, \|\mathbf{r}\|_{2}^{2} \leq \|\mathbf{b}\|_{2}^{2}} \left[\langle \mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*} + \frac{\mathbf{y}}{\lambda_{2}} \rangle + \langle \mathbf{x}_{j}, \mathbf{r} \rangle \right]$$

$$= \frac{1}{2} \left[\langle \mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*} + \frac{\mathbf{y}}{\lambda_{2}} \rangle + \max_{\mathbf{r}: \langle \mathbf{a}, \mathbf{r} + \mathbf{b} \rangle \leq 0, \|\mathbf{r}\|_{2}^{2} \leq \|\mathbf{b}\|_{2}^{2}} \langle \mathbf{x}_{j}, \mathbf{r} \rangle \right]$$

$$= \frac{1}{2} \left[\langle \mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*} + \frac{\mathbf{y}}{\lambda_{2}} \rangle - \min_{\mathbf{r}: \langle \mathbf{a}, \mathbf{r} + \mathbf{b} \rangle \leq 0, \|\mathbf{r}\|_{2}^{2} \leq \|\mathbf{b}\|_{2}^{2}} \langle -\mathbf{x}_{j}, \mathbf{r} \rangle \right]$$

$$= \frac{1}{2} \left[\langle \mathbf{x}_{j}, 2\boldsymbol{\theta}_{1}^{*} + (\frac{\mathbf{y}}{\lambda_{1}} - \boldsymbol{\theta}_{1}^{*}) + (\frac{\mathbf{y}}{\lambda_{2}} - \frac{\mathbf{y}}{\lambda_{1}}) \rangle \right]$$

$$+ \frac{1}{2} \left[\| -\mathbf{x}_{j}^{\perp} \|_{2} \sqrt{\|\mathbf{b}\|_{2}^{2} - \frac{\langle \mathbf{b}, \mathbf{a} \rangle^{2}}{\|\mathbf{a}\|_{2}^{2}}} + \frac{\langle \mathbf{a}, \mathbf{b} \rangle \langle -\mathbf{x}_{j}, \mathbf{a} \rangle}{\|\mathbf{a}\|_{2}^{2}} \right]$$

$$= \langle \mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*} \rangle + \frac{\frac{1}{\lambda_{2}} - \frac{1}{\lambda_{1}}}{2} [\langle \mathbf{x}_{j}, \mathbf{y} \rangle - \frac{\langle \mathbf{a}, \mathbf{y} \rangle}{\|\mathbf{a}\|_{2}^{2}} \langle \mathbf{x}_{j}, \mathbf{a} \rangle]$$

$$+ \frac{\frac{1}{\lambda_{2}} - \frac{1}{\lambda_{1}}}{2} \|\mathbf{x}_{j}^{\perp} \|_{2} \sqrt{\|\mathbf{y}\|_{2}^{2} - \frac{\langle \mathbf{y}, \mathbf{a} \rangle^{2}}{\|\mathbf{a}\|_{2}^{2}}}.$$

The second equality plugs in the notations in Eq. (17). The fifth equality utilizes Eq. (65) which is the result for the case $\frac{\langle \mathbf{b}, \mathbf{a} \rangle}{\|\mathbf{b}\|_2} > \frac{|\langle \mathbf{x}_j, \mathbf{a} \rangle|}{\|\mathbf{x}_j\|_2} \geq \frac{\langle -\mathbf{x}_j, \mathbf{a} \rangle}{\|\mathbf{x}_j\|_2}$ by setting $\mathbf{x} = -\mathbf{x}_j$. To get the last equality, we utilize the following two equalities

$$\|\mathbf{b}\|_{2}^{2} - \frac{\langle \mathbf{b}, \mathbf{a} \rangle^{2}}{\|\mathbf{a}\|_{2}^{2}} = \left(\frac{1}{\lambda_{2}} - \frac{1}{\lambda_{1}}\right)^{2} (\|\mathbf{y}\|_{2}^{2} - \frac{\langle \mathbf{y}, \mathbf{a} \rangle^{2}}{\|\mathbf{a}\|_{2}^{2}})$$
(67)

and

$$\frac{\langle \mathbf{a}, \mathbf{b} \rangle \langle \mathbf{x}_j, \mathbf{a} \rangle}{\|\mathbf{a}\|_2^2} = \langle \mathbf{x}_j, \mathbf{a} \rangle \left(1 + \frac{\langle \mathbf{a}, \mathbf{y} \rangle \left(\frac{1}{\lambda_2} - \frac{1}{\lambda_1}\right)}{\|\mathbf{a}\|_2^2}\right),\tag{68}$$

which can be derived from Eq. (17). It follows from Eq. (22) and Eq. (23) that

$$\|\mathbf{x}_{j}^{\perp}\|_{2}^{2} = \|\mathbf{x}_{j}\|_{2}^{2} - \frac{\langle \mathbf{x}_{j}, \mathbf{a} \rangle^{2}}{\|\mathbf{a}\|_{2}^{2}},$$
 (69)

$$\|\mathbf{y}^{\perp}\|_{2}^{2} = \|\mathbf{y}\|_{2}^{2} - \frac{\langle \mathbf{y}, \mathbf{a} \rangle^{2}}{\|\mathbf{a}\|_{2}^{2}},$$
 (70)

$$\langle \mathbf{x}_{j}^{\perp}, \mathbf{y}^{\perp} \rangle = \langle \mathbf{x}_{j}, \mathbf{y} \rangle - \frac{\langle \mathbf{a}, \mathbf{y} \rangle}{\|\mathbf{a}\|_{2}^{2}} \langle \mathbf{x}_{j}, \mathbf{a} \rangle.$$
 (71)

Incorporating Eq. (66), and Eqs. (70)-(71), we have Eq. (26). Following a similar derivation, we have

$$u_{j}^{-}(\lambda_{2}) = \max_{\boldsymbol{\theta}: \langle \boldsymbol{\theta}_{1}^{*} - \frac{\mathbf{y}}{\lambda_{1}}, \boldsymbol{\theta} - \boldsymbol{\theta}_{1}^{*} \rangle \geq 0, \langle \boldsymbol{\theta} - \frac{\mathbf{y}}{\lambda_{2}}, \boldsymbol{\theta}_{1}^{*} - \boldsymbol{\theta} \rangle \geq 0} \langle -\mathbf{x}_{j}, \boldsymbol{\theta} \rangle$$

$$= \frac{1}{2} \max_{\mathbf{r}: \langle \mathbf{a}, \mathbf{r} + \mathbf{b} \rangle \leq 0, \|\mathbf{r}\|_{2}^{2} \leq \|\mathbf{b}\|_{2}^{2}} \left[\langle -\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*} + \frac{\mathbf{y}}{\lambda_{2}} \rangle + \langle -\mathbf{x}_{j}, \mathbf{r} \rangle \right]$$

$$= \frac{1}{2} \left[\langle -\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*} + \frac{\mathbf{y}}{\lambda_{2}} \rangle + \max_{\mathbf{r}: \langle \mathbf{a}, \mathbf{r} + \mathbf{b} \rangle \leq 0, \|\mathbf{r}\|_{2}^{2} \leq \|\mathbf{b}\|_{2}^{2}} \langle -\mathbf{x}_{j}, \mathbf{r} \rangle \right]$$

$$= \frac{1}{2} \left[\langle -\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*} + \frac{\mathbf{y}}{\lambda_{2}} \rangle - \min_{\mathbf{r}: \langle \mathbf{a}, \mathbf{r} + \mathbf{b} \rangle \leq 0, \|\mathbf{r}\|_{2}^{2} \leq \|\mathbf{b}\|_{2}^{2}} \langle \mathbf{x}_{j}, \mathbf{r} \rangle \right]$$

$$= \frac{1}{2} \left[\langle -\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*} + \frac{\mathbf{y}}{\lambda_{2}} \rangle - \min_{\mathbf{r}: \langle \mathbf{a}, \mathbf{r} + \mathbf{b} \rangle \leq 0, \|\mathbf{r}\|_{2}^{2} \leq \|\mathbf{b}\|_{2}^{2}} \langle \mathbf{x}_{j}, \mathbf{r} \rangle \right]$$

$$= \frac{1}{2} \left[\langle -\mathbf{x}_{j}, 2\boldsymbol{\theta}_{1}^{*} + (\frac{\mathbf{y}}{\lambda_{1}} - \boldsymbol{\theta}_{1}^{*}) + (\frac{\mathbf{y}}{\lambda_{2}} - \frac{\mathbf{y}}{\lambda_{1}}) \rangle \right]$$

$$+ \frac{1}{2} \left[\|\mathbf{x}_{j}^{\perp}\|_{2} \sqrt{\|\mathbf{b}\|_{2}^{2} - \frac{\langle \mathbf{b}, \mathbf{a} \rangle^{2}}{\|\mathbf{a}\|_{2}^{2}}} + \frac{\langle \mathbf{a}, \mathbf{b} \rangle \langle \mathbf{x}_{j}, \mathbf{a} \rangle}{\|\mathbf{a}\|_{2}^{2}} \right]$$

$$= -\langle \mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*} \rangle - \frac{1}{\lambda_{2}} \frac{1}{2} \left[\langle \mathbf{x}_{j}, \mathbf{y} \rangle - \frac{\langle \mathbf{a}, \mathbf{y} \rangle}{\|\mathbf{a}\|_{2}^{2}} \langle \mathbf{x}_{j}, \mathbf{a} \rangle \right]$$

$$+ \frac{1}{\lambda_{2}} \frac{1}{\lambda_{1}} \|\mathbf{x}_{j}^{\perp}\|_{2} \sqrt{\|\mathbf{y}\|_{2}^{2} - \frac{\langle \mathbf{y}, \mathbf{a} \rangle^{2}}{\|\mathbf{a}\|_{2}^{2}}}.$$
(72)

The fifth equality utilizes Eq. (65) which is the result for the case $\frac{\langle \mathbf{b}, \mathbf{a} \rangle}{\|\mathbf{b}\|_2} > \frac{|\langle \mathbf{x}_j, \mathbf{a} \rangle|}{\|\mathbf{x}_j\|_2} \ge \frac{\langle \mathbf{x}_j, \mathbf{a} \rangle}{\|\mathbf{x}_j\|_2}$ by setting $\mathbf{x} = \mathbf{x}_j$. The last equality can be obtained using the similar derivation getting the last equality of Eq. (66). Incorporating Eqs. (70)-(72), we have Eq. (27).

Case 2 If $\frac{\langle \mathbf{b}, \mathbf{a} \rangle}{\|\mathbf{b}\|_2} \le \frac{\langle \mathbf{x}_j, \mathbf{a} \rangle}{\|\mathbf{x}_j\|_2}$ and $\langle \mathbf{x}_j, \mathbf{a} \rangle > 0$, we have $\frac{\langle \mathbf{b}, \mathbf{a} \rangle}{\|\mathbf{b}\|_2} > \frac{\langle -\mathbf{x}_j, \mathbf{a} \rangle}{\|\mathbf{x}_j\|_2}$ since $\langle \mathbf{b}, \mathbf{a} \rangle \ge 0$ according to Theorem 1. Thus, Eq. (60) does not hold with $\mathbf{x} = -\mathbf{x}_j$, and we can get Eq. (66), or equivalently Eq. (26). In addition, Eq. (60) holds with $\mathbf{x} = \mathbf{x}_j$, and we have

$$u_{j}^{-}(\lambda_{2}) = \max_{\mathbf{r}:\langle\mathbf{a},\mathbf{r}+\mathbf{b}\rangle \geq 0, \langle\mathbf{\theta}-\frac{\mathbf{y}}{\lambda_{2}}, \boldsymbol{\theta}_{1}^{*}-\boldsymbol{\theta}\rangle \geq 0} \langle -\mathbf{x}_{j}, \boldsymbol{\theta} \rangle$$

$$= \max_{\mathbf{r}:\langle\mathbf{a},\mathbf{r}+\mathbf{b}\rangle \leq 0, \|\mathbf{r}\|_{2}^{2} \leq \|\mathbf{b}\|_{2}^{2}} \left[\langle -\mathbf{x}_{j}, \frac{\boldsymbol{\theta}_{1}^{*} + \frac{\mathbf{y}}{\lambda_{2}}}{2} \rangle + \frac{1}{2} \langle -\mathbf{x}_{j}, \mathbf{r} \rangle \right]$$

$$= \langle -\mathbf{x}_{j}, \frac{\boldsymbol{\theta}_{1}^{*} + \frac{\mathbf{y}}{\lambda_{2}}}{2} \rangle + \frac{1}{2} \max_{\mathbf{r}:\langle\mathbf{a},\mathbf{r}+\mathbf{b}\rangle \leq 0, \|\mathbf{r}\|_{2}^{2} \leq \|\mathbf{b}\|_{2}^{2}} \langle -\mathbf{x}_{j}, \mathbf{r} \rangle$$

$$= \langle -\mathbf{x}_{j}, \frac{\boldsymbol{\theta}_{1}^{*} + \frac{\mathbf{y}}{\lambda_{2}}}{2} \rangle - \frac{1}{2} \min_{\mathbf{r}:\langle\mathbf{a},\mathbf{r}+\mathbf{b}\rangle \leq 0, \|\mathbf{r}\|_{2}^{2} \leq \|\mathbf{b}\|_{2}^{2}} \langle \mathbf{x}_{j}, \mathbf{r} \rangle$$

$$= \langle -\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*} + \frac{1}{2} (\frac{\mathbf{y}}{\lambda_{2}} - \boldsymbol{\theta}_{1}^{*}) \rangle + \frac{1}{2} \|\mathbf{x}_{j}\|_{2} \|\mathbf{b}\|_{2}$$

$$= -\langle \mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*} \rangle + \frac{1}{2} [\|\mathbf{x}_{j}\|_{2} \|\mathbf{b}\|_{2} - \langle \mathbf{x}_{j}, \mathbf{b} \rangle].$$

$$(73)$$

To get the fifth equality, we utilize Eq. (61) with $\mathbf{x} = \mathbf{x}_j$. Therefore, we have Eq. (28).

Case 3 If $\frac{\langle \mathbf{b}, \mathbf{a} \rangle}{\|\mathbf{b}\|_2} \leq \frac{-\langle \mathbf{x}_j, \mathbf{a} \rangle}{\|\mathbf{x}_j\|_2}$ and $\langle \mathbf{x}_j, \mathbf{a} \rangle < 0$, Eq. (60) holds with $\mathbf{x} = -\mathbf{x}_j$, and we have

$$u_{j}^{+}(\lambda_{2}) = \max_{\mathbf{r}:\langle\mathbf{a},\mathbf{r}+\mathbf{b}\rangle\leq0,\langle\mathbf{\theta}-\frac{\mathbf{y}}{\lambda_{2}},\mathbf{\theta}_{1}^{*}-\mathbf{\theta}\rangle\geq0} \langle\mathbf{x}_{j},\mathbf{\theta}\rangle$$

$$= \max_{\mathbf{r}:\langle\mathbf{a},\mathbf{r}+\mathbf{b}\rangle\leq0,\|\mathbf{r}\|_{2}^{2}\leq\|\mathbf{b}\|_{2}^{2}} \left[\langle\mathbf{x}_{j},\frac{\boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}}{2}\rangle + \frac{1}{2}\langle\mathbf{x}_{j},\mathbf{r}\rangle\right]$$

$$= \langle\mathbf{x}_{j},\frac{\boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}}{2}\rangle + \frac{1}{2}\max_{\mathbf{r}:\langle\mathbf{a},\mathbf{r}+\mathbf{b}\rangle\leq0,\|\mathbf{r}\|_{2}^{2}\leq\|\mathbf{b}\|_{2}^{2}}\langle\mathbf{x}_{j},\mathbf{r}\rangle$$

$$= \langle\mathbf{x}_{j},\frac{\boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}}{2}\rangle - \frac{1}{2}\min_{\mathbf{r}:\langle\mathbf{a},\mathbf{r}+\mathbf{b}\rangle\leq0,\|\mathbf{r}\|_{2}^{2}\leq\|\mathbf{b}\|_{2}^{2}}\langle-\mathbf{x}_{j},\mathbf{r}\rangle$$

$$= \langle\mathbf{x}_{j},\boldsymbol{\theta}_{1}^{*}+\frac{1}{2}(\frac{\mathbf{y}}{\lambda_{2}}-\boldsymbol{\theta}_{1}^{*})\rangle + \frac{1}{2}\|-\mathbf{x}_{j}\|_{2}\|\mathbf{b}\|_{2}$$

$$= \langle\mathbf{x}_{j},\boldsymbol{\theta}_{1}^{*}\rangle + \frac{1}{2}[\|\mathbf{x}_{j}\|_{2}\|\mathbf{b}\|_{2} + \langle\mathbf{x}_{j},\mathbf{b}\rangle],$$

$$(74)$$

where the fifth equality utilizes Eq. (61) with $\mathbf{x} = -\mathbf{x}_j$. Therefore, we have Eq. (29). In addition, we have $\frac{\langle \mathbf{b}, \mathbf{a} \rangle}{\|\mathbf{b}\|_2} > \frac{\langle \mathbf{x}_j, \mathbf{a} \rangle}{\|\mathbf{x}_j\|_2}$ since $\langle \mathbf{b}, \mathbf{a} \rangle \geq 0$ according to Theorem 1 and $\langle \mathbf{x}_j, \mathbf{a} \rangle < 0$. Thus, Eq. (60) does not hold with $\mathbf{x} = \mathbf{x}_j$, and we can get Eq. (72), or equivalently Eq. (27).

Case 4 If $\mathbf{a} = \mathbf{0}$, then we have $\lambda_1 = \|X^T \mathbf{y}\|_{\infty}$ according to Theorem 1. Therefore,

$$u_{j}^{+}(\lambda_{2}) = \max_{\boldsymbol{\theta}:\langle\boldsymbol{\theta}_{1}^{*}-\frac{\mathbf{y}}{\lambda_{1}},\boldsymbol{\theta}-\boldsymbol{\theta}_{1}^{*}\rangle\geq0,\langle\boldsymbol{\theta}-\frac{\mathbf{y}}{\lambda_{2}},\boldsymbol{\theta}_{1}^{*}-\boldsymbol{\theta}\rangle\geq0}\langle\mathbf{x}_{j},\boldsymbol{\theta}\rangle$$

$$= \frac{1}{2} \max_{\mathbf{r}:\langle\mathbf{a},\mathbf{r}+\mathbf{b}\rangle\leq0,\|\mathbf{r}\|_{2}^{2}\leq\|\mathbf{b}\|_{2}^{2}} \left[\langle\mathbf{x}_{j},\boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}\rangle+\langle\mathbf{x}_{j},\mathbf{r}\rangle\right]$$

$$= \frac{1}{2} \left[\langle\mathbf{x}_{j},\boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}\rangle+\max_{\mathbf{r}:\langle\mathbf{a},\mathbf{r}+\mathbf{b}\rangle\leq0,\|\mathbf{r}\|_{2}^{2}\leq\|\mathbf{b}\|_{2}^{2}}\langle\mathbf{x}_{j},\mathbf{r}\rangle\right]$$

$$= \frac{1}{2} \left[\langle\mathbf{x}_{j},\boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}\rangle-\min_{\mathbf{r}:\langle\mathbf{a},\mathbf{r}+\mathbf{b}\rangle\leq0,\|\mathbf{r}\|_{2}^{2}\leq\|\mathbf{b}\|_{2}^{2}}\langle-\mathbf{x}_{j},\mathbf{r}\rangle\right]$$

$$= \frac{1}{2} \left[\langle\mathbf{x}_{j},2\boldsymbol{\theta}_{1}^{*}+(\frac{\mathbf{y}}{\lambda_{2}}-\boldsymbol{\theta}_{1}^{*})\rangle\right]+\frac{1}{2}\|-\mathbf{x}_{j}\|_{2}\|\mathbf{b}\|_{2}$$

$$(75)$$

To get the last equality, we utilize Eq. (52) with $\mathbf{x} = -\mathbf{x}_j$. Therefore, we have Eq. (74). Similarly,

$$u_{j}^{-}(\lambda_{2}) = \max_{\boldsymbol{r}:\langle\boldsymbol{\theta}_{1}^{*}-\frac{\mathbf{y}}{\lambda_{1}},\boldsymbol{\theta}-\boldsymbol{\theta}_{1}^{*}\rangle\geq0,\langle\boldsymbol{\theta}-\frac{\mathbf{y}}{\lambda_{2}},\boldsymbol{\theta}_{1}^{*}-\boldsymbol{\theta}\rangle\geq0} \langle -\mathbf{x}_{j},\boldsymbol{\theta}\rangle$$

$$= \max_{\mathbf{r}:\langle\mathbf{a},\mathbf{r}+\mathbf{b}\rangle\leq0,\|\mathbf{r}\|_{2}^{2}\leq\|\mathbf{b}\|_{2}^{2}} \left[\langle -\mathbf{x}_{j},\frac{\boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}}{2} \rangle + \frac{1}{2} \langle -\mathbf{x}_{j},\mathbf{r} \rangle \right]$$

$$= \langle -\mathbf{x}_{j},\frac{\boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}}{2} \rangle + \frac{1}{2} \max_{\mathbf{r}:\langle\mathbf{a},\mathbf{r}+\mathbf{b}\rangle\leq0,\|\mathbf{r}\|_{2}^{2}\leq\|\mathbf{b}\|_{2}^{2}} \langle -\mathbf{x}_{j},\mathbf{r} \rangle$$

$$= \langle -\mathbf{x}_{j},\frac{\boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}}{2} \rangle - \frac{1}{2} \min_{\mathbf{r}:\langle\mathbf{a},\mathbf{r}+\mathbf{b}\rangle\leq0,\|\mathbf{r}\|_{2}^{2}\leq\|\mathbf{b}\|_{2}^{2}} \langle \mathbf{x}_{j},\mathbf{r} \rangle$$

$$= \langle -\mathbf{x}_{j},\boldsymbol{\theta}_{1}^{*}+\frac{1}{2}(\frac{\mathbf{y}}{\lambda_{2}}-\boldsymbol{\theta}_{1}^{*}) \rangle + \frac{1}{2} \|\mathbf{x}_{j}\|_{2} \|\mathbf{b}\|_{2}$$

$$(76)$$

To get the last equality, we utilize Eq. (52) with $\mathbf{x} = \mathbf{x}_i$. Therefore, we have Eq. (73).

This ends the proof of this theorem.

D. Proof of Theorem 4

We begin with a technical lemma. For a geometrical illustration of this lemma, please refer to the first plot of Figure 4.

Lemma 5 Let $\mathbf{y} \neq 0$, and $\|X^T\mathbf{y}\|_{\infty} > \lambda_1 > \lambda > 0$. Suppose that $\boldsymbol{\theta}_1^* \neq \frac{\mathbf{y}}{\|X^T\mathbf{y}\|_{\infty}}$. For the two auxiliary functions defined in Eq. (41) and Eq. (42), $f(\lambda)$ is strictly increasing with regard to λ in $(0, \lambda_1]$. $g(\lambda)$ is strictly decreasing with regard to λ in $(0, \lambda_1]$.

Proof Denote $\gamma = \frac{1}{\lambda} - \frac{1}{\lambda_1}$. We can rewrite $f(\lambda)$ as

$$h(\gamma) = \frac{\langle \mathbf{a} + \gamma \mathbf{y}, \mathbf{a} \rangle}{\|\mathbf{a} + \gamma \mathbf{y}\|_2}.$$
 (77)

The derivative of $h(\gamma)$ with regard to γ can be computed as

$$h'(\gamma) = \frac{\gamma(\langle \mathbf{a}, \mathbf{y} \rangle^2 - \|\mathbf{y}\|_2^2 \|\mathbf{a}\|_2^2)}{\|\mathbf{a} + \gamma \mathbf{y}\|_2^3} \le 0$$

$$(78)$$

For any $\gamma>0$, $h'(\gamma)=0$ if and only if a parallels to \mathbf{y} . It follows the definition of a in Eq. (17) that, if a parallels to \mathbf{y} , then $\boldsymbol{\theta}_1^*$ parallels \mathbf{y} . According to Lemma 3, we have $\boldsymbol{\theta}_1^*=\frac{\mathbf{y}}{\|X^T\mathbf{y}\|_{\infty}}$, which contradicts to the assumption $\boldsymbol{\theta}_1^*\neq\frac{\mathbf{y}}{\|X^T\mathbf{y}\|_{\infty}}$. Therefore, $h'(\gamma)>0$, $h(\gamma)$ is strictly decreasing $\forall \gamma>0$, and $f(\lambda)$ is strictly increasing with regard to λ in $(0,\lambda_1]$.

Now, are ready to prove Theorem 4. Firstly, we summarize the $u_i^+(\lambda_2)$ and $u_i^-(\lambda_2)$ in unified equations.

Since $\langle \mathbf{x}_j, \mathbf{a} \rangle \geq 0$, $u_i^+(\lambda_2)$ satisfies Eq. (26) if $\mathbf{a} \neq 0$, and Eq. (29) otherwise. Thus, we have

$$u_{j}^{+}(\lambda_{2}) = \begin{cases} \langle \mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*} \rangle + \frac{\frac{1}{\lambda_{2}} - \frac{1}{\lambda_{1}}}{2} \left[\|\mathbf{x}_{j}^{\perp}\|_{2} \|\mathbf{y}^{\perp}\|_{2} + \langle \mathbf{x}_{j}^{\perp}, \mathbf{y}^{\perp} \rangle \right], & \mathbf{a} \neq \mathbf{0} \\ \langle \mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*} \rangle + \frac{1}{2} \left[\|\mathbf{x}_{j}\|_{2} \|\mathbf{b}\|_{2} + \langle \mathbf{x}_{j}, \mathbf{b} \rangle \right], & \mathbf{a} = \mathbf{0} \end{cases}$$
(79)

Since $\langle \mathbf{x}_j, \mathbf{a} \rangle \geq 0$, $u_j^-(\lambda_2)$ satisfies Eq. (28) if $\frac{\langle \mathbf{b}, \mathbf{a} \rangle}{\|\mathbf{b}\|_2} \leq \frac{\langle \mathbf{x}_j, \mathbf{a} \rangle}{\|\mathbf{x}_i\|_2}$, and Eq. (27) otherwise. Thus, we have

$$u_{j}^{-}(\lambda_{2}) = \begin{cases} -\langle \mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*} \rangle + \frac{1}{2} \left[\|\mathbf{x}_{j}\|_{2} \|\mathbf{b}\|_{2} - \langle \mathbf{x}_{j}, \mathbf{b} \rangle \right], & \frac{\langle \mathbf{b}, \mathbf{a} \rangle}{\|\mathbf{b}\|_{2}} \leq \frac{\langle \mathbf{x}_{j}, \mathbf{a} \rangle}{\|\mathbf{x}_{j}\|_{2}} \\ -\langle \mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*} \rangle + \frac{\frac{1}{\lambda_{2}} - \frac{1}{\lambda_{1}}}{2} \left[\|\mathbf{x}_{j}^{\perp}\|_{2} \|\mathbf{y}^{\perp}\|_{2} - \langle \mathbf{x}_{j}^{\perp}, \mathbf{y}^{\perp} \rangle \right], & \frac{\langle \mathbf{b}, \mathbf{a} \rangle}{\|\mathbf{b}\|_{2}} > \frac{\langle \mathbf{x}_{j}, \mathbf{a} \rangle}{\|\mathbf{x}_{j}\|_{2}} \end{cases}$$
(80)

Case 1 When $\mathbf{a} = 0$, we have $\boldsymbol{\theta}_1^* = \frac{\mathbf{y}}{\lambda_1}$, $\mathbf{b} = \frac{\frac{1}{\lambda_2} - \frac{1}{\lambda_1}}{2} \mathbf{y}$, $\mathbf{x}_j^{\perp} = \mathbf{x}_j$, and $\mathbf{y}^{\perp} = \mathbf{y}$. Thus, Eq. (79) can be simplified as:

$$u_j^+(\lambda_2) = \langle \mathbf{x}_j, \boldsymbol{\theta}_1^* \rangle + \frac{\frac{1}{\lambda_2} - \frac{1}{\lambda_1}}{2} [\|\mathbf{x}_j\|_2 \|\mathbf{y}\|_2 + \langle \mathbf{x}_j, \mathbf{y} \rangle]. \tag{81}$$

Since $\|\mathbf{x}_j\|_2 \|\mathbf{y}\|_2 + \langle \mathbf{x}_j, \mathbf{y} \rangle \ge 0$, $u_j^+(\lambda_2)$ is monotonically decreasing with regard to λ_2 .

Case 2 & Case 3 When $\frac{\langle \mathbf{b}, \mathbf{a} \rangle}{\|\mathbf{b}\|_2} = \frac{\langle \mathbf{x}_j, \mathbf{a} \rangle}{\|\mathbf{x}_j\|_2}$, we have

$$\frac{\frac{1}{\lambda_{2}} - \frac{1}{\lambda_{1}}}{2} [\|\mathbf{x}_{j}^{\perp}\|_{2}\|\mathbf{y}^{\perp}\|_{2} - \langle \mathbf{x}_{j}^{\perp}, \mathbf{y}^{\perp} \rangle] \\
= \frac{\frac{1}{\lambda_{2}} - \frac{1}{\lambda_{1}}}{2} \left[\sqrt{(\|\mathbf{x}_{j}\|_{2}^{2} - \frac{\langle \mathbf{x}_{j}, \mathbf{a} \rangle^{2}}{\|\mathbf{a}\|_{2}^{2}})(\|\mathbf{y}\|_{2}^{2} - \frac{\langle \mathbf{y}, \mathbf{a} \rangle^{2}}{\|\mathbf{a}\|_{2}^{2}})} - [\langle \mathbf{x}_{j}, \mathbf{y} \rangle - \frac{\langle \mathbf{a}, \mathbf{y} \rangle}{\|\mathbf{a}\|_{2}^{2}} \langle \mathbf{x}_{j}, \mathbf{a} \rangle] \right] \\
= \frac{1}{2} \left[\sqrt{(\|\mathbf{x}_{j}\|_{2}^{2} - \frac{\|\mathbf{x}_{j}\|_{2}^{2} \langle \mathbf{b}, \mathbf{a} \rangle^{2}}{\|\mathbf{a}\|_{2}^{2} \|\mathbf{b}\|_{2}^{2}})(\|\mathbf{b}\|_{2}^{2} - \frac{\langle \mathbf{b}, \mathbf{a} \rangle^{2}}{\|\mathbf{a}\|_{2}^{2}}) - [\langle \mathbf{x}_{j}, \mathbf{b} - \mathbf{a} \rangle - \frac{\langle \mathbf{a}, \mathbf{b} - \mathbf{a} \rangle}{\|\mathbf{a}\|_{2}^{2}} \langle \mathbf{x}_{j}, \mathbf{a} \rangle] \right] \\
= \frac{1}{2} \left[\|\mathbf{x}_{j}\|_{2} \|\mathbf{b}\|_{2} (1 - \frac{\langle \mathbf{b}, \mathbf{a} \rangle^{2}}{\|\mathbf{a}\|_{2}^{2} \|\mathbf{b}\|_{2}^{2}}) - [\langle \mathbf{x}_{j}, \mathbf{b} - \mathbf{a} \rangle - \frac{\langle \mathbf{a}, \mathbf{b} - \mathbf{a} \rangle}{\|\mathbf{a}\|_{2}^{2}} \langle \mathbf{x}_{j}, \mathbf{a} \rangle] \right] \\
= \frac{1}{2} [\|\mathbf{x}_{j}\|_{2} \|\mathbf{b}\|_{2} - \langle \mathbf{x}_{j}, \mathbf{b} \rangle] + \frac{1}{2} [-\frac{\|\mathbf{x}_{j}\|_{2} \langle \mathbf{b}, \mathbf{a} \rangle^{2}}{\|\mathbf{a}\|_{2}^{2} \|\mathbf{b}\|_{2}} + \frac{\langle \mathbf{a}, \mathbf{b} \rangle}{\|\mathbf{a}\|_{2}^{2}} \langle \mathbf{x}_{j}, \mathbf{a} \rangle] \\
= \frac{1}{2} [\|\mathbf{x}_{j}\|_{2} \|\mathbf{b}\|_{2} - \langle \mathbf{x}_{j}, \mathbf{b} \rangle].$$
(82)

The first equality plugs in the definition of \mathbf{x}_j^{\perp} and \mathbf{y} in Eq. (22) and Eq. (23). The second equality plugs in $\frac{\langle \mathbf{b}, \mathbf{a} \rangle}{\|\mathbf{b}\|_2} = \frac{\langle \mathbf{x}_j, \mathbf{a} \rangle}{\|\mathbf{x}_j\|_2}$, makes use of Eq. (17), and utilizes Eq. (67). The last equality further makes use of $\frac{\langle \mathbf{b}, \mathbf{a} \rangle}{\|\mathbf{b}\|_2} = \frac{\langle \mathbf{x}_j, \mathbf{a} \rangle}{\|\mathbf{x}_j\|_2}$. The established equality says that $u_j^-(\lambda_2)$ is continuous at the λ_2 that satisfies $\frac{\langle \mathbf{b}, \mathbf{a} \rangle}{\|\mathbf{b}\|_2} = \frac{\langle \mathbf{x}_j, \mathbf{a} \rangle}{\|\mathbf{x}_j\|_2}$.

It follows from the definition of $\lambda_{2,a}$ that if $\lambda_2 \in (\lambda_{2,a}, \lambda_1)$ then $\frac{\langle \mathbf{b}, \mathbf{a} \rangle}{\|\mathbf{b}\|_2} > \frac{\langle \mathbf{x}_j, \mathbf{a} \rangle}{\|\mathbf{x}_j\|_2}$. Therefore, according to Eq. (80), $u_j^-(\lambda_2)$ is monotonically decreasing with λ_2 in $(\lambda_{2,a}, \lambda_1)$. Next, we focus on λ_2 in the interval $(0, \lambda_{2,a}]$.

Denote $\gamma = \frac{1}{\lambda_2} - \frac{1}{\lambda_1}$, and write $\mathbf{b} = \frac{\mathbf{y}}{\lambda_2} - \boldsymbol{\theta}_1^* = \mathbf{a} + \gamma \mathbf{y}$. Thus, $u_j^-(\lambda_2) = -\langle \mathbf{x}_j, \boldsymbol{\theta}_1^* \rangle + \frac{1}{2} [\|\mathbf{x}_j\|_2 \|\mathbf{b}\|_2 - \langle \mathbf{x}_j, \mathbf{b} \rangle]$ can be rewritten as

$$w(\gamma) = \frac{1}{2} \left[\|\mathbf{x}_j\|_2 \|\mathbf{a} + \gamma \mathbf{y}\|_2 - \langle \mathbf{x}_j, \mathbf{a} + \gamma \mathbf{y} \rangle \right]$$
(83)

The first and second derivatives of $w(\gamma)$ with regard to γ can be computed as: we have

$$w'(\gamma) = \frac{1}{2} \left[\frac{\|\mathbf{x}_j\|_2 \langle \mathbf{a} + \gamma \mathbf{y}, \mathbf{y} \rangle}{\|\mathbf{a} + \gamma \mathbf{y}\|_2} - \langle \mathbf{x}_j, \mathbf{y} \rangle \right]$$
(84)

$$w''(\gamma) = \frac{\|\mathbf{x}_j\|_2(\|\mathbf{y}\|_2^2\|\mathbf{a}\|_2^2 - \langle \mathbf{a}, \mathbf{y} \rangle^2)}{2\|\mathbf{a} + \gamma \mathbf{y}\|_2^3} \ge 0$$
(85)

Therefore, we have

- If $\frac{\langle \mathbf{a}, \mathbf{y} \rangle}{\|\mathbf{a}\|_2} \ge \frac{\langle \mathbf{x}_j, \mathbf{y} \rangle}{\|\mathbf{x}_j\|_2}$, i.e., when the angle between \mathbf{y} and \mathbf{a} is no larger than the angle between \mathbf{y} and \mathbf{x}_j , then $w'(\gamma) \ge 0$, and $u_j^-(\lambda_2)$ is monotonically decreasing with regard to λ_2 in $(0, \lambda_{2,a}]$. In this case, the $\lambda_{2,a}$ and $\lambda_{2,y}$ satisfies $\lambda_{2,a} \le \lambda_{2,y}$.
- If $\frac{\langle \mathbf{a}, \mathbf{y} \rangle}{\|\mathbf{a}\|_2} < \frac{\langle \mathbf{x}_j, \mathbf{y} \rangle}{\|\mathbf{x}_j\|_2}$, let $\gamma_y = \frac{1}{\lambda_{2,y}} \frac{1}{\lambda_1}$. Then, 1) $h'(\gamma_y) = 0$, 2) $h'(\gamma_y) < 0$, $\forall 0 < \gamma < \gamma_y$, and $h'(\gamma_y) > 0$, $\forall \gamma > \gamma_y$. Therefore, $u_j^-(\lambda_2)$ is monotonically decreasing with regard to λ_2 in $(0, \lambda_{2,y})$, and monotonically increasing with regard to λ_2 in $(\lambda_{2,y}, \lambda_{2,a}]$. In this case, the $\lambda_{2,a}$ and $\lambda_{2,y}$ satisfies $\lambda_{2,a} > \lambda_{2,y}$.

This ends the proof of this theorem. \Box