
Safe Screening with Variational Inequalities

Supplementary Material

A. Proof of Theorem 1
We begin with three technical lemmas.

Lemma 2 Let y ̸= 0 and 0 < λ1 ≤ ∥XTy∥∞. We have

⟨ y
λ1

− θ∗
1 ,θ

∗
1⟩ ≥ 0. (45)

Proof Since the Euclidean projection of y
λ1

onto {θ : ∥XTθ∥∞ ≤ 1} is θ∗
1 , it follows from Lemma 1 that

⟨θ∗
1 − y

λ1
,θ − θ∗

1⟩ ≥ 0,∀θ : ∥XTθ∥∞ ≤ 1. (46)

As 0 ∈ {θ : ∥XTθ∥∞ ≤ 1}, we have Eq. (45). �

Lemma 3 Let y ̸= 0 and 0 < λ1 ≤ ∥XTy∥∞. If θ∗
1 parallels to y in that it can be written as θ∗

1 = γy for some γ, then
γ = 1

∥XTy∥∞
.

Proof Since y
∥XTy∥∞

satisfies the condition in Eq. (11), we have

⟨γy − y

λ1
,

y

∥XTy∥∞
− γy⟩ = (γ − 1

λ1
)(

1

∥XTy∥∞
− γ)∥y∥22 ≥ 0 (47)

which leads to γ ∈ [ 1
∥XTy∥∞

, 1
λ1
]. In addition, since ∥XTθ∗

1∥∞ ≤ 1, we have γ = 1
∥XTy∥∞

. This completes the proof. �

Lemma 4 Let y ̸= 0. If 0 < λ1 ≤ ∥XTy∥∞, we have

⟨ y
λ1

− θ∗
1 ,y⟩ ≥ 0, (48)

where the equality holds if and only if λ1 = ∥XTy∥∞.

Proof We have

⟨ y
λ1

− θ∗
1 ,

y

λ1
⟩ − ⟨ y

λ1
− θ∗

1 ,θ
∗
1⟩ = ⟨ y

λ1
− θ∗

1 ,
y

λ1
− θ∗

1⟩ ≥ 0, (49)

where the equality holds if and only if y
λ1

= θ∗
1 . Incorporating Eq. (45) in Lemma 2 and Eq. (49), we have Eq. (48). The

equality in Eq. (49) holds if and only if y
λ1

= θ∗
1 . According to Lemma 3, if θ∗

1 = y
λ1

, then θ∗
1 = y

∥XTy∥∞
, which leads to

λ1 = ∥XTy∥∞. This ends the proof. �
Now, we are ready to prove Theorem 1. If follows from Eq. (17) and Eq. (48)

⟨b,a⟩ = (
1

λ2
− 1

λ1
)⟨ y
λ1

− θ∗
1 ,y⟩+ ∥ y

λ1
− θ∗

1∥22 (50)

∥b∥22 = ∥( y
λ2

− y

λ1
)∥22 + 2(

1

λ2
− 1

λ1
)⟨ y
λ1

− θ∗
1 ,y⟩+ ∥ y

λ1
− θ∗

1∥22 ≥ 0. (51)

It follows from Lemma 4 that 1) ⟨b,a⟩ ≥ 0 and the equality holds if and only if y
λ1

= θ∗
1 , and 2) ∥b∥22 > 0, which leads

to b ̸= 0. According to Lemma 3, if θ∗
1 parallels to y, then θ∗

1 = y
∥XTy∥∞

. Therefore, if 0 < λ1 < ∥XTy∥∞, then
⟨b,a⟩ > 0 and a ̸= 0. �
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B. Proof of Theorem 2
If λ1 = ∥XTy∥∞, the primal and dual optimals can be analytically computed as: β∗

1 = 0 and θ∗
1 = y

∥XT θ∥∞
. Thus, we

have a = 0. It is easy to get that r = −x∥b∥2

∥x∥2
minimizes Eq. (20) with the minimum function value being

⟨x, r⟩ = −∥x∥2∥b∥2. (52)

In our following discussion, we focus on the case 0 < λ1 < ∥XTy∥∞ and we have a ̸= 0 according to Theorem 1.

The Lagrangian of Eq. (20) can be written as

L(r, α, β) = ⟨x, r⟩+ α⟨a, r+ b⟩+ β

2
(∥r∥22 − ∥b∥22), (53)

where α, β ≥ 0 are introduced for the two inequalities, respectively. It is clear that the minimal value of Eq. (20) is lower
bounded (the minimum is no less than −∥b∥2∥x∥2 by only considering the constraint ∥r∥22 ≤ ∥b∥22). Therefore, the
optimal dual variable β is always positive; otherwise, minimizing Eq. (53) with regard to r achieves −∞.

Setting the derivative with regard to r to zero, we have

r =
−x− αa

β
. (54)

Plugging Eq. (54) into Eq. (53), we obtain the dual problem of Eq. (20) as:

max
α,β

α⟨a,b⟩ − 1

2β
∥x+ αa∥22 −

β

2
∥b∥22

subject to α ≥ 0, β ≥ 0.

(55)

For a given β, we have

α = max

(
β⟨a,b⟩ − ⟨x,a⟩

∥a∥22
, 0

)
. (56)

We consider two cases. In the first case, we assume that α = 0. We have

r =
−x

β
, β ≤ ⟨x,a⟩

⟨a,b⟩
. (57)

By using the complementary slackness condition (note that the optimal β does not equal to zero), we have

∥r∥2 =

∥∥∥∥−x

β

∥∥∥∥
2

= ∥b∥2. (58)

Thus, we have

β =
∥x∥2
∥b∥2

. (59)

Incorporating Eq. (57) and Eq. (59), we have

⟨b,a⟩
∥b∥2∥a∥2

≤ ⟨x,a⟩
∥x∥2∥a∥2

, (60)

so that the angle between a and b is equal to or larger than the angle between x and a. Note that ⟨b,a⟩ ≥ 0 according to
Theorem 1. In Figure 2, EX2 and EX3 illustrate the case that x satisfies Eq. (60), while EX1 and EX4 show the opposite
cases. In addition, we have

⟨x, r⟩ = −∥x∥2∥b∥2. (61)

In the second case, Eq. (60) does not hold. We have

α =
β⟨a,b⟩ − ⟨x,a⟩

∥a∥22
. (62)
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Plugging Eq. (62) into Eq. (54), we have

r = −x∥a∥22 + β⟨a,b⟩a− ⟨x,a⟩a
β∥a∥22

(63)

Since ∥r∥22 = ∥b∥22, we have

β =

√
∥x∥22∥a∥22 − ⟨x,a⟩2
∥b∥22∥a∥22 − ⟨b,a⟩2

=
∥x⊥∥2√

∥b∥22 −
⟨b,a⟩2
∥a∥2

2

, (64)

where we have used Eq. (21) to get the second equality. In addition, we have

⟨x, r⟩ = −∥x⊥∥2

√
∥b∥22 −

⟨b,a⟩2
∥a∥22

− ⟨a,b⟩⟨x,a⟩
∥a∥22

. (65)

In summary, Eq. (20) equals to −∥x∥2∥b∥2, if ⟨b,a⟩
∥b∥2

≤ ⟨x,a⟩
∥x∥2

, and −∥x⊥∥2
√
∥b∥22 −

⟨b,a⟩2
∥a∥2

2
− ⟨a,b⟩⟨x,a⟩

∥a∥2
2

otherwise. This
ends the proof of this theorem. �

C. Proof of Theorem 3
We prove the four cases one by one as follows.

Case 1 If a ̸= 0 and ⟨b,a⟩
∥b∥2

>
|⟨xj ,a⟩|
∥xj∥2

, i.e., Eq. (60) does not hold with x = ±xj . We have

u+
j (λ2) = max

θ:⟨θ∗
1−

y
λ1

,θ−θ∗
1 ⟩≥0,⟨θ− y

λ2
,θ∗

1−θ⟩≥0
⟨xj ,θ⟩

=
1

2
max

r:⟨a,r+b⟩≤0,∥r∥2
2≤∥b∥2

2

[
⟨xj ,θ

∗
1 +

y

λ2
⟩+ ⟨xj , r⟩

]
=

1

2

[
⟨xj ,θ

∗
1 +

y

λ2
⟩+ max

r:⟨a,r+b⟩≤0,∥r∥2
2≤∥b∥2

2

⟨xj , r⟩
]

=
1

2

[
⟨xj ,θ

∗
1 +

y

λ2
⟩ − min

r:⟨a,r+b⟩≤0,∥r∥2
2≤∥b∥2

2

⟨−xj , r⟩
]

=
1

2

[
⟨xj , 2θ

∗
1 + (

y

λ1
− θ∗

1) + (
y

λ2
− y

λ1
)⟩
]

+
1

2

[
∥ − x⊥

j ∥2

√
∥b∥22 −

⟨b,a⟩2
∥a∥22

+
⟨a,b⟩⟨−xj ,a⟩

∥a∥22

]

= ⟨xj ,θ
∗
1⟩+

1
λ2

− 1
λ1

2
[⟨xj ,y⟩ −

⟨a,y⟩
∥a∥22

⟨xj ,a⟩]

+
1
λ2

− 1
λ1

2
∥x⊥

j ∥2

√
∥y∥22 −

⟨y,a⟩2
∥a∥22

.

(66)

The second equality plugs in the notations in Eq. (17). The fifth equality utilizes Eq. (65) which is the result for the case
⟨b,a⟩
∥b∥2

>
|⟨xj ,a⟩|
∥xj∥2

≥ ⟨−xj ,a⟩
∥xj∥2

by setting x = −xj . To get the last equality, we utlize the following two equalities

∥b∥22 −
⟨b,a⟩2

∥a∥22
= (

1

λ2
− 1

λ1
)2(∥y∥22 −

⟨y,a⟩2

∥a∥22
) (67)

and
⟨a,b⟩⟨xj ,a⟩

∥a∥22
= ⟨xj ,a⟩(1 +

⟨a,y⟩( 1
λ2

− 1
λ1
)

∥a∥22
), (68)
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which can be derived from Eq. (17). It follows from Eq. (22) and Eq. (23) that

∥x⊥
j ∥22 = ∥xj∥22 −

⟨xj ,a⟩2

∥a∥22
, (69)

∥y⊥∥22 = ∥y∥22 −
⟨y,a⟩2

∥a∥22
, (70)

⟨x⊥
j ,y

⊥⟩ = ⟨xj ,y⟩ −
⟨a,y⟩
∥a∥22

⟨xj ,a⟩. (71)

Incorporating Eq. (66), and Eqs. (70)-(71), we have Eq. (26). Following a similar derivation, we have

u−
j (λ2) = max

θ:⟨θ∗
1−

y
λ1

,θ−θ∗
1 ⟩≥0,⟨θ− y

λ2
,θ∗

1−θ⟩≥0
⟨−xj ,θ⟩

=
1

2
max

r:⟨a,r+b⟩≤0,∥r∥2
2≤∥b∥2

2

[
⟨−xj ,θ

∗
1 +

y

λ2
⟩+ ⟨−xj , r⟩

]
=

1

2

[
⟨−xj ,θ

∗
1 +

y

λ2
⟩+ max

r:⟨a,r+b⟩≤0,∥r∥2
2≤∥b∥2

2

⟨−xj , r⟩
]

=
1

2

[
⟨−xj ,θ

∗
1 +

y

λ2
⟩ − min

r:⟨a,r+b⟩≤0,∥r∥2
2≤∥b∥2

2

⟨xj , r⟩
]

=
1

2

[
⟨−xj , 2θ

∗
1 + (

y

λ1
− θ∗

1) + (
y

λ2
− y

λ1
)⟩
]

+
1

2

[
∥x⊥

j ∥2

√
∥b∥22 −

⟨b,a⟩2
∥a∥22

+
⟨a,b⟩⟨xj ,a⟩

∥a∥22

]

= −⟨xj ,θ
∗
1⟩ −

1
λ2

− 1
λ1

2
[⟨xj ,y⟩ −

⟨a,y⟩
∥a∥22

⟨xj ,a⟩]

+
1
λ2

− 1
λ1

2
∥x⊥

j ∥2

√
∥y∥22 −

⟨y,a⟩2
∥a∥22

.

(72)

The fifth equality utilizes Eq. (65) which is the result for the case ⟨b,a⟩
∥b∥2

>
|⟨xj ,a⟩|
∥xj∥2

≥ ⟨xj ,a⟩
∥xj∥2

by setting x = xj . The last
equality can be obtained using the similar derivation getting the last equality of Eq. (66). Incorporating Eqs. (70)-(72), we
have Eq. (27).

Case 2 If ⟨b,a⟩
∥b∥2

≤ ⟨xj ,a⟩
∥xj∥2

and ⟨xj ,a⟩ > 0, we have ⟨b,a⟩
∥b∥2

>
⟨−xj ,a⟩
∥xj∥2

since ⟨b,a⟩ ≥ 0 according to Theorem 1. Thus,
Eq. (60) does not hold with x = −xj , and we can get Eq. (66), or equivalently Eq. (26). In addition, Eq. (60) holds with
x = xj , and we have

u−
j (λ2) = max

θ:⟨θ∗
1−

y
λ1

,θ−θ∗
1 ⟩≥0,⟨θ− y

λ2
,θ∗

1−θ⟩≥0
⟨−xj ,θ⟩

= max
r:⟨a,r+b⟩≤0,∥r∥2

2≤∥b∥2
2

[
⟨−xj ,

θ∗
1 + y

λ2

2
⟩+ 1

2
⟨−xj , r⟩

]

= ⟨−xj ,
θ∗
1 + y

λ2

2
⟩+ 1

2
max

r:⟨a,r+b⟩≤0,∥r∥2
2≤∥b∥2

2

⟨−xj , r⟩

= ⟨−xj ,
θ∗
1 + y

λ2

2
⟩ − 1

2
min

r:⟨a,r+b⟩≤0,∥r∥2
2≤∥b∥2

2

⟨xj , r⟩

= ⟨−xj ,θ
∗
1 +

1

2
(
y

λ2
− θ∗

1)⟩+
1

2
∥xj∥2∥b∥2

= −⟨xj ,θ
∗
1⟩+

1

2
[∥xj∥2∥b∥2 − ⟨xj ,b⟩].

(73)

To get the fifth equality, we utilize Eq. (61) with x = xj . Therefore, we have Eq. (28).
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Case 3 If ⟨b,a⟩
∥b∥2

≤ −⟨xj ,a⟩
∥xj∥2

and ⟨xj ,a⟩ < 0, Eq. (60) holds with x = −xj , and we have

u+
j (λ2) = max

θ:⟨θ∗
1−

y
λ1

,θ−θ∗
1 ⟩≥0,⟨θ− y

λ2
,θ∗

1−θ⟩≥0
⟨xj ,θ⟩

= max
r:⟨a,r+b⟩≤0,∥r∥2

2≤∥b∥2
2

[
⟨xj ,

θ∗
1 + y

λ2

2
⟩+ 1

2
⟨xj , r⟩

]

= ⟨xj ,
θ∗
1 + y

λ2

2
⟩+ 1

2
max

r:⟨a,r+b⟩≤0,∥r∥2
2≤∥b∥2

2

⟨xj , r⟩

= ⟨xj ,
θ∗
1 + y

λ2

2
⟩ − 1

2
min

r:⟨a,r+b⟩≤0,∥r∥2
2≤∥b∥2

2

⟨−xj , r⟩

= ⟨xj ,θ
∗
1 +

1

2
(
y

λ2
− θ∗

1)⟩+
1

2
∥ − xj∥2∥b∥2

= ⟨xj ,θ
∗
1⟩+

1

2
[∥xj∥2∥b∥2 + ⟨xj ,b⟩],

(74)

where the fifth equality utilizes Eq. (61) with x = −xj . Therefore, we have Eq. (29). In addition, we have ⟨b,a⟩
∥b∥2

>
⟨xj ,a⟩
∥xj∥2

since ⟨b,a⟩ ≥ 0 according to Theorem 1 and ⟨xj ,a⟩ < 0. Thus, Eq. (60) does not hold with x = xj , and we can get
Eq. (72), or equivalently Eq. (27).

Case 4 If a = 0, then we have λ1 = ∥XTy∥∞ according to Theorem 1. Therefore,

u+
j (λ2) = max

θ:⟨θ∗
1−

y
λ1

,θ−θ∗
1 ⟩≥0,⟨θ− y

λ2
,θ∗

1−θ⟩≥0
⟨xj ,θ⟩

=
1

2
max

r:⟨a,r+b⟩≤0,∥r∥2
2≤∥b∥2

2

[
⟨xj ,θ

∗
1 +

y

λ2
⟩+ ⟨xj , r⟩

]
=

1

2

[
⟨xj ,θ

∗
1 +

y

λ2
⟩+ max

r:⟨a,r+b⟩≤0,∥r∥2
2≤∥b∥2

2

⟨xj , r⟩
]

=
1

2

[
⟨xj ,θ

∗
1 +

y

λ2
⟩ − min

r:⟨a,r+b⟩≤0,∥r∥2
2≤∥b∥2

2

⟨−xj , r⟩
]

=
1

2

[
⟨xj , 2θ

∗
1 + (

y

λ2
− θ∗

1)⟩
]
+

1

2
∥ − xj∥2∥b∥2

(75)

To get the last equality, we utilize Eq. (52) with x = −xj . Therefore, we have Eq. (74). Similarly,

u−
j (λ2) = max

θ:⟨θ∗
1−

y
λ1

,θ−θ∗
1 ⟩≥0,⟨θ− y

λ2
,θ∗

1−θ⟩≥0
⟨−xj ,θ⟩

= max
r:⟨a,r+b⟩≤0,∥r∥2

2≤∥b∥2
2

[
⟨−xj ,

θ∗
1 + y

λ2

2
⟩+ 1

2
⟨−xj , r⟩

]

= ⟨−xj ,
θ∗
1 + y

λ2

2
⟩+ 1

2
max

r:⟨a,r+b⟩≤0,∥r∥2
2≤∥b∥2

2

⟨−xj , r⟩

= ⟨−xj ,
θ∗
1 + y

λ2

2
⟩ − 1

2
min

r:⟨a,r+b⟩≤0,∥r∥2
2≤∥b∥2

2

⟨xj , r⟩

= ⟨−xj ,θ
∗
1 +

1

2
(
y

λ2
− θ∗

1)⟩+
1

2
∥xj∥2∥b∥2

(76)

To get the last equality, we utilize Eq. (52) with x = xj . Therefore, we have Eq. (73).

This ends the proof of this theorem. �

D. Proof of Theorem 4
We begin with a technical lemma. For a geometrical illustration of this lemma, please refer to the first plot of Figure 4.
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Lemma 5 Let y ̸= 0, and ∥XTy∥∞ > λ1 > λ > 0. Suppose that θ∗
1 ̸= y

∥XTy∥∞
. For the two auxiliary functions defined

in Eq. (41) and Eq. (42), f(λ) is strictly increasing with regard to λ in (0, λ1]. g(λ) is strictly decreasing with regard to λ
in (0, λ1].

Proof Denote γ = 1
λ − 1

λ1
. We can rewrite f(λ) as

h(γ) =
⟨a+ γy,a⟩
∥a+ γy∥2

. (77)

The derivative of h(γ) with regard to γ can be computed as

h′(γ) =
γ(⟨a,y⟩2 − ∥y∥22∥a∥22)

∥a+ γy∥32
≤ 0 (78)

For any γ > 0, h′(γ) = 0 if and only if a parallels to y. It follows the definition of a in Eq. (17) that, if a parallels to y,
then θ∗

1 parallels y. According to Lemma 3, we have θ∗
1 = y

∥XTy∥∞
, which contradicts to the assumption θ∗

1 ̸= y
∥XTy∥∞

.
Therefore, h′(γ) > 0, h(γ) is strictly decreasing ∀γ > 0, and f(λ) is strictly increasing with regard to λ in (0, λ1].
Following a similar proof, we can show that g(λ) is strictly decreasing with regard to λ in (0, λ1]. �
Now, are ready to prove Theorem 4. Firstly, we summarize the u+

j (λ2) and u−
j (λ2) in unified equations.

Since ⟨xj ,a⟩ ≥ 0, u+
j (λ2) satisfies Eq. (26) if a ̸= 0, and Eq. (29) otherwise. Thus, we have

u+
j (λ2) =


⟨xj ,θ

∗
1⟩+

1
λ2

− 1
λ1

2

[
∥x⊥

j ∥2∥y⊥∥2 + ⟨x⊥
j ,y

⊥⟩
]
, a ̸= 0

⟨xj ,θ
∗
1⟩+

1

2
[∥xj∥2∥b∥2 + ⟨xj ,b⟩] , a = 0

(79)

Since ⟨xj ,a⟩ ≥ 0, u−
j (λ2) satisfies Eq. (28) if ⟨b,a⟩

∥b∥2
≤ ⟨xj ,a⟩

∥xj∥2
, and Eq. (27) otherwise. Thus, we have

u−
j (λ2) =


− ⟨xj ,θ

∗
1⟩+

1

2
[∥xj∥2∥b∥2 − ⟨xj ,b⟩] ,

⟨b,a⟩
∥b∥2

≤ ⟨xj ,a⟩
∥xj∥2

− ⟨xj ,θ
∗
1⟩+

1
λ2

− 1
λ1

2

[
∥x⊥

j ∥2∥y⊥∥2 − ⟨x⊥
j ,y

⊥⟩
]
,

⟨b,a⟩
∥b∥2

>
⟨xj ,a⟩
∥xj∥2

(80)

Case 1 When a = 0, we have θ∗
1 = y

λ1
, b =

1
λ2

− 1
λ1

2 y, x⊥
j = xj , and y⊥ = y. Thus, Eq. (79) can be simplified as:

u+
j (λ2) = ⟨xj ,θ

∗
1⟩+

1
λ2

− 1
λ1

2
[∥xj∥2∥y∥2 + ⟨xj ,y⟩]. (81)

Since ∥xj∥2∥y∥2 + ⟨xj ,y⟩ ≥ 0, u+
j (λ2) is monotonically decreasing with regard to λ2.

Case 2 & Case 3 When ⟨b,a⟩
∥b∥2

=
⟨xj ,a⟩
∥xj∥2

, we have

1
λ2

− 1
λ1

2
[∥x⊥

j ∥2∥y⊥∥2 − ⟨x⊥
j ,y

⊥⟩]

=
1
λ2

− 1
λ1

2

[√
(∥xj∥22 −

⟨xj ,a⟩2
∥a∥22

)(∥y∥22 −
⟨y,a⟩2
∥a∥22

)− [⟨xj ,y⟩ −
⟨a,y⟩
∥a∥22

⟨xj ,a⟩]

]

=
1

2

[√
(∥xj∥22 −

∥xj∥22⟨b,a⟩2
∥a∥22∥b∥22

)(∥b∥22 −
⟨b,a⟩2
∥a∥22

)− [⟨xj ,b− a⟩ − ⟨a,b− a⟩
∥a∥22

⟨xj ,a⟩]

]

=
1

2

[
∥xj∥2∥b∥2(1−

⟨b,a⟩2

∥a∥22∥b∥22
)− [⟨xj ,b− a⟩ − ⟨a,b− a⟩

∥a∥22
⟨xj ,a⟩]

]
=

1

2
[∥xj∥2∥b∥2 − ⟨xj ,b⟩] +

1

2
[−∥xj∥2⟨b,a⟩2

∥a∥22∥b∥2
+

⟨a,b⟩
∥a∥22

⟨xj ,a⟩]

=
1

2
[∥xj∥2∥b∥2 − ⟨xj ,b⟩].

(82)



Safe Screening with Variational Inequalities

The first equality plugs in the definition of x⊥
j and y in Eq. (22) and Eq. (23). The second equality plugs in ⟨b,a⟩

∥b∥2
=

⟨xj ,a⟩
∥xj∥2

,

makes use of Eq. (17), and utilizes Eq. (67). The last equality further makes use of ⟨b,a⟩
∥b∥2

=
⟨xj ,a⟩
∥xj∥2

. The established equality

says that u−
j (λ2) is continuous at the λ2 that satisfies ⟨b,a⟩

∥b∥2
=

⟨xj ,a⟩
∥xj∥2

.

It follows from the definition of λ2,a that if λ2 ∈ (λ2,a, λ1) then ⟨b,a⟩
∥b∥2

>
⟨xj ,a⟩
∥xj∥2

. Therefore, according to Eq. (80), u−
j (λ2)

is monotonically decreasing with λ2 in (λ2,a, λ1). Next, we focus on λ2 in the interval (0, λ2,a].

Denote γ = 1
λ2

− 1
λ1

, and write b = y
λ2

− θ∗
1 = a + γy. Thus, u−

j (λ2) = −⟨xj ,θ
∗
1⟩ + 1

2 [∥xj∥2∥b∥2 − ⟨xj ,b⟩] can be
rewritten as

w(γ) =
1

2
[∥xj∥2∥a+ γy∥2 − ⟨xj ,a+ γy⟩] (83)

The first and second derivatives of w(γ) with regard to γ can be computed as: we have

w′(γ) =
1

2
[
∥xj∥2⟨a+ γy,y⟩

∥a+ γy∥2
− ⟨xj ,y⟩] (84)

w′′(γ) =
∥xj∥2(∥y∥22∥a∥22 − ⟨a,y⟩2)

2∥a+ γy∥32
≥ 0 (85)

Therefore, we have

• If ⟨a,y⟩
∥a∥2

≥ ⟨xj ,y⟩
∥xj∥2

, i.e., when the angle between y and a is no larger than the angle between y and xj , then w′(γ) ≥ 0,
and u−

j (λ2) is monotonically decreasing with regard to λ2 in (0, λ2,a]. In this case, the λ2,a and λ2,y satisfies λ2,a ≤
λ2,y.

• If ⟨a,y⟩
∥a∥2

<
⟨xj ,y⟩
∥xj∥2

, let γy = 1
λ2,y

− 1
λ1

. Then, 1) h′(γy) = 0, 2) h′(γy) < 0, ∀0 < γ < γy, and h′(γy) > 0, ∀γ > γy .
Therefore, u−

j (λ2) is monotonically decreasing with regard to λ2 in (0, λ2,y), and monotonically increasing with
regard to λ2 in (λ2,y, λ2,a]. In this case, the λ2,a and λ2,y satisfies λ2,a > λ2,y.

This ends the proof of this theorem. �


