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Abstract

Sparse learning techniques have been routinely
used for feature selection as the resulting model
usually has a small number of non-zero entries.
Safe screening, which eliminates the features that
are guaranteed to have zero coefficients for a cer-
tain value of the regularization parameter, is a
technique for improving the computational effi-
ciency. Safe screening is gaining increasing at-
tention since 1) solving sparse learning formula-
tions usually has a high computational cost espe-
cially when the number of features is large and
2) one needs to try several regularization param-
eters to select a suitable model. In this paper, we
propose an approach called “Sasvi” (Safe screen-
ing with variational inequalities). Sasvi makes
use of the variational inequality that provides the
sufficient and necessary optimality condition for
the dual problem. Several existing approaches
for Lasso screening can be casted as relaxed ver-
sions of the proposed Sasvi, thus Sasvi provides a
stronger safe screening rule. We further study the
monotone properties of Sasvi for Lasso, based
on which a sure removal regularization parame-
ter can be identified for each feature. Experimen-
tal results on both synthetic and real data sets are
reported to demonstrate the effectiveness of the
proposed Sasvi for Lasso screening.

1. Introduction
Sparse learning (Candes & Wakin, 2008; Tibshirani, 1996)
is an effective technique for analyzing high dimensional
data. It has been applied successfully in various areas, such
as machine learning, signal processing, image processing,
medical imaging, and so on. In general, the ℓ1-regularized
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sparse learning can be formulated as:

min
β

loss(β) + λ∥β∥1, (1)

where β ∈ Rp contains the model coefficients, loss(β) is
a loss function defined on the design matrix X ∈ Rn×p

and the response y ∈ Rn, and λ is a positive regulariza-
tion parameter that balances the tradeoff between the loss
function and the ℓ1 regularization. Let xi ∈ Rp denote
the i-th sample that corresponds to the transpose of the i-
th row of X , and let xj ∈ Rn denote the j-th feature that
corresponds to the j-th column of X . We use loss(β) =
1
2∥Xβ − y∥22 = 1

2

∑n
i=1(yi − βTxi)2 in Lasso (Tibshi-

rani, 1996) and loss(β) =
∑n

i=1 log(1 + exp(−yiβ
Txi))

in sparse logistic regression (Koh et al., 2007).

Since the optimal λ is usually unknown in practical appli-
cations, we need to solve formulation (1) corresponding to
a series of regularization parameter λ1 > λ2 > . . . > λk,
obtain the solutions β∗

1 ,β
∗
2 , . . . ,β

∗
k, and then select the so-

lution that is optimal in terms of a pre-specified criterion,
e.g., Schwarz Bayesian information criterion (Schwarz,
1978) and cross-validation. The well-known LARS ap-
proach (Efron et al., 2004) can be modified to obtain the
full piecewise linear Lasso solution path. Other approaches
such as interior point (Koh et al., 2007), coordinate de-
scent (Friedman et al., 2010) and accelerated gradient de-
scent (Nesterov, 2004) usually solve formulation (1) corre-
sponding to a series of pre-defined parameters.

The solutions β∗
k, k = 1, 2, . . . , are sparse in that many

of their coefficients are zero. Taking advantage of the na-
ture of sparsity, the screening techniques have been pro-
posed for accelerating the computation. Specifically, given
a solution β∗

1 at the regularization parameter λ1, if we can
identify the features that are guaranteed to have zero coef-
ficients in β∗

2 at the regularization parameter λ2, then the
cost for computing β∗

2 can be saved by excluding those
inactive features. There are two categories of screening
techniques: 1) the safe screening techniques (Ghaoui et al.,
2012; Wang et al., 2013; Ogawa et al., 2013; Zhen et al.,
2011) with which our obtained solution is exactly the same
as the one obtained by directly solving (1), and 2) the
heuristic rule such as the strong rules (Tibshirani et al.,
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2012) which can eliminate more features but might mis-
takenly discard active features.

In this paper, we propose an approach called “Sasvi” (Safe
screening with variational inequalities) and take Lasso as
an example in the analysis. Sasvi makes use of the varia-
tional inequality which provides the sufficient and neces-
sary optimality condition for the dual problem. Several
existing approaches such as SAFE (Ghaoui et al., 2012)
and DPP (Wang et al., 2013) can be casted as relaxed ver-
sions of the proposed Sasvi, thus Sasvi provides a stronger
screening rule. The monotone properties of Sasvi for Lasso
are studied based on which a sure removal regularization
parameter can be identified for each feature. Empirical re-
sults on both synthetic and real data sets demonstrate the ef-
fectiveness of the proposed Sasvi for Lasso screening. Ex-
tension of the proposed Sasvi to the generalized sparse lin-
ear models such as logistic regression is briefly discussed.

Notations Throughout this paper, scalars are denoted by
italic letters, and vectors by bold face letters. Let ∥ · ∥1,
∥ · ∥2, ∥ · ∥∞ denote the ℓ1 norm, the Euclidean norm, and
the infinity norm, respectively. Let ⟨x,y⟩ denote the inner
product between x and y.

2. The Proposed Sasvi
Our proposed approach builds upon an analysis on the fol-
lowing simple problem:

min
β

{−βb+ |β|} . (2)

We have the following results:
1) If |b| ≤ 1, then the minimum of (2) is 0;
2) If |b| > 1, then the minimum of (2) is −∞; and
3) If |b| < 1, then the optimal solution β∗ = 0.

The dual problem usually can provide a good insight about
the problem to be solved. Let θ denote the dual variable of
Eq. (1). In light of Eq. (2), we can show that β∗

j , the j-th
component of the optimal solution to Eq. (1), optimizes

min
βj

{−βj⟨xj ,θ
∗⟩+ |βj |} , (3)

where xj denotes the j-th feature and θ∗ denotes the opti-
mal dual variable of Eq. (1). From the results to Eq. (2), we
need |⟨xj ,θ

∗⟩| ≤ 1 to ensure that Eq. (3) does not equal to
−∞1, and we have

|⟨xj ,θ
∗⟩| < 1 ⇒ β∗

j = 0. (4)

Eq. (4) says that, the j-th feature can be safely eliminated
in the computation of β∗ if |⟨xj ,θ

∗⟩| < 1.

Let λ1 and λ2 be two distinct regularization parameters that
satisfy

λmax ≥ λ1 > λ2 > 0, (5)
1This is used in deriving the last equality of Eq. (6).

Figure 1. The work flow of the proposed Sasvi. The purpose is to
discard the features that can be safely eliminated in computing β∗

2

with the information obtained at λ1.

where λmax denotes the value of λ above which the solu-
tion to Eq. (1) is zero. Let β∗

1 and β∗
2 be the optimal primal

variables corresponding to λ1 and λ2, respectively. Let θ∗
1

and θ∗
2 be the optimal dual variables corresponding to λ1

and λ2, respectively. Figure 1 illustrates the work flow of
the proposed Sasvi. We firstly derive the dual problem of
Eq. (1). Suppose that we have obtained the primal and dual
solutions β∗

1 and θ∗
1 for a given regularization parameter

λ1, and we are interested in solving Eq. (1) with λ = λ2 by
using Eq. (4) to screen the features to save computational
cost. However, the difficulty lies in that, we do not have
the dual optimal θ∗

2 . To deal with this, we construct a fea-
sible set for θ∗

2 , estimate an upper-bound of |⟨xj ,θ
∗
2⟩|, and

safely remove xj if this upper-bound is smaller than 1.

The construction of a tight feasible set for θ∗
2 is key to the

success of the screening technique. If the constructed feasi-
ble set is too loose, the estimated upper-bound of |⟨xj ,θ

∗
2⟩|

is over 1, and thus only a few features can be discarded.
In this paper, we propose to construct the feasible set by
using the variational inequalities that provide the sufficient
and necessary optimality conditions for the dual problems
with λ = λ1 and λ2. Then, we estimate the upper-bound
of |⟨xj ,θ

∗
2⟩| in the constructed feasbile set, and discard the

j-th feature if the upper-bound is smaller than 1. For dis-
cussion convenience, we focus on Lasso in this paper, but
the underlying methodology can be extended to the general
problem in Eq. (1). Next, we elaborate the three building
blocks that are illustrated in the bottom row of Figure 1.

2.1. The Dual Problem of Lasso

We follow the discussion in Section 6 of (Nesterov, 2013)
in deriving the dual problem of Lasso as follows:

min
β

[
1

2
∥Xβ − y∥22 + λ∥β∥1

]
= min

β
max
θ

[
⟨y −Xβ, λθ⟩ − 1

2
∥λθ∥22 + λ∥β∥1

]
= max

θ
min
β

λ

[
⟨y,θ⟩ − λ∥θ∥22

2
− ⟨XTθ,β⟩+ ∥β∥1

]
= max

θ:∥XT θ∥∞≤1
λ2

[
−1

2

∥∥∥θ − y

λ

∥∥∥2
2
+

1

2

∥∥∥y
λ

∥∥∥2
2

]
.

(6)
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A dual variable θ is introduced in the first equality, and the
equivalence can be verified by setting the derivative with
regard to θ to zero, which leads to the following relation-
ship between the optimal primal variable (β∗) and the op-
timal dual variable (θ∗):

λθ∗ = y −Xβ∗. (7)

In obtaining the last equality of Eq. (6), we make use of the
results to Eq. (2).

The dual problem of Eq. (1) can be formulated as:

min
θ:∥XT θ∥∞≤1

1

2

∥∥∥θ − y

λ

∥∥∥2
2
. (8)

For Lasso, the λmax in Eq. (5) can be analytically computed
as λmax = ∥XTy∥∞. In applying Sasvi, we might start
with λ1 = λmax, since the primal and dual optimals can be
computed analytically as: β∗

1 = 0 and θ∗
1 = y

λmax
.

2.2. Feasible Set Construction

Given λ1, θ∗
1 and λ2, we aim at estimating the upper-bound

of |⟨xj ,θ
∗
2⟩| without the actual computation of θ∗

2 . To this
end, we construct a feasible set for θ∗

2 , and then estimate
the upper-bound in the constructed feasible set. To con-
struct the feasible set, we make use of the variational in-
equality that provides the sufficient and necessary condi-
tion of a constrained convex optimization problem.

Lemma 1 (Nesterov, 2004) For the constrained convex op-
timization problem:

min
x∈G

f(x), (9)

with G being convex and closed and f(·) being convex and
differentiable, x∗ ∈ G is an optimal solution of Eq. (9) if
and only if

⟨f ′(x∗),x− x∗⟩ ≥ 0, ∀x ∈ G. (10)

Eq. (10) is the so-called variation inequality for the problem
in Eq. (9). Applying Lemma 1 to the Lasso dual problem
in Eq. (8), we can represent the optimality conditions for
θ∗
1 and θ∗

2 using the following two variational inequalities:⟨
θ∗
1 − y

λ1
,θ − θ∗

1

⟩
≥ 0, ∀θ : ∥XTθ∥∞ ≤ 1, (11)

⟨
θ∗
2 − y

λ2
,θ − θ∗

2

⟩
≥ 0, ∀θ : ∥XTθ∥∞ ≤ 1. (12)

Plugging θ = θ∗
2 and θ = θ∗

1 into Eq. (11) and Eq. (12)
respectively, we have⟨

θ∗
1 − y

λ1
,θ∗

2 − θ∗
1

⟩
≥ 0, (13)

⟨
θ∗
2 − y

λ2
,θ∗

1 − θ∗
2

⟩
≥ 0. (14)

With Eq. (13) and Eq. (14), we can construct the following
feasible set for θ∗

2 as:

Ω(θ∗
2) = {θ : ⟨θ∗

1−
y

λ1
,θ−θ∗

1⟩ ≥ 0, ⟨θ− y

λ2
,θ∗

1−θ⟩ ≥ 0}.
(15)

For an illustration of the feasible set, please refer to Fig-
ure 2. Generally speaking, the closer λ2 is to λ1, the tighter
the feasible set for θ∗

2 is. In fact, when λ2 approaches to
λ1, Ω(θ∗

2) concentrates to a singleton set that only contains
θ∗
2 . Note that one may use additional θ’s in Eq. (12) for

improving the estimation of the feasible set of θ∗
2 . Next,

we discuss how to make use of the feasible set defined in
Eq. (15) for estimating an upper-bound for |⟨xj ,θ

∗
2⟩|.

2.3. Upper-bound Estimation

Since θ∗
2 ∈ Ω(θ∗

2), we can estimate an upper-bound of
|⟨xj ,θ

∗
2⟩| by solving

max
θ∈Ω(θ∗

2 )
|⟨xj ,θ⟩|. (16)

Next, we show how to solve Eq. (16). For discussion con-
venience, we introduce the following three variables:

a =
y

λ1
− θ∗

1 =
Xβ∗

1

λ1
,

b =
y

λ2
− θ∗

1 = a+ (
y

λ2
− y

λ1
),

r = 2θ − (θ∗
1 +

y

λ2
),

(17)

where a denotes the prediction based on β∗
1 scaled by 1

λ1
,

and b is the summation of a and the change of the inputs
to the dual problem in Eq. (8) from λ1 to λ2.

Figure 2 illustrates a and b by lines EB and EC, respec-
tively. For the triangle EBC, the following theorem shows
that the angle between a and b is acute.

Theorem 1 Let y ̸= 0, and ∥XTy∥∞ ≥ λ1 > λ2 > 0.
We have

b ̸= 0, ⟨b,a⟩ ≥ 0, (18)

and ⟨b,a⟩ = 0 if and only if λ1 = ∥XTy∥∞. In addition,
if λ1 < ∥XTy∥∞, then a ̸= 0.

The proof of Theorem 1 is given in Supplement A. With
the notations in Eq. (17), Eq. (16) can be rewritten as

max
r

1

2

∣∣∣∣⟨xj ,θ
∗
1 +

y

λ2

⟩
+ ⟨xj , r⟩

∣∣∣∣
subject to ⟨a, r+ b⟩ ≤ 0, ∥r∥22 ≤ ∥b∥22.

(19)
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Figure 2. Illustration of the feasible set used in Sasvi and Theo-
rem 3. The points in the figure are explained as follows. E: θ∗

1 , B:
y
λ1

, C: y
λ2

, D:
θ∗
1+ y

λ2
2

. The left hand side of the dash line repre-
sents the half space {θ : ⟨θ∗

1− y
λ1

,θ−θ∗
1⟩ ≥ 0}, and the ball cen-

tered at D with radius ED represents {θ : ⟨θ− y
λ2

,θ∗
1 −θ⟩ ≥ 0}.

For Theorem 3, EX1, EX2, EX3 and EX4 denote ±xj in two sub-
cases: 1) the angle between EB and EX1 (EX4) is larger than the
angle between EB and EC, and 2) the angle between EB and EX2

(EX3) is smaller than the angle between EB and EC. R2 (R3) is
the maximizer to Eq. (16) with EX2 (EX3) denoting ±xj . With
EX1 (EX4) denoting ±xj , the maximizer to Eq. (16) is on the in-
tersection between the dashed line and the ball centered at D with
radius ED.

The objective function of Eq. (19) can be represented by
half of the following form:

max

(
⟨xj ,θ

∗
1 +

y

λ2
⟩+ ⟨xj , r⟩,−⟨xj ,θ

∗
1 +

y

λ2
⟩ − ⟨xj , r⟩

)
which indicates that Eq. (19) can be computed by maximiz-
ing ⟨xj , r⟩ and −⟨xj , r⟩ over the feasible set in the same
equation. Maximizing ⟨xj , r⟩ and −⟨xj , r⟩ can be com-
puted by minimizing ⟨−xj , r⟩ and ⟨xj , r⟩, which can be
solved by the following minimization problem:

min
r

⟨x, r⟩

subject to ⟨a, r+ b⟩ ≤ 0, ∥r∥22 ≤ ∥b∥22.
(20)

We assume that x is a non-zero vector. Let

x⊥ = x− a⟨x,a⟩/∥a∥22, (21)

x⊥
j = xj − a⟨xj ,a⟩/∥a∥22, (22)

y⊥ = y − a⟨y,a⟩/∥a∥22, (23)

which are the orthogonal projections of x, xj , and y onto
the null space of a, respectively. Our next theorem says
that Eq. (20) admits a closed form solution.

Theorem 2 Let 0 < λ1 ≤ ∥XTy∥∞, 0 < λ2 < λ1, x ̸= 0

and y ̸= 0. Eq. (20) equals to −∥x∥2∥b∥2, if ⟨b,a⟩
∥b∥2

≤
⟨x,a⟩
∥x∥2

, and −∥x⊥∥2
√
∥b∥22 −

⟨b,a⟩2
∥a∥2

2
− ⟨a,b⟩⟨x,a⟩

∥a∥2
2

otherwise.

The proof of Theorem 2 is given in Supplement B. With
Theorem 2, we can obtain the upper-bound of |⟨xj ,θ

∗
2⟩| in

the following theorem.

Theorem 3 Let y ̸= 0, and ∥XTy∥∞ ≥ λ1 > λ2 > 0.
Denote

u+
j (λ2) = max

θ∈Ω(θ∗
2 )
⟨xj ,θ⟩, (24)

u−
j (λ2) = max

θ∈Ω(θ∗
2 )
⟨−xj ,θ⟩. (25)

We have:

1) If a ̸= 0 and ⟨b,a⟩
∥b∥2∥a∥2

>
|⟨xj ,a⟩|

∥xj∥2∥a∥2
then

u+
j (λ2) = ⟨xj ,θ

∗
1⟩+

1
λ2

− 1
λ1

2

[
∥x⊥

j ∥2∥y⊥∥2 + ⟨x⊥
j ,y

⊥⟩
]
,

(26)

u−
j (λ2) = −⟨xj ,θ

∗
1⟩+

1
λ2

− 1
λ1

2

[
∥x⊥

j ∥2∥y⊥∥2 − ⟨x⊥
j ,y

⊥⟩
]
.

(27)

2) If ⟨xj ,a⟩ > 0 and ⟨b,a⟩
∥b∥2∥a∥2

≤ ⟨xj ,a⟩
∥xj∥2∥a∥2

, then u+
j (λ2)

satisfies Eq. (26), and

u−
j (λ2) = −⟨xj ,θ

∗
1⟩+

1

2
[∥xj∥2∥b∥2 − ⟨xj ,b⟩] . (28)

3) If ⟨xj ,a⟩ < 0 and ⟨b,a⟩
∥b∥2∥a∥2

≤ −⟨xj ,a⟩
∥xj∥2∥a∥2

, then

u+
j (λ2) = ⟨xj ,θ

∗
1⟩+

1

2
[∥xj∥2∥b∥2 + ⟨xj ,b⟩] . (29)

and u−
j (λ2) satisfies Eq. (27).

4) If a = 0, then Eq. (28) and Eq. (29) hold.

The proof of Theorem 3 is given in Supplement C. An il-
lustration of Theorem 3 for different cases can be found in
Figure 2. It follows from Eq. (4) that, if u+

j (λ2) < 1 and
u−
j (λ2) < 1, then the j-th feature can be safely eliminated

for the computation of β∗
2 . We provide the following anal-

ysis to the established upper-bound. Firstly, we have

lim
λ2→λ1

u+
j (λ2) = ⟨xj ,θ

∗
1⟩, lim

λ2→λ1

u−
j (λ2) = −⟨xj ,θ

∗
1⟩,

which attributes to the fact that limλ2→λ1 Ω(θ
∗
2) = {θ∗

1}.
Secondly, in the extreme case that xj is orthogonal to the
scaled prediction a =

Xβ∗
1

λ1
which is nonzero, Theorem 3

leads to x⊥
j = 0, u+

j (λ2) = ⟨xj ,θ
∗
1⟩ and u−

j (λ2) =
−⟨xj ,θ

∗
1⟩. Thus, the j-th feature can be safely removed

for any positive λ2 that is smaller than λ1 so long as
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|⟨xj ,θ
∗
1⟩| < 1. Thirdly, in the case that xj has low cor-

relation with the prediction a =
Xβ∗

1

λ1
, Theorem 3 indicates

that the j-th feature is very likely to be safely removed for
a wide range of λ2 if |⟨xj ,θ

∗
1⟩| < 1. The monotone prop-

erties of the upper-bound established in Theorem 3 is given
Section 4.

3. Comparison with Existing Approaches
Our proposed Sasvi differs from the existing screening
techniques (Ghaoui et al., 2012; Tibshirani et al., 2012;
Wang et al., 2013; Zhen et al., 2011) in the construction
of the feasible set for θ∗

2 .

3.1. Comparison with the Strong Rule

The strong rule (Tibshirani et al., 2012) works on 0 < λ2 <
λ1 and makes use of the assumption

|λ2⟨xj ,θ
∗
2⟩ − λ1⟨xj ,θ

∗
1⟩| ≤ |λ2 − λ1|, (30)

from which we can obtain an estimated upper-bound for
|⟨xj ,θ

∗
2⟩| as:

|⟨xj ,θ
∗
2⟩| ≤

|λ1⟨xj ,θ
∗
1⟩|+ |λ2⟨xj ,θ

∗
2⟩ − λ1⟨xj ,θ

∗
1⟩|

λ2

≤ |λ1⟨xj ,θ
∗
1⟩|+ (λ1 − λ2)

λ2

=
λ1

λ2
|⟨xj ,θ

∗
1⟩|+

[
λ1

λ2
− 1

]
(31)

A comparison between Eq. (31) and the upper-bound es-
tablished in Theorem 3 shows that, 1) both are dependent
on ⟨xj ,θ

∗
1⟩, the inner product between the j-th feature and

the dual variable θ∗
1 obtained at λ1, but note that λ1

λ2
> 1,

2) in comparison with the data independent term λ1

λ2
− 1

used in the strong rule, Sasvi utilizes a data dependent term
as shown in Eqs. (26)-(29). We note that, 1) when a fea-
ture xj has low correlation with the prediction a =

Xβ∗
1

λ1
,

the upper-bound for |⟨xj ,θ
∗
2⟩| estimated by Sasvi might be

lower than the one by the strong rule 2, and 2) as pointed
out in (Tibshirani et al., 2012), Eq. (30) might not always
hold, and the same applies to Eq. (31).

Next, we compare Sasvi with the SAFE approach (Ghaoui
et al., 2012) and the DPP approach (Wang et al., 2013), and
the differences in terms of the feasible sets are shown in
Figure 3.

2 According to the analysis given at the end of Section 2.3, this
argument is true for the extreme case that xj is orthogonal to the
nonzero prediction a =

Xβ∗
1

λ1
.

Figure 3. Comparison of Sasvi with existing safe screening ap-
proaches. The points in the figure are as follows. A: y

λmax
, B: y

λ1
,

C: y
λ2

, D: the middle point of C and E, E: θ∗
1 , F: θ∗

2 , and G: −θ∗
1 .

The feasible set for θ∗
2 used by the proposed Sasvi approach is the

intersection between the ball centered at D with radius being half
EC and the closed half space passing through E and containing the
constraint of the dual of Lasso. The feasible set for θ∗

2 used by
the SAFE (Ghaoui et al., 2012) approach is the ball centered at C
with radius being the smallest distance from C to the points in the
line segment EG. The feasible set for θ∗

2 used by the DPP (Wang
et al., 2013) approach is the ball centered at E with radius BC.

3.2. Comparison with the SAFE approach

Denote G(θ) = 1
2∥y||

2
2 − 1

2∥λ2θ − y||22. The SAFE ap-
proach makes use of the so-called “dual” scaling, and com-
pute the upper-bound of the G(θ) for λ2 as

γ(λ2) = max
s:|s|≤1

G(sθ) = max
s:|s|≤1

1

2
∥y||22−

1

2
∥sλ2θ

∗
1−y||22,

(32)
Note that, compared to the SAFE paper, the dual variable
θ has been scaled in the formulation in Eq. (32), but this
scaling does not influence of the following result for the
SAFE approach. Denote s∗ as the optimal solution. Solv-
ing Eq. (32), we have s∗ = max

(
min

(
⟨θ∗

1 ,y⟩
λ2∥θ∗

1∥2
, 1
)
,−1

)
when θ1 ̸= 0. The SAFE approach computes the upper-
bound for |⟨xj ,θ

∗
2⟩| as follows:

|⟨xj ,θ
∗
2⟩| ≤ max

θ:G(θ)≥γ(λ2)
|⟨xj ,θ⟩|

= max
θ:∥θ− y

λ2
||2≤∥s∗θ∗

1−
y
λ2

||2
|⟨xj ,θ⟩|

=
|⟨xj ,y⟩|

λ2
+ ∥xj∥2

∥∥∥∥s∗θ∗
1 − y

λ2

∥∥∥∥
2

.

(33)

Next, we show that the feasible set for θ∗
2 used in Eq. (33)

can be derived from the variational inequality in Eq. (12)
followed by relaxations.
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Utilizing ∥XTθ∗
1∥∞ ≤ 1 and |s∗| ≤ 1, we can set θ =

s∗θ∗
1 in Eq. (12) and obtain⟨

θ∗
2 − y

λ2
, s∗θ∗

1 − θ∗
2

⟩
≥ 0, (34)

which leads to⟨
θ∗
2 − y

λ2
,θ∗

2 − y

λ2

⟩
−

⟨
θ∗
2 − y

λ2
, s∗θ∗

1 − y

λ2

⟩
=

⟨
θ∗
2 − y

λ2
,θ∗

2 − y

λ2
+

y

λ2
− s∗θ∗

1

⟩
≤ 0.

(35)

Since⟨
θ∗
2 − y

λ2
, s∗θ∗

1 − y

λ2

⟩
≤

∥∥∥∥θ∗
2 − y

λ2

∥∥∥∥
2

∥∥∥∥s∗θ∗
1 − y

λ2

∥∥∥∥
2

,

(36)
we have ∥∥∥∥θ∗

2 − y

λ2

∥∥∥∥
2

≤
∥∥∥∥s∗θ∗

1 − y

λ2

∥∥∥∥
2

, (37)

which is the feasible set used in Eq. (33). Note that, the ball
defined by Eq. (37) has higher volume than the one defined
by Eq. (34) due to the relaxation used in Eq. (36), and it
can be shown that the ball defined by Eq. (34) lies within
the ball defined by Eq. (37).

3.3. Comparison with the DPP approach

The feasible set for θ∗
2 used in the DPP approach is∥∥∥∥ y

λ2
− y

λ1

∥∥∥∥
2

≥ ∥θ∗
2 − θ∗

1∥2 , (38)

which can be obtained by⟨
y

λ2
− y

λ1
,θ∗

2 − θ∗
1

⟩
≥ ⟨θ∗

2 − θ∗
1 ,θ

∗
2 − θ∗

1⟩. (39)

and⟨
y

λ2
− y

λ1
,θ∗

2 − θ∗
1

⟩
≤

∥∥∥∥ y

λ2
− y

λ1

∥∥∥∥
2

∥θ∗
2−θ∗

1∥2, (40)

where Eq. (39) is a result of adding Eq. (13) and Eq. (14).
Therefore, although the authors in (Wang et al., 2013) mo-
tivates the DPP approach from the viewpoint of Euclidean
projection, the DPP approach can indeed be treated as gen-
erating the feasible set for θ∗

2 using the variational in-
equality in Eq. (11) and Eq. (12) followed by relaxation
in Eq. (40). Note that, the ball specified by Eq. (38) has
higher volume than the one specified by Eq. (39) due to the
relaxation used in Eq. (40), and it can be shown that the ball
defined by Eq. (39) lies within the ball defined by Eq. (38).

4. Feature Sure Removal Parameter
In this subsection, we study the monotone properties of the
upper-bound established in Theorem 3 with regard to the
regularization parameter λ2. With such study, we can iden-
tify the feature sure removal parameter—the smallest value
of λ above which a feature is guaranteed to have zero coef-
ficient and thus can be safely removed.

Without loss of generality, we assume ⟨xj ,a⟩ ≥ 0 and the
results can be easily extended to the case ⟨xj ,a⟩ < 0. In
addition, we assume that if λ1 ̸= ∥XTy∥∞ then θ∗

1 ̸=
y

∥XTy∥∞
. This is a valid assumption for real data.

Let y ̸= 0, and λmax = ∥XTy∥∞ ≥ λ1 ≥ λ > 03. We
introduce the following two auxiliary functions:

f(λ) =
⟨yλ − θ∗

1 ,a⟩
∥y
λ − θ∗

1∥2
(41)

g(λ) =
⟨yλ − θ∗

1 ,y⟩
∥y
λ − θ∗

1∥2
(42)

We show in Supplement D that f(λ) is strictly increasing
with regard to λ in (0, λ1] and g(λ) is strictly decreasing
with regard to λ in (0, λ1]. Such monotone properties,
which are illustrated geometrically in the first plot of Fig-
ure 4, guarantee that f(λ) =

⟨xj ,a⟩
∥xj∥2

and g(λ) =
⟨xj ,y⟩
∥xj∥2

have unique roots with regard to λ when some conditions
are satisfied.

Our main results are summarized in the following theorem:

Theorem 4 Let y ̸= 0 and ∥XTy∥∞ ≥ λ1 > λ2 > 0.
Let ⟨xj ,a⟩ ≥ 0. Assume that if λ1 ̸= ∥XTy∥∞ then θ∗

1 ̸=
y

∥XTy∥∞
.

Define λ2,a as follows: If ⟨y,a⟩
∥y∥2

≥ ⟨xj ,a⟩
∥xj∥2

, then let λ2,a =

0; otherwise, let λ2,a be the unique value in (0, λ1] that
satisfies f(λ2,a) =

⟨xj ,a⟩
∥xj∥2

.

Define λ2,y as follows: If a = 0 or if a ̸= 0 and ⟨a,y⟩
∥a∥2

≥
⟨xj ,y⟩
∥xj∥2

, then let λ2,y = λ1; otherwise, let λ2,y be the unique

value in (0, λ1] that satisfies g(λ2,y) =
⟨xj ,y⟩
∥xj∥2

.

We have the following monotone properties:

1. u+
j (λ2) is monotonically decreasing with regard to λ2

in (0, λ1].

2. If λ2,a ≤ λ2,y , then u−
j (λ2) is monotonically decreas-

ing with regard to λ2 in (0, λ1].

3If λ1 ≥ λmax, we have β∗
1 = 0 and thus we focus on λ1 ≤

λmax. In addition, for given λ1, we are interested in the screening
for a smaller regularization parameter, i.e., λ < λ1.
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3. If λ2,a > λ2,y, then u−
j (λ2) is monotonically de-

creasing with regard to λ2 in (0, λ2,y) and (λ2,a, λ1),
but monotonically increasing with regard to λ2 in
[λ2,y, λ2,a].

Figure 4. Illustration of the monotone properties of Sasvi for
Lasso with the assumption ⟨xj ,a⟩ ≥ 0. The first plot geomet-
rically shows the monotone properties of f(λ) and g(λ), respec-
tively. The last three plots correspond to the three cases in Theo-
rem 4. For illustration convenience, the x-axis denotes 1

λ2
rather

than λ2.

The proof of Theorem 4 is given in Supplement D. Note
that, λ2,a and λ2,y are dependent on the index j, which
is omitted for discussion convenience. Figure 4 illustrates
results presented in Theorem 4. The first two cases of The-
orem 4 indicate that, if the j-th feature xj can be safely
removed for a regularization parameter λ = λ2, then it can
also be safely discarded for any regularization parameter λ
larger than λ2. However, the third case in Theorem 4 says
that this is not always true. This somehow coincides with
the characteristic of Lasso that, a feature that is inactive
for a regularization parameter λ = λ2 might become ac-
tive for a larger regularization parameter λ > λ2. In other
words, when following the Lasso solution path with a de-
creasing regularization parameter, a feature that enters into
the model might get removed.

By using Theorem 4, we can easily identify for each feature
a sure removable parameter λs that satisfies u+

j (λ) < 1

and u−
j (λ) < 1, ∀λ > λs. Note that Theorem 4 as-

sumes ⟨xj ,a⟩ ≥ 0, but it can be easily extended to the
case ⟨xj ,a⟩ < 0 by replacing xj with −xj .

5. Experiments
In this section, we conduct experiments to evaluate the per-
formance of the proposed Sasvi in comparison with the se-
quential SAFE rule (Ghaoui et al., 2012), the sequential
strong rule (Tibshirani et al., 2012), and the sequential DPP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.2

0.4

0.6

0.8

1

λ/λmax

R
ej

ec
tio

n 
R

at
io

 

 

SAFE
DPP
Strong Rule
Sasvi

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.2

0.4

0.6

0.8

1

λ/λmax

R
ej

ec
tio

n 
R

at
io

 

 

SAFE
DPP
Strong Rule
Sasvi

(Real: MNIST) (Real: PIE)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.2

0.4

0.6

0.8

1

λ/λmax

R
ej

ec
tio

n 
R

at
io

 

 

SAFE
DPP
Strong Rule
Sasvi

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.2

0.4

0.6

0.8

1

λ/λmax

R
ej

ec
tio

n 
R

at
io

 

 

SAFE
DPP
Strong Rule
Sasvi

(Synthetic, p̄ = 100) (Synthetic, p̄ = 1000)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.2

0.4

0.6

0.8

1

λ/λmax

R
ej

ec
tio

n 
R

at
io

 

 

SAFE
DPP
Strong Rule
Sasvi

(Synthetic, p̄ = 5000)

Figure 5. The rejectioin ratios—the ratios of the number features
screened out by SAFE, DPP, the strong rule and Sasvi on synthetic
and real data sets.

(Wang et al., 2013). Note that, SAFE, Sasvi and DPP meth-
ods are “safe” in the sense that the discarded features are
guaranteed to have 0 coefficients in the true solution, and
the strong rule—which is a heuristic rule—might make er-
ror and such error was corrected by a KKT condition check
as suggested in (Tibshirani et al., 2012).

Synthetic Data Set We follow (Bondell & Reich, 2008;
Zou & Hastie, 2005; Tibshirani, 1996) in simulating the
data as follows:

y = Xβ∗ + σϵ, ϵ ∼ N(0, 1), (43)

where X has 250 × 10000 entries. Similar to (Bondell &
Reich, 2008; Zou & Hastie, 2005; Tibshirani, 1996), we
set the pairwise correlation between the i-th feature and
the j-th feature to 0.5|i−j| and draw X from a Gaussian
distribution. In constructing the ground truth β∗, we set
the number of non-zero components to p̄ and randomly as-
sign the values from a uniform [−1, 1] distribution. We set
σ = 0.1 and generate the response vector y ∈ R250 using
Eq. (43). For the value of p̄, we try 100, 1000, and 5000.

PIE Face Image Data Set The PIE face image data set
used in this experiment 4 contains 11554 gray face images

4http://www.cad.zju.edu.cn/home/dengcai/
Data/FaceData.html

http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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Method Synthetic with p̄ Real
100 1000 5000 MINST PIE

solver 88.55 101.00 101.55 2683.57 617.85
SAFE 73.37 88.42 90.21 651.23 128.54
DPP 44.00 49.57 50.15 328.47 79.84
Strong 2.53 3.00 2.92 5.57 2.97
Sasvi 2.49 2.77 2.76 5.02 1.90

Table 1. Running time (in seconds) for solving the Lasso prob-
lems along a sequence of 100 tuning parameter values equally
spaced on the scale of λ/λmax from 0.05 to 1 by the solver (Liu
et al., 2009) without screening, and the solver combined with dif-
ferent screening methods.

of 68 people, taken under different poses, illumination con-
ditions and expressions. Each of the images has 32 × 32
pixels. To use the regression model in Eq. (43), we first
randomly pick up an image as the response y ∈ R1024,
and then set the remaining images as the data matrix X ∈
R1024×11553.

MNIST Handwritten Digit Data Set This data set con-
tains grey images of scanned handwritten digits, including
60, 000 for training and 10, 000 for testing. The dimension
of each image is 28 × 28. To use the regression model
in Eq. (43), we first randomly select 5000 images for each
digit from the training set (and in total we have 50000 im-
ages) and get a data matrix X ∈ R784×50000, and then we
randomly select an image from the testing set and treat it as
the response vector y ∈ R784.

Experimental Settings For the Lasso solver, we make use
of the SLEP package (Liu et al., 2009). For a given gener-
ated data set (X and y), we run the solver with or with-
out screening rules to solve the Lasso problems along a
sequence of 100 parameter values equally spaced on the
λ/λmax scale from 0.05 to 1.0. The reported results are
averaged over 100 trials of randomly drawn X and y.

Results Table 1 reports the running time by different
screening rules, and Figure 5 presents the corresponding
rejection ratios—the ratios of the number features screened
out by the screening approaches. It can be observed that the
propose Sasvi significantly outperforms the safe screening
rules such as SAFE and DPP. The reason is that, Sasvi is
able to discard more inactive features as discussed in Sec-
tion 3. In addition, the rejection ratios of the strong rule
and Sasvi are comparable, and both of them are more ef-
fective in discarding inactive features than SAFE and DPP.
In terms of the speedup, Sasvi provides better performance
than the strong rule. The reason is that the strong rule is a
heuristic screening method, i.e., it may mistakenly discard
active features which have nonzero components in the so-
lution, and thus the strong rule needs to check the KKT
conditions to make correction if necessary to ensure the
correctness of the result. In contrast, Sasvi does not need

to check the KKT conditions or make correction since the
discarded features are guaranteed to be absent from the re-
sulting sparse representation.

6. Conclusion and Discussion
The safe screening is a technique for improving the com-
putational efficiency by eliminating the inactive features
in sparse learning algorithms. In this paper, we propose
a novel approach called Sasvi (Safe screening with vari-
ational inequalities). The proposed Sasvi has three mod-
ules: dual problem derivation, feasible set construction,
and upper-bound estimation. The key contribution of the
proposed Sasvi is the usage of the variational inequality
which provides the sufficient and necessary optimality con-
ditions for the dual problem. Several existing approaches
can be casted as relaxed versions of the proposed Sasvi, and
thus Sasvi provides a stronger screening rule. The mono-
tone properties of the established upper-bound are studied
based on a sure removal regularization parameter which
can be identified for each feature.

The proposed Sasvi can be extended to solve the general-
ized sparse linear models, by filling in Figure 1 with the
three key modules. For example, the sparse logistic regres-
sion can be written as

min
β

n∑
i=1

log(1 + exp(−yiβ
Txi)) + λ∥β∥1. (44)

We can derive its dual problem as

min
θ:∥XT θ∥∞≤1

−
n∑

i=1

(
log

( yi

λ
yi

λ − θi

)
+

θi
yi

λ

log(
yi

λ − θi

θi
)

)
.

According to Lemma 1, for the dual optimal θ∗i , the opti-
mality condition via the variational inequality is
n∑

i=1

1
yi

λ

log

( yi

λ − θ∗i
θ∗i

)
(θi − θ∗i ) ≤ 0, ∀θ : ∥XTθ∥∞ ≤ 1.

Then, we can construct the feasible set for θ∗
2 at the reg-

ularization parameter λ2 in a similar way to the Ω(θ∗
2)

in Eq. (15). Finally, we can estimate the upper-bound of
|⟨xj ,θ

∗
2⟩| by Eq. (16), and discard the j-th feature if such

upper-bound is smaller than 1. Note that, compared to the
Lasso case, Eq. (16) is much more challenging for the lo-
gistic loss case. We plan to replace the feasible set Ω(θ∗

2)
by its quadratic approximation so that Eq. (16) has an easy
solution. We also plan to apply the proposed Sasvi to solv-
ing the Lasso solution path using LARS.
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