Supplementary Material

A. Proof of Theorem 1

We begin with three technical lemmas.
Lemma 2 Let $\mathbf{y} \neq \mathbf{0}$ and $0<\lambda_{1} \leq\left\|X^{T} \mathbf{y}\right\|_{\infty}$. We have

$$
\begin{equation*}
\left\langle\frac{\mathbf{y}}{\lambda_{1}}-\boldsymbol{\theta}_{1}^{*}, \boldsymbol{\theta}_{1}^{*}\right\rangle \geq 0 . \tag{45}
\end{equation*}
$$

Proof Since the Euclidean projection of $\frac{\mathrm{y}}{\lambda_{1}}$ onto $\left\{\boldsymbol{\theta}:\left\|X^{T} \boldsymbol{\theta}\right\|_{\infty} \leq 1\right\}$ is $\boldsymbol{\theta}_{1}^{*}$, it follows from Lemma 1 that

$$
\begin{equation*}
\left\langle\boldsymbol{\theta}_{1}^{*}-\frac{\mathbf{y}}{\lambda_{1}}, \boldsymbol{\theta}-\boldsymbol{\theta}_{1}^{*}\right\rangle \geq 0, \forall \boldsymbol{\theta}:\left\|X^{T} \boldsymbol{\theta}\right\|_{\infty} \leq 1 . \tag{46}
\end{equation*}
$$

As $\mathbf{0} \in\left\{\boldsymbol{\theta}:\left\|X^{T} \boldsymbol{\theta}\right\|_{\infty} \leq 1\right\}$, we have Eq. (45).
Lemma 3 Let $\mathbf{y} \neq \mathbf{0}$ and $0<\lambda_{1} \leq\left\|X^{T} \mathbf{y}\right\|_{\infty}$. If $\boldsymbol{\theta}_{1}^{*}$ parallels to \mathbf{y} in that it can be written as $\boldsymbol{\theta}_{1}^{*}=\gamma \mathbf{y}$ for some γ, then $\gamma=\frac{1}{\left\|X^{T} \mathbf{y}\right\|_{\infty}}$.

Proof Since $\frac{y}{\left\|X^{T} y\right\|_{\infty}}$ satisfies the condition in Eq. (11), we have

$$
\begin{equation*}
\left\langle\gamma \mathbf{y}-\frac{\mathbf{y}}{\lambda_{1}}, \frac{\mathbf{y}}{\left\|X^{T} \mathbf{y}\right\|_{\infty}}-\gamma \mathbf{y}\right\rangle=\left(\gamma-\frac{1}{\lambda_{1}}\right)\left(\frac{1}{\left\|X^{T} \mathbf{y}\right\|_{\infty}}-\gamma\right)\|\mathbf{y}\|_{2}^{2} \geq 0 \tag{47}
\end{equation*}
$$

which leads to $\gamma \in\left[\frac{1}{\left\|X^{T} \mathbf{y}\right\|_{\infty}}, \frac{1}{\lambda_{1}}\right]$. In addition, since $\left\|X^{T} \boldsymbol{\theta}_{1}^{*}\right\|_{\infty} \leq 1$, we have $\gamma=\frac{1}{\left\|X^{T} \mathbf{y}\right\|_{\infty}}$. This completes the proof.
Lemma 4 Let $\mathbf{y} \neq \mathbf{0}$. If $0<\lambda_{1} \leq\left\|X^{T} \mathbf{y}\right\|_{\infty}$, we have

$$
\begin{equation*}
\left\langle\frac{\mathbf{y}}{\lambda_{1}}-\boldsymbol{\theta}_{1}^{*}, \mathbf{y}\right\rangle \geq 0, \tag{48}
\end{equation*}
$$

where the equality holds if and only if $\lambda_{1}=\left\|X^{T} \mathbf{y}\right\|_{\infty}$.
Proof We have

$$
\begin{equation*}
\left\langle\frac{\mathbf{y}}{\lambda_{1}}-\boldsymbol{\theta}_{1}^{*}, \frac{\mathbf{y}}{\lambda_{1}}\right\rangle-\left\langle\frac{\mathbf{y}}{\lambda_{1}}-\boldsymbol{\theta}_{1}^{*}, \boldsymbol{\theta}_{1}^{*}\right\rangle=\left\langle\frac{\mathbf{y}}{\lambda_{1}}-\boldsymbol{\theta}_{1}^{*}, \frac{\mathbf{y}}{\lambda_{1}}-\boldsymbol{\theta}_{1}^{*}\right\rangle \geq 0, \tag{49}
\end{equation*}
$$

where the equality holds if and only if $\frac{y}{\lambda_{1}}=\boldsymbol{\theta}_{\boldsymbol{\theta}}^{*}$. Incorporating Eq. (45) in Lemma 2 and Eq. (49), we have Eq. (48). The equality in Eq. (49) holds if and only if $\frac{y}{\lambda_{1}}=\boldsymbol{\theta}_{1}^{*}$. According to Lemma 3, if $\boldsymbol{\theta}_{1}^{*}=\frac{y}{\lambda_{1}}$, then $\boldsymbol{\theta}_{1}^{*}=\frac{\mathrm{y}}{\left\|X^{T} y\right\|_{\infty}}$, which leads to $\lambda_{1}=\left\|X^{T} \mathbf{y}\right\|_{\infty}$. This ends the proof.
Now, we are ready to prove Theorem 1. If follows from Eq. (17) and Eq. (48)

$$
\begin{gather*}
\langle\mathbf{b}, \mathbf{a}\rangle=\left(\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}}\right)\left\langle\frac{\mathbf{y}}{\lambda_{1}}-\boldsymbol{\theta}_{1}^{*}, \mathbf{y}\right\rangle+\left\|\frac{\mathbf{y}}{\lambda_{1}}-\boldsymbol{\theta}_{1}^{*}\right\|_{2}^{2} \tag{50}\\
\|\mathbf{b}\|_{2}^{2}=\left\|\left(\frac{\mathbf{y}}{\lambda_{2}}-\frac{\mathbf{y}}{\lambda_{1}}\right)\right\|_{2}^{2}+2\left(\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}}\right)\left\langle\frac{\mathbf{y}}{\lambda_{1}}-\boldsymbol{\theta}_{1}^{*}, \mathbf{y}\right\rangle+\left\|\frac{\mathbf{y}}{\lambda_{1}}-\boldsymbol{\theta}_{1}^{*}\right\|_{2}^{2} \geq 0 . \tag{51}
\end{gather*}
$$

It follows from Lemma 4 that 1$)\langle\mathbf{b}, \mathbf{a}\rangle \geq 0$ and the equality holds if and only if $\frac{\mathbf{y}}{\lambda_{1}}=\boldsymbol{\theta}_{1}^{*}$, and 2$)\|\mathbf{b}\|_{2}^{2}>0$, which leads to $\mathbf{b} \neq \mathbf{0}$. According to Lemma 3, if $\boldsymbol{\theta}_{1}^{*}$ parallels to \mathbf{y}, then $\boldsymbol{\theta}_{1}^{*}=\frac{\mathbf{y}}{\left\|X^{T_{\mathbf{y}}}\right\|_{\infty}}$. Therefore, if $0<\lambda_{1}<\left\|X^{T} \mathbf{y}\right\|_{\infty}$, then $\langle\mathbf{b}, \mathbf{a}\rangle>0$ and $\mathbf{a} \neq 0$.

B. Proof of Theorem 2

If $\lambda_{1}=\left\|X^{T} \mathbf{y}\right\|_{\infty}$, the primal and dual optimals can be analytically computed as: $\boldsymbol{\beta}_{1}^{*}=\mathbf{0}$ and $\boldsymbol{\theta}_{1}^{*}=\frac{\mathbf{y}}{\left\|X^{T} \boldsymbol{\theta}\right\|_{\infty}}$. Thus, we have $\mathbf{a}=\mathbf{0}$. It is easy to get that $\mathbf{r}=-\frac{\mathbf{x}\|\mathbf{b}\|_{2}}{\|\mathbf{x}\|_{2}}$ minimizes Eq. (20) with the minimum function value being

$$
\begin{equation*}
\langle\mathbf{x}, \mathbf{r}\rangle=-\|\mathbf{x}\|_{2}\|\mathbf{b}\|_{2} . \tag{52}
\end{equation*}
$$

In our following discussion, we focus on the case $0<\lambda_{1}<\left\|X^{T} \mathbf{y}\right\|_{\infty}$ and we have $\mathbf{a} \neq \mathbf{0}$ according to Theorem 1 .
The Lagrangian of Eq. (20) can be written as

$$
\begin{equation*}
L(\mathbf{r}, \alpha, \beta)=\langle\mathbf{x}, \mathbf{r}\rangle+\alpha\langle\mathbf{a}, \mathbf{r}+\mathbf{b}\rangle+\frac{\beta}{2}\left(\|\mathbf{r}\|_{2}^{2}-\|\mathbf{b}\|_{2}^{2}\right) \tag{53}
\end{equation*}
$$

where $\alpha, \beta \geq 0$ are introduced for the two inequalities, respectively. It is clear that the minimal value of Eq. (20) is lower bounded (the minimum is no less than $-\|\mathbf{b}\|_{2}\|\mathbf{x}\|_{2}$ by only considering the constraint $\|\mathbf{r}\|_{2}^{2} \leq\|\mathbf{b}\|_{2}^{2}$). Therefore, the optimal dual variable β is always positive; otherwise, minimizing Eq. (53) with regard to \mathbf{r} achieves $-\infty$.
Setting the derivative with regard to \mathbf{r} to zero, we have

$$
\begin{equation*}
\mathbf{r}=\frac{-\mathbf{x}-\alpha \mathbf{a}}{\beta} \tag{54}
\end{equation*}
$$

Plugging Eq. (54) into Eq. (53), we obtain the dual problem of Eq. (20) as:

$$
\begin{align*}
\max _{\alpha, \beta} & \alpha\langle\mathbf{a}, \mathbf{b}\rangle-\frac{1}{2 \beta}\|\mathbf{x}+\alpha \mathbf{a}\|_{2}^{2}-\frac{\beta}{2}\|\mathbf{b}\|_{2}^{2} \tag{55}\\
\text { subject to } & \alpha \geq 0, \beta \geq 0
\end{align*}
$$

For a given β, we have

$$
\begin{equation*}
\alpha=\max \left(\frac{\beta\langle\mathbf{a}, \mathbf{b}\rangle-\langle\mathbf{x}, \mathbf{a}\rangle}{\|\mathbf{a}\|_{2}^{2}}, 0\right) \tag{56}
\end{equation*}
$$

We consider two cases. In the first case, we assume that $\alpha=0$. We have

$$
\begin{equation*}
\mathbf{r}=\frac{-\mathbf{x}}{\beta}, \beta \leq \frac{\langle\mathbf{x}, \mathbf{a}\rangle}{\langle\mathbf{a}, \mathbf{b}\rangle} \tag{57}
\end{equation*}
$$

By using the complementary slackness condition (note that the optimal β does not equal to zero), we have

$$
\begin{equation*}
\|\mathbf{r}\|_{2}=\left\|\frac{-\mathbf{x}}{\beta}\right\|_{2}=\|\mathbf{b}\|_{2} \tag{58}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
\beta=\frac{\|\mathbf{x}\|_{2}}{\|\mathbf{b}\|_{2}} \tag{59}
\end{equation*}
$$

Incorporating Eq. (57) and Eq. (59), we have

$$
\begin{equation*}
\frac{\langle\mathbf{b}, \mathbf{a}\rangle}{\|\mathbf{b}\|_{2}\|\mathbf{a}\|_{2}} \leq \frac{\langle\mathbf{x}, \mathbf{a}\rangle}{\|\mathbf{x}\|_{2}\|\mathbf{a}\|_{2}} \tag{60}
\end{equation*}
$$

so that the angle between \mathbf{a} and \mathbf{b} is equal to or larger than the angle between \mathbf{x} and \mathbf{a}. Note that $\langle\mathbf{b}, \mathbf{a}\rangle \geq 0$ according to Theorem 1. In Figure 2, EX_{2} and EX_{3} illustrate the case that \mathbf{x} satisfies Eq. (60), while EX_{1} and EX_{4} show the opposite cases. In addition, we have

$$
\begin{equation*}
\langle\mathbf{x}, \mathbf{r}\rangle=-\|\mathbf{x}\|_{2}\|\mathbf{b}\|_{2} \tag{61}
\end{equation*}
$$

In the second case, Eq. (60) does not hold. We have

$$
\begin{equation*}
\alpha=\frac{\beta\langle\mathbf{a}, \mathbf{b}\rangle-\langle\mathbf{x}, \mathbf{a}\rangle}{\|\mathbf{a}\|_{2}^{2}} \tag{62}
\end{equation*}
$$

Plugging Eq. (62) into Eq. (54), we have

$$
\begin{equation*}
\mathbf{r}=-\frac{\mathbf{x}\|\mathbf{a}\|_{2}^{2}+\beta\langle\mathbf{a}, \mathbf{b}\rangle \mathbf{a}-\langle\mathbf{x}, \mathbf{a}\rangle \mathbf{a}}{\beta\|\mathbf{a}\|_{2}^{2}} \tag{63}
\end{equation*}
$$

Since $\|\mathbf{r}\|_{2}^{2}=\|\mathbf{b}\|_{2}^{2}$, we have

$$
\begin{equation*}
\beta=\sqrt{\frac{\|\mathbf{x}\|_{2}^{2}\|\mathbf{a}\|_{2}^{2}-\langle\mathbf{x}, \mathbf{a}\rangle^{2}}{\|\mathbf{b}\|_{2}^{2}\|\mathbf{a}\|_{2}^{2}-\langle\mathbf{b}, \mathbf{a}\rangle^{2}}}=\frac{\left\|\mathbf{x}^{\perp}\right\|_{2}}{\sqrt{\|\mathbf{b}\|_{2}^{2}-\frac{\langle\mathbf{b}, \mathbf{a}\rangle^{2}}{\|\mathbf{a}\|_{2}^{2}}}} \tag{64}
\end{equation*}
$$

where we have used Eq. (21) to get the second equality. In addition, we have

$$
\begin{equation*}
\langle\mathbf{x}, \mathbf{r}\rangle=-\left\|\mathbf{x}^{\perp}\right\|_{2} \sqrt{\|\mathbf{b}\|_{2}^{2}-\frac{\langle\mathbf{b}, \mathbf{a}\rangle^{2}}{\|\mathbf{a}\|_{2}^{2}}}-\frac{\langle\mathbf{a}, \mathbf{b}\rangle\langle\mathbf{x}, \mathbf{a}\rangle}{\|\mathbf{a}\|_{2}^{2}} \tag{65}
\end{equation*}
$$

In summary, Eq. (20) equals to $-\|\mathbf{x}\|_{2}\|\mathbf{b}\|_{2}$, if $\frac{\langle\mathbf{b}, \mathbf{a}\rangle}{\|\mathbf{b}\|_{2}} \leq \frac{\langle\mathbf{x}, \mathbf{a}\rangle}{\|\mathbf{x}\|_{2}}$, and $-\left\|\mathbf{x}^{\perp}\right\|_{2} \sqrt{\|\mathbf{b}\|_{2}^{2}-\frac{\langle\mathbf{b}, \mathbf{a}\rangle^{2}}{\|\mathbf{a}\|_{2}^{2}}}-\frac{\langle\mathbf{a}, \mathbf{b}\rangle\langle\mathbf{x}, \mathbf{a}\rangle}{\|\mathbf{a}\|_{2}^{2}}$ otherwise. This ends the proof of this theorem.

C. Proof of Theorem 3

We prove the four cases one by one as follows.
Case 1 If $\mathbf{a} \neq \mathbf{0}$ and $\frac{\langle\mathbf{b}, \mathbf{a}\rangle}{\|\mathbf{b}\|_{2}}>\frac{\left|\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle\right|}{\left\|\mathbf{x}_{j}\right\|_{2}}$, i.e., Eq. (60) does not hold with $\mathbf{x}= \pm \mathbf{x}_{j}$. We have

$$
\begin{align*}
u_{j}^{+}\left(\lambda_{2}\right)= & \max _{\boldsymbol{\theta}:\left\langle\boldsymbol{\theta}_{1}^{*}-\frac{\mathbf{y}}{\lambda_{1}}, \boldsymbol{\theta}-\boldsymbol{\theta}_{1}^{*}\right\rangle \geq 0,\left\langle\boldsymbol{\theta}-\frac{\mathbf{y}}{\lambda_{2}}, \boldsymbol{\theta}_{1}^{*}-\boldsymbol{\theta}\right\rangle \geq 0}\left\langle\mathbf{x}_{j}, \boldsymbol{\theta}\right\rangle \\
= & \frac{1}{2} \max _{\mathbf{r}:\langle\mathbf{a}, \mathbf{r}+\mathbf{b}\rangle \leq 0,\|\mathbf{r}\|_{2}^{2} \leq\|\mathbf{b}\|_{2}^{2}}\left[\left\langle\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}\right\rangle+\left\langle\mathbf{x}_{j}, \mathbf{r}\right\rangle\right] \\
= & \frac{1}{2}\left[\left\langle\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}\right\rangle+\max _{\mathbf{r}:\langle\mathbf{a}, \mathbf{r}+\mathbf{b}\rangle \leq 0,\|\mathbf{r}\|_{2}^{2} \leq\|\mathbf{b}\|_{2}^{2}}\left\langle\mathbf{x}_{j}, \mathbf{r}\right\rangle\right] \\
= & \frac{1}{2}\left[\left\langle\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}\right\rangle-\min _{\mathbf{r}:\langle\mathbf{a}, \mathbf{r}+\mathbf{b}\rangle \leq 0,\|\mathbf{r}\|_{2}^{2} \leq\|\mathbf{b}\|_{2}^{2}}\left\langle-\mathbf{x}_{j}, \mathbf{r}\right\rangle\right] \\
= & \frac{1}{2}\left[\left\langle\mathbf{x}_{j}, 2 \boldsymbol{\theta}_{1}^{*}+\left(\frac{\mathbf{y}}{\lambda_{1}}-\boldsymbol{\theta}_{1}^{*}\right)+\left(\frac{\mathbf{y}}{\lambda_{2}}-\frac{\mathbf{y}}{\lambda_{1}}\right)\right\rangle\right] \tag{66}\\
& +\frac{1}{2}\left[\left\|-\mathbf{x}_{j}^{\perp}\right\|_{2} \sqrt{\left.\|\mathbf{b}\|_{2}^{2}-\frac{\langle\mathbf{b}, \mathbf{a}\rangle^{2}}{\|\mathbf{a}\|_{2}^{2}}+\frac{\langle\mathbf{a}, \mathbf{b}\rangle\left\langle-\mathbf{x}_{j}, \mathbf{a}\right\rangle}{\|\mathbf{a}\|_{2}^{2}}\right]}\right. \\
= & \left\langle\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*}\right\rangle+\frac{\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}}}{2}\left[\left\langle\mathbf{x}_{j}, \mathbf{y}\right\rangle-\frac{\langle\mathbf{a}, \mathbf{y}\rangle}{\|\mathbf{a}\|_{2}^{2}}\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle\right] \\
& +\frac{\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}}\left\|\mathbf{x}_{j}^{\perp}\right\|_{2} \sqrt{\|\mathbf{y}\|_{2}^{2}-\frac{\langle\mathbf{y}, \mathbf{a}\rangle^{2}}{\|\mathbf{a}\|_{2}^{2}}}}{2}
\end{align*}
$$

The second equality plugs in the notations in Eq. (17). The fifth equality utilizes Eq. (65) which is the result for the case $\frac{\langle\mathbf{b}, \mathbf{a}\rangle}{\|\mathbf{b}\|_{2}}>\frac{\left|\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle\right|}{\left\|\mathbf{x}_{j}\right\|_{2}} \geq \frac{\left\langle-\mathbf{x}_{j}, \mathbf{a}\right\rangle}{\left\|\mathbf{x}_{j}\right\|_{2}}$ by setting $\mathbf{x}=-\mathbf{x}_{j}$. To get the last equality, we utlize the following two equalities

$$
\begin{equation*}
\|\mathbf{b}\|_{2}^{2}-\frac{\langle\mathbf{b}, \mathbf{a}\rangle^{2}}{\|\mathbf{a}\|_{2}^{2}}=\left(\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}}\right)^{2}\left(\|\mathbf{y}\|_{2}^{2}-\frac{\langle\mathbf{y}, \mathbf{a}\rangle^{2}}{\|\mathbf{a}\|_{2}^{2}}\right) \tag{67}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\langle\mathbf{a}, \mathbf{b}\rangle\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle}{\|\mathbf{a}\|_{2}^{2}}=\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle\left(1+\frac{\langle\mathbf{a}, \mathbf{y}\rangle\left(\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}}\right)}{\|\mathbf{a}\|_{2}^{2}}\right) \tag{68}
\end{equation*}
$$

which can be derived from Eq. (17). It follows from Eq. (22) and Eq. (23) that

$$
\begin{gather*}
\left\|\mathbf{x}_{j}^{\perp}\right\|_{2}^{2}=\left\|\mathbf{x}_{j}\right\|_{2}^{2}-\frac{\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle^{2}}{\|\mathbf{a}\|_{2}^{2}} \tag{69}\\
\left\|\mathbf{y}^{\perp}\right\|_{2}^{2}=\|\mathbf{y}\|_{2}^{2}-\frac{\langle\mathbf{y}, \mathbf{a}\rangle^{2}}{\|\mathbf{a}\|_{2}^{2}} \tag{70}\\
\left\langle\mathbf{x}_{j}^{\perp}, \mathbf{y}^{\perp}\right\rangle=\left\langle\mathbf{x}_{j}, \mathbf{y}\right\rangle-\frac{\langle\mathbf{a}, \mathbf{y}\rangle}{\|\mathbf{a}\|_{2}^{2}}\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle . \tag{71}
\end{gather*}
$$

Incorporating Eq. (66), and Eqs. (70)-(71), we have Eq. (26). Following a similar derivation, we have

$$
\begin{align*}
u_{j}^{-}\left(\lambda_{2}\right)= & \max _{\boldsymbol{\theta}:\left\langle\boldsymbol{\theta}_{1}^{*}-\frac{\mathbf{y}}{\lambda_{1}}, \boldsymbol{\theta}-\boldsymbol{\theta}_{1}^{*}\right\rangle \geq 0,\left\langle\boldsymbol{\theta}-\frac{\mathbf{y}}{\lambda_{2}}, \boldsymbol{\theta}_{1}^{*}-\boldsymbol{\theta}\right\rangle \geq 0}\left\langle-\mathbf{x}_{j}, \boldsymbol{\theta}\right\rangle \\
= & \frac{1}{2} \max _{\mathbf{r}:\langle\mathbf{a}, \mathbf{r}+\mathbf{b}\rangle \leq 0,\|\mathbf{r}\|_{2}^{2} \leq\|\mathbf{b}\|_{2}^{2}}\left[\left\langle-\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}\right\rangle+\left\langle-\mathbf{x}_{j}, \mathbf{r}\right\rangle\right] \\
= & \frac{1}{2}\left[\left\langle-\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}\right\rangle+_{\mathbf{r}:\langle\mathbf{a}, \mathbf{r}+\mathbf{b}\rangle \leq 0,\|\mathbf{r}\|_{2}^{2} \leq\|\mathbf{b}\|_{2}^{2}}\left\langle-\mathbf{x}_{j}, \mathbf{r}\right\rangle\right] \\
= & \frac{1}{2}\left[\left\langle-\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}\right\rangle-\max _{\mathbf{r}:\langle\mathbf{a}, \mathbf{r}+\mathbf{b}\rangle \leq 0,\|\mathbf{r}\|_{2}^{2} \leq\|\mathbf{b}\|_{2}^{2}}\left\langle\mathbf{x}_{j}, \mathbf{r}\right\rangle\right] \\
= & \frac{1}{2}\left[\left\langle-\mathbf{x}_{j}, 2 \boldsymbol{\theta}_{1}^{*}+\left(\frac{\mathbf{y}}{\lambda_{1}}-\boldsymbol{\theta}_{1}^{*}\right)+\left(\frac{\mathbf{y}}{\lambda_{2}}-\frac{\mathbf{y}}{\lambda_{1}}\right)\right\rangle\right] \tag{72}\\
& +\frac{1}{2}\left[\left\|\mathbf{x}_{j}^{\perp}\right\|_{2} \sqrt{\left.\|\mathbf{b}\|_{2}^{2}-\frac{\langle\mathbf{b}, \mathbf{a}\rangle^{2}}{\|\mathbf{a}\|_{2}^{2}}+\frac{\langle\mathbf{a}, \mathbf{b}\rangle\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle}{\|\mathbf{a}\|_{2}^{2}}\right]}\right. \\
= & -\left\langle\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*}\right\rangle-\frac{\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}}}{2}\left[\left\langle\mathbf{x}_{j}, \mathbf{y}\right\rangle-\frac{\langle\mathbf{a}, \mathbf{y}\rangle}{\|\mathbf{a}\|_{2}^{2}}\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle\right] \\
& +\frac{\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}}\left\|\mathbf{x}_{j}^{\perp}\right\|_{2} \sqrt{\|\mathbf{y}\|_{2}^{2}-\frac{\langle\mathbf{y}, \mathbf{a}\rangle^{2}}{\|\mathbf{a}\|_{2}^{2}}}}{2} .
\end{align*}
$$

The fifth equality utilizes Eq. (65) which is the result for the case $\frac{\langle\mathbf{b}, \mathbf{a}\rangle}{\|\mathbf{b}\|_{2}}>\frac{\left|\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle\right|}{\left\|\mathbf{x}_{j}\right\|_{2}} \geq \frac{\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle}{\left\|\mathbf{x}_{j}\right\|_{2}}$ by setting $\mathbf{x}=\mathbf{x}_{j}$. The last equality can be obtained using the similar derivation getting the last equality of Eq. (66). Incorporating Eqs. (70)-(72), we have Eq. (27).
Case 2 If $\frac{\langle\mathbf{b}, \mathbf{a}\rangle}{\|\mathbf{b}\|_{2}} \leq \frac{\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle}{\left\|\mathbf{x}_{j}\right\|_{2}}$ and $\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle>0$, we have $\frac{\langle\mathbf{b}, \mathbf{a}\rangle}{\|\mathbf{b}\|_{2}}>\frac{\left\langle-\mathbf{x}_{j}, \mathbf{a}\right\rangle}{\left\|\mathbf{x}_{j}\right\|_{2}}$ since $\langle\mathbf{b}, \mathbf{a}\rangle \geq 0$ according to Theorem 1. Thus, Eq. (60) does not hold with $x=-x_{j}$, and we can get Eq. (66), or equivalently Eq. (26). In addition, Eq. (60) holds with $\mathbf{x}=\mathbf{x}_{j}$, and we have

$$
\begin{align*}
u_{j}^{-}\left(\lambda_{2}\right) & =\max _{\boldsymbol{\theta}:\left\langle\boldsymbol{\theta}_{1}^{*}-\frac{\mathbf{y}}{\lambda_{1}}, \boldsymbol{\theta}-\boldsymbol{\theta}_{1}^{*}\right\rangle \geq 0,\left\langle\boldsymbol{\theta}-\frac{\mathbf{y}}{\left.\lambda_{2}, \boldsymbol{\theta}_{1}^{*}-\boldsymbol{\theta}\right\rangle \geq 0}\left\langle-\mathbf{x}_{j}, \boldsymbol{\theta}\right\rangle\right.} \\
& =\max _{\mathbf{r}:\langle\mathbf{a}, \mathbf{r}+\mathbf{b}\rangle \leq 0,\|\mathbf{r}\|_{2}^{2} \leq\|\mathbf{b}\|_{2}^{2}}\left[\left\langle-\mathbf{x}_{j}, \frac{\boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}}{2}\right\rangle+\frac{1}{2}\left\langle-\mathbf{x}_{j}, \mathbf{r}\right\rangle\right] \\
& =\left\langle-\mathbf{x}_{j}, \frac{\boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}}{2}\right\rangle+\frac{1}{2} \max _{\mathbf{r}:\langle\mathbf{a}, \mathbf{r}+\mathbf{b}\rangle \leq 0,\|\mathbf{r}\|_{2}^{2} \leq\|\mathbf{b}\|_{2}^{2}}\left\langle-\mathbf{x}_{j}, \mathbf{r}\right\rangle \tag{73}\\
& =\left\langle-\mathbf{x}_{j}, \frac{\boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}}{2}\right\rangle-\frac{1}{2} \underset{\mathbf{r}:\langle\mathbf{a}, \mathbf{r}+\mathbf{b}\rangle \leq 0,\|\mathbf{r}\|_{2}^{2} \leq\|\mathbf{b}\|_{2}^{2}}{ }\left\langle\mathbf{x}_{j}, \mathbf{r}\right\rangle \\
& =\left\langle-\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*}+\frac{1}{2}\left(\frac{\mathbf{y}}{\lambda_{2}}-\boldsymbol{\theta}_{1}^{*}\right)\right\rangle+\frac{1}{2}\left\|\mathbf{x}_{j}\right\|_{2}\|\mathbf{b}\|_{2} \\
& =-\left\langle\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*}\right\rangle+\frac{1}{2}\left[\left\|\mathbf{x}_{j}\right\|_{2}\|\mathbf{b}\|_{2}-\left\langle\mathbf{x}_{j}, \mathbf{b}\right\rangle\right] .
\end{align*}
$$

To get the fifth equality, we utilize Eq. (61) with $\mathbf{x}=\mathbf{x}_{j}$. Therefore, we have Eq. (28).

Case 3 If $\frac{\langle\mathbf{b}, \mathbf{a}\rangle}{\|\mathbf{b}\|_{2}} \leq \frac{-\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle}{\left\|\mathbf{x}_{j}\right\|_{2}}$ and $\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle<0$, Eq. (60) holds with $\mathbf{x}=-\mathbf{x}_{j}$, and we have

$$
\begin{align*}
u_{j}^{+}\left(\lambda_{2}\right) & =\max _{\boldsymbol{\theta}:\left\langle\left\langle\boldsymbol{\theta}_{1}^{*}-\frac{\mathbf{y}}{\lambda_{1}}, \boldsymbol{\theta}-\boldsymbol{\theta}_{1}^{*}\right\rangle \geq 0,\left\langle\boldsymbol{\theta}-\frac{\mathbf{y}}{\lambda_{2}}, \boldsymbol{\theta}_{1}^{*}-\boldsymbol{\theta}\right\rangle \geq 0\right.}\left\langle\mathbf{x}_{j}, \boldsymbol{\theta}\right\rangle \\
& =\max _{\mathbf{r}:\langle\mathbf{a}, \mathbf{r}+\mathbf{b}\rangle \leq 0,\|\mathbf{r}\|_{2}^{2} \leq\|\mathbf{b}\|_{2}^{2}}\left[\left\langle\mathbf{x}_{j}, \frac{\boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}}{2}\right\rangle+\frac{1}{2}\left\langle\mathbf{x}_{j}, \mathbf{r}\right\rangle\right] \\
& =\left\langle\mathbf{x}_{j}, \frac{\boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}}{2}\right\rangle+\frac{1}{2} \underset{\mathbf{r}:\langle\mathbf{a}, \mathbf{r}+\mathbf{b}\rangle \leq 0,\|\mathbf{r}\|_{2}^{2} \leq\|\mathbf{b}\|_{2}^{2}}{ }\left\langle\mathbf{x}_{j}, \mathbf{r}\right\rangle \tag{74}\\
& =\left\langle\mathbf{x}_{j}, \frac{\boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}}{2}\right\rangle-\frac{1}{2} \mathbf{r}:\langle\mathbf{a}, \mathbf{r}+\mathbf{b}\rangle \leq 0,\|\mathbf{r}\|_{2}^{2} \leq\|\mathbf{b}\|_{2}^{2} \\
& \left.\min _{j}, \mathbf{r}\right\rangle \\
& =\left\langle\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*}+\frac{1}{2}\left(\frac{\mathbf{y}}{\lambda_{2}}-\boldsymbol{\theta}_{1}^{*}\right)\right\rangle+\frac{1}{2}\left\|-\mathbf{x}_{j}\right\|_{2}\|\mathbf{b}\|_{2} \\
& =\left\langle\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*}\right\rangle+\frac{1}{2}\left[\left\|\mathbf{x}_{j}\right\|_{2}\|\mathbf{b}\|_{2}+\left\langle\mathbf{x}_{j}, \mathbf{b}\right\rangle\right]
\end{align*}
$$

where the fifth equality utilizes Eq. (61) with $\mathbf{x}=-\mathbf{x}_{j}$. Therefore, we have Eq. (29). In addition, we have $\frac{\langle\mathbf{b}, \mathbf{a}\rangle}{\|\mathbf{b}\|_{2}}>\frac{\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle}{\left\|\mathbf{x}_{j}\right\|_{2}}$ since $\langle\mathbf{b}, \mathbf{a}\rangle \geq 0$ according to Theorem 1 and $\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle<0$. Thus, Eq. (60) does not hold with $\mathbf{x}=\mathbf{x}_{j}$, and we can get Eq. (72), or equivalently Eq. (27).
Case 4 If $\mathbf{a}=\mathbf{0}$, then we have $\lambda_{1}=\left\|X^{T} \mathbf{y}\right\|_{\infty}$ according to Theorem 1. Therefore,

$$
\begin{align*}
u_{j}^{+}\left(\lambda_{2}\right) & =\max _{\boldsymbol{\theta}:\left\langle\boldsymbol{\theta}_{1}^{*}-\frac{\mathbf{y}}{\lambda_{1}}, \boldsymbol{\theta}-\boldsymbol{\theta}_{1}^{*}\right\rangle \geq 0,\left\langle\boldsymbol{\theta}-\frac{\mathbf{y}}{\lambda_{2}}, \boldsymbol{\theta}_{1}^{*}-\boldsymbol{\theta}\right\rangle \geq 0}\left\langle\mathbf{x}_{j}, \boldsymbol{\theta}\right\rangle \\
& =\frac{1}{2} \max _{\mathbf{r}:\langle\mathbf{a}, \mathbf{r}+\mathbf{b}\rangle \leq 0,\|\mathbf{r}\|_{2}^{2} \leq\|\mathbf{b}\|_{2}^{2}}\left[\left\langle\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}\right\rangle+\left\langle\mathbf{x}_{j}, \mathbf{r}\right\rangle\right] \\
& =\frac{1}{2}\left[\left\langle\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}\right\rangle+\max _{\mathbf{r}:\langle\mathbf{a}, \mathbf{r}+\mathbf{b}\rangle \leq 0,\|\mathbf{r}\|_{2}^{2} \leq\|\mathbf{b}\|_{2}^{2}}\left\langle\mathbf{x}_{j}, \mathbf{r}\right\rangle\right] \tag{75}\\
& =\frac{1}{2}\left[\left\langle\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}\right\rangle-\min _{\mathbf{r}:\langle\mathbf{a}, \mathbf{r}+\mathbf{b}\rangle \leq 0,\|\mathbf{r}\|_{2}^{2} \leq\|\mathbf{b}\|_{2}^{2}}\left\langle-\mathbf{x}_{j}, \mathbf{r}\right\rangle\right] \\
& =\frac{1}{2}\left[\left\langle\mathbf{x}_{j}, 2 \boldsymbol{\theta}_{1}^{*}+\left(\frac{\mathbf{y}}{\lambda_{2}}-\boldsymbol{\theta}_{1}^{*}\right)\right\rangle\right]+\frac{1}{2}\left\|-\mathbf{x}_{j}\right\|_{2}\|\mathbf{b}\|_{2}
\end{align*}
$$

To get the last equality, we utilize Eq. (52) with $\mathbf{x}=-\mathbf{x}_{j}$. Therefore, we have Eq. (74). Similarly,

$$
\begin{align*}
& u_{j}^{-}\left(\lambda_{2}\right)=\max _{\boldsymbol{\theta}:\left\langle\boldsymbol{\theta}_{1}^{*}-\frac{\mathbf{y}}{\lambda_{1}}, \boldsymbol{\theta}-\boldsymbol{\theta}_{1}^{*}\right\rangle \geq 0,\left\langle\boldsymbol{\theta}-\frac{\mathbf{y}}{\lambda_{2}}, \boldsymbol{\theta}_{1}^{*}-\boldsymbol{\theta}\right\rangle \geq 0}\left\langle-\mathbf{x}_{j}, \boldsymbol{\theta}\right\rangle \\
& =\max _{\mathbf{r}:\langle\mathbf{a}, \mathbf{r}+\mathbf{b}\rangle \leq 0,\|\mathbf{r}\|_{2}^{2} \leq\|\mathbf{b}\|_{2}^{2}}\left[\left\langle-\mathbf{x}_{j}, \frac{\boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}}{2}\right\rangle+\frac{1}{2}\left\langle-\mathbf{x}_{j}, \mathbf{r}\right\rangle\right] \\
& =\left\langle-\mathbf{x}_{j}, \frac{\boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}}{2}\right\rangle+\frac{1}{2} \max _{\mathbf{r}:\langle\mathbf{a}, \mathbf{r}+\mathbf{b}\rangle \leq 0,\|\mathbf{r}\|_{2}^{2} \leq\|\mathbf{b}\|_{2}^{2}}\left\langle-\mathbf{x}_{j}, \mathbf{r}\right\rangle \tag{76}\\
& =\left\langle-\mathbf{x}_{j}, \frac{\boldsymbol{\theta}_{1}^{*}+\frac{\mathbf{y}}{\lambda_{2}}}{2}\right\rangle-\frac{1}{2} \min _{\mathbf{r}:\langle\mathbf{a}, \mathbf{r}+\mathbf{b}\rangle \leq 0,\|\mathbf{r}\|_{2}^{2} \leq\|\mathbf{b}\|_{2}^{2}}\left\langle\mathbf{x}_{j}, \mathbf{r}\right\rangle \\
& =\left\langle-\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*}+\frac{1}{2}\left(\frac{\mathbf{y}}{\lambda_{2}}-\boldsymbol{\theta}_{1}^{*}\right)\right\rangle+\frac{1}{2}\left\|\mathbf{x}_{j}\right\|_{2}\|\mathbf{b}\|_{2}
\end{align*}
$$

To get the last equality, we utilize Eq. (52) with $\mathbf{x}=\mathbf{x}_{j}$. Therefore, we have Eq. (73).
This ends the proof of this theorem.

D. Proof of Theorem 4

We begin with a technical lemma. For a geometrical illustration of this lemma, please refer to the first plot of Figure 4.

Lemma 5 Let $\mathbf{y} \neq 0$, and $\left\|X^{T} \mathbf{y}\right\|_{\infty}>\lambda_{1}>\lambda>0$. Suppose that $\boldsymbol{\theta}_{1}^{*} \neq \frac{\mathbf{y}}{\left\|X^{T} \mathbf{y}\right\|_{\infty}}$. For the two auxiliary functions defined in Eq. (41) and Eq. (42), $f(\lambda)$ is strictly increasing with regard to λ in $\left(0, \lambda_{1}\right] . g(\lambda)$ is strictly decreasing with regard to λ in $\left(0, \lambda_{1}\right]$.

Proof Denote $\gamma=\frac{1}{\lambda}-\frac{1}{\lambda_{1}}$. We can rewrite $f(\lambda)$ as

$$
\begin{equation*}
h(\gamma)=\frac{\langle\mathbf{a}+\gamma \mathbf{y}, \mathbf{a}\rangle}{\|\mathbf{a}+\gamma \mathbf{y}\|_{2}} \tag{77}
\end{equation*}
$$

The derivative of $h(\gamma)$ with regard to γ can be computed as

$$
\begin{equation*}
h^{\prime}(\gamma)=\frac{\gamma\left(\langle\mathbf{a}, \mathbf{y}\rangle^{2}-\|\mathbf{y}\|_{2}^{2}\|\mathbf{a}\|_{2}^{2}\right)}{\|\mathbf{a}+\gamma \mathbf{y}\|_{2}^{3}} \leq 0 \tag{78}
\end{equation*}
$$

For any $\gamma>0, h^{\prime}(\gamma)=0$ if and only if a parallels to \mathbf{y}. It follows the definition of a in Eq. (17) that, if a parallels to \mathbf{y}, then $\boldsymbol{\theta}_{1}^{*}$ parallels \mathbf{y}. According to Lemma 3, we have $\boldsymbol{\theta}_{1}^{*}=\frac{\mathbf{y}}{\left\|X^{\top} \mathbf{y}\right\|_{\infty}}$, which contradicts to the assumption $\boldsymbol{\theta}_{1}^{*} \neq \frac{\mathbf{y}}{\left\|X^{\top} \mathbf{y}\right\|_{\infty}}$. Therefore, $h^{\prime}(\gamma)>0, h(\gamma)$ is strictly decreasing $\forall \gamma>0$, and $f(\lambda)$ is strictly increasing with regard to λ in $\left(0, \lambda_{1}\right]$. Following a similar proof, we can show that $g(\lambda)$ is strictly decreasing with regard to λ in $\left(0, \lambda_{1}\right]$.
Now, are ready to prove Theorem 4. Firstly, we summarize the $u_{j}^{+}\left(\lambda_{2}\right)$ and $u_{j}^{-}\left(\lambda_{2}\right)$ in unified equations.
Since $\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle \geq 0, u_{j}^{+}\left(\lambda_{2}\right)$ satisfies Eq. (26) if $\mathbf{a} \neq 0$, and Eq. (29) otherwise. Thus, we have

$$
u_{j}^{+}\left(\lambda_{2}\right)= \begin{cases}\left\langle\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*}\right\rangle+\frac{\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}}}{2}\left[\left\|\mathbf{x}_{j}^{\perp}\right\|_{2}\left\|\mathbf{y}^{\perp}\right\|_{2}+\left\langle\mathbf{x}_{j}^{\perp}, \mathbf{y}^{\perp}\right\rangle\right], & \mathbf{a} \neq \mathbf{0} \tag{79}\\ \left\langle\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*}\right\rangle+\frac{1}{2}\left[\left\|\mathbf{x}_{j}\right\|_{2}\|\mathbf{b}\|_{2}+\left\langle\mathbf{x}_{j}, \mathbf{b}\right\rangle\right], & \mathbf{a}=\mathbf{0}\end{cases}
$$

Since $\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle \geq 0, u_{j}^{-}\left(\lambda_{2}\right)$ satisfies Eq. (28) if $\frac{\langle\mathbf{b}, \mathbf{a}\rangle}{\|\mathbf{b}\|_{2}} \leq \frac{\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle}{\left\|\mathbf{x}_{j}\right\|_{2}}$, and Eq. (27) otherwise. Thus, we have

$$
u_{j}^{-}\left(\lambda_{2}\right)= \begin{cases}-\left\langle\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*}\right\rangle+\frac{1}{2}\left[\left\|\mathbf{x}_{j}\right\|_{2}\|\mathbf{b}\|_{2}-\left\langle\mathbf{x}_{j}, \mathbf{b}\right\rangle\right], & \frac{\langle\mathbf{b}, \mathbf{a}\rangle}{\|\mathbf{b}\|_{2}} \leq \frac{\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle}{\left\|\mathbf{x}_{j}\right\|_{2}} \tag{80}\\ -\left\langle\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*}\right\rangle+\frac{\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}}}{2}\left[\left\|\mathbf{x}_{j}^{\perp}\right\|_{2}\left\|\mathbf{y}^{\perp}\right\|_{2}-\left\langle\mathbf{x}_{j}^{\perp}, \mathbf{y}^{\perp}\right\rangle\right], & \frac{\langle\mathbf{b}, \mathbf{a}\rangle}{\|\mathbf{b}\|_{2}}>\frac{\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle}{\left\|\mathbf{x}_{j}\right\|_{2}}\end{cases}
$$

Case 1 When $\mathbf{a}=0$, we have $\boldsymbol{\theta}_{1}^{*}=\frac{\mathbf{y}}{\lambda_{1}}, \mathbf{b}=\frac{\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}}}{2} \mathbf{y}, \mathbf{x}_{j}^{\perp}=\mathbf{x}_{j}$, and $\mathbf{y}^{\perp}=\mathbf{y}$. Thus, Eq. (79) can be simplified as:

$$
\begin{equation*}
u_{j}^{+}\left(\lambda_{2}\right)=\left\langle\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*}\right\rangle+\frac{\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}}}{2}\left[\left\|\mathbf{x}_{j}\right\|_{2}\|\mathbf{y}\|_{2}+\left\langle\mathbf{x}_{j}, \mathbf{y}\right\rangle\right] . \tag{81}
\end{equation*}
$$

Since $\left\|\mathbf{x}_{j}\right\|_{2}\|\mathbf{y}\|_{2}+\left\langle\mathbf{x}_{j}, \mathbf{y}\right\rangle \geq 0, u_{j}^{+}\left(\lambda_{2}\right)$ is monotonically decreasing with regard to λ_{2}.
Case $2 \&$ Case 3 When $\frac{\langle\mathbf{b}, \mathbf{a}\rangle}{\|\mathbf{b}\|_{2}}=\frac{\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle}{\left\|\mathbf{x}_{j}\right\|_{2}}$, we have

$$
\begin{align*}
& \frac{\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}}}{2}\left[\left\|\mathbf{x}_{j}^{\perp}\right\|_{2}\left\|\mathbf{y}^{\perp}\right\|_{2}-\left\langle\mathbf{x}_{j}^{\perp}, \mathbf{y}^{\perp}\right\rangle\right] \\
& =\frac{\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}}}{2}\left[\sqrt{\left(\left\|\mathbf{x}_{j}\right\|_{2}^{2}-\frac{\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle^{2}}{\|\mathbf{a}\|_{2}^{2}}\right)\left(\|\mathbf{y}\|_{2}^{2}-\frac{\langle\mathbf{y}, \mathbf{a}\rangle^{2}}{\|\mathbf{a}\|_{2}^{2}}\right)}-\left[\left\langle\mathbf{x}_{j}, \mathbf{y}\right\rangle-\frac{\langle\mathbf{a}, \mathbf{y}\rangle}{\|\mathbf{a}\|_{2}^{2}}\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle\right]\right] \\
& =\frac{1}{2}\left[\sqrt{\left.\left(\left\|\mathbf{x}_{j}\right\|_{2}^{2}-\frac{\left\|\mathbf{x}_{j}\right\|_{2}^{2}\langle\mathbf{b}, \mathbf{a}\rangle^{2}}{\|\mathbf{a}\|_{2}^{2}\|\mathbf{b}\|_{2}^{2}}\right)\left(\|\mathbf{b}\|_{2}^{2}-\frac{\langle\mathbf{b}, \mathbf{a}\rangle^{2}}{\|\mathbf{a}\|_{2}^{2}}\right)-\left[\left\langle\mathbf{x}_{j}, \mathbf{b}-\mathbf{a}\right\rangle-\frac{\langle\mathbf{a}, \mathbf{b}-\mathbf{a}\rangle}{\|\mathbf{a}\|_{2}^{2}}\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle\right]\right]}\right. \tag{82}\\
& =\frac{1}{2}\left[\left\|\mathbf{x}_{j}\right\|_{2}\|\mathbf{b}\|_{2}\left(1-\frac{\langle\mathbf{b}, \mathbf{a}\rangle^{2}}{\|\mathbf{a}\|_{2}^{2}\|\mathbf{b}\|_{2}^{2}}\right)-\left[\left\langle\mathbf{x}_{j}, \mathbf{b}-\mathbf{a}\right\rangle-\frac{\langle\mathbf{a}, \mathbf{b}-\mathbf{a}\rangle}{\|\mathbf{a}\|_{2}^{2}}\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle\right]\right] \\
& =\frac{1}{2}\left[\left\|\mathbf{x}_{j}\right\|_{2}\|\mathbf{b}\|_{2}-\left\langle\mathbf{x}_{j}, \mathbf{b}\right\rangle\right]+\frac{1}{2}\left[-\frac{\left\|\mathbf{x}_{j}\right\|_{2}\langle\mathbf{b}, \mathbf{a}\rangle^{2}}{\|\mathbf{a}\|_{2}^{2}\|\mathbf{b}\|_{2}}+\frac{\langle\mathbf{a}, \mathbf{b}\rangle}{\|\mathbf{a}\|_{2}^{2}}\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle\right] \\
& =\frac{1}{2}\left[\left\|\mathbf{x}_{j}\right\|_{2}\|\mathbf{b}\|_{2}-\left\langle\mathbf{x}_{j}, \mathbf{b}\right\rangle\right] .
\end{align*}
$$

The first equality plugs in the definition of \mathbf{x}_{j}^{\perp} and \mathbf{y} in Eq. (22) and Eq. (23). The second equality plugs in $\frac{\langle\mathbf{b}, \mathbf{a}\rangle}{\|\mathbf{b}\|_{2}}=\frac{\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle}{\left\|\mathbf{x}_{j}\right\|_{2}}$, makes use of Eq. (17), and utilizes Eq. (67). The last equality further makes use of $\frac{\langle\mathbf{b}, \mathbf{a}\rangle}{\|\mathbf{b}\|_{2}}=\frac{\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle}{\left\|\mathbf{x}_{j}\right\|_{2}}$. The established equality says that $u_{j}^{-}\left(\lambda_{2}\right)$ is continuous at the λ_{2} that satisfies $\frac{\langle\mathbf{b}, \mathbf{a}\rangle}{\|\mathbf{b}\|_{2}}=\frac{\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle}{\left\|\mathbf{x}_{j}\right\|_{2}}$.
It follows from the definition of $\lambda_{2, a}$ that if $\lambda_{2} \in\left(\lambda_{2, a}, \lambda_{1}\right)$ then $\frac{\langle\mathbf{b}, \mathbf{a}\rangle}{\|\mathbf{b}\|_{2}}>\frac{\left\langle\mathbf{x}_{j}, \mathbf{a}\right\rangle}{\left\|\mathbf{x}_{j}\right\|_{2}}$. Therefore, according to Eq. (80), $u_{j}^{-}\left(\lambda_{2}\right)$ is monotonically decreasing with λ_{2} in $\left(\lambda_{2, a}, \lambda_{1}\right)$. Next, we focus on λ_{2} in the interval $\left(0, \lambda_{2, a}\right]$.
Denote $\gamma=\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}}$, and write $\mathbf{b}=\frac{\mathbf{y}}{\lambda_{2}}-\boldsymbol{\theta}_{1}^{*}=\mathbf{a}+\gamma \mathbf{y}$. Thus, $u_{j}^{-}\left(\lambda_{2}\right)=-\left\langle\mathbf{x}_{j}, \boldsymbol{\theta}_{1}^{*}\right\rangle+\frac{1}{2}\left[\left\|\mathbf{x}_{j}\right\|_{2}\|\mathbf{b}\|_{2}-\left\langle\mathbf{x}_{j}, \mathbf{b}\right\rangle\right]$ can be rewritten as

$$
\begin{equation*}
w(\gamma)=\frac{1}{2}\left[\left\|\mathbf{x}_{j}\right\|_{2}\|\mathbf{a}+\gamma \mathbf{y}\|_{2}-\left\langle\mathbf{x}_{j}, \mathbf{a}+\gamma \mathbf{y}\right\rangle\right] \tag{83}
\end{equation*}
$$

The first and second derivatives of $w(\gamma)$ with regard to γ can be computed as: we have

$$
\begin{align*}
w^{\prime}(\gamma) & =\frac{1}{2}\left[\frac{\left\|\mathbf{x}_{j}\right\|_{2}\langle\mathbf{a}+\gamma \mathbf{y}, \mathbf{y}\rangle}{\|\mathbf{a}+\gamma \mathbf{y}\|_{2}}-\left\langle\mathbf{x}_{j}, \mathbf{y}\right\rangle\right] \tag{84}\\
w^{\prime \prime}(\gamma) & =\frac{\left\|\mathbf{x}_{j}\right\|_{2}\left(\|\mathbf{y}\|_{2}^{2}\|\mathbf{a}\|_{2}^{2}-\langle\mathbf{a}, \mathbf{y}\rangle^{2}\right)}{2\|\mathbf{a}+\gamma \mathbf{y}\|_{2}^{3}} \geq 0 \tag{85}
\end{align*}
$$

Therefore, we have

- If $\frac{\langle\mathbf{a}, \mathbf{y}\rangle}{\|\mathbf{a}\|_{2}} \geq \frac{\left\langle\mathbf{x}_{j}, \mathbf{y}\right\rangle}{\left\|\mathbf{x}_{j}\right\|_{2}}$, i.e., when the angle between \mathbf{y} and \mathbf{a} is no larger than the angle between \mathbf{y} and \mathbf{x}_{j}, then $w^{\prime}(\gamma) \geq 0$, and $u_{j}^{-}\left(\lambda_{2}\right)$ is monotonically decreasing with regard to λ_{2} in $\left(0, \lambda_{2, a}\right]$. In this case, the $\lambda_{2, a}$ and $\lambda_{2, y}$ satisfies $\lambda_{2, a} \leq$ $\lambda_{2, y}$.
- If $\frac{\langle\mathbf{a}, \mathbf{y}\rangle}{\|\mathbf{a}\|_{2}}<\frac{\left\langle\mathbf{x}_{j}, \mathbf{y}\right\rangle}{\left\|\mathbf{x}_{j}\right\|_{2}}$, let $\gamma_{y}=\frac{1}{\lambda_{2, y}}-\frac{1}{\lambda_{1}}$. Then, 1) $\left.h^{\prime}\left(\gamma_{y}\right)=0,2\right) h^{\prime}\left(\gamma_{y}\right)<0, \forall 0<\gamma<\gamma_{y}$, and $h^{\prime}\left(\gamma_{y}\right)>0, \forall \gamma>\gamma_{y}$. Therefore, $u_{j}^{-}\left(\lambda_{2}\right)$ is monotonically decreasing with regard to λ_{2} in $\left(0, \lambda_{2, y}\right)$, and monotonically increasing with regard to λ_{2} in $\left(\lambda_{2, y}, \lambda_{2, a}\right.$. In this case, the $\lambda_{2, a}$ and $\lambda_{2, y}$ satisfies $\lambda_{2, a}>\lambda_{2, y}$.

This ends the proof of this theorem.

