An Asynchronous Parallel Stochastic Coordinate Descent Algorithm

Ji Liuf

Stephen J. Wrightt
Christopher Réj
Victor Bittorfy
Srikrishna Sridhart

JI-LIU@ CS.WISC.EDU
SWRIGHT @ CS.WISC.EDU
CHRISMRE @ STANFORD.EDU
BITTORF@ CS.WISC.EDU
SRIKRIS @CS.WISC.EDU

TDepartment of Computer Sciences, University of Wisconsin-Madison, 1210 W. Dayton St., Madison, WI 53706
iDepartment of Computer Science, Stanford University, 353 Serra Mall, Stanford, CA 94305

Abstract

We describe an asynchronous parallel stochas-
tic coordinate descent algorithm for minimizing
smooth unconstrained or separably constrained
functions. The method achieves a linear con-
vergence rate on functions that satisfy an essen-
tial strong convexity property and a sublinear
rate (1/K) on general convex functions. Near-
linear speedup on a multicore system can be ex-
pected if the number of processors is O(n'/?) in
unconstrained optimization and O(n'/*) in the
separable-constrained case, where n is the num-
ber of variables. We describe results from imple-
mentation on 40-core processors.

1. Introduction

Consider the convex optimization problem

min
z€Q

f(@), (D

where (2 C R"™ is a closed convex set and f is a smooth
convex mapping from an open neighborhood of 2 to R.
We consider two particular cases of) in this paper: the
unconstrained case {2 = R", and the separable case

Q=0 xQy x...xQ,, 2)

where each ;, ¢ = 1,2,...,n is a closed subinterval of
the real line.

Formulations of the type (1,2) arise in many data analysis
and machine learning problems, for example, support vec-
tor machines (linear or nonlinear dual formulation) (Cortes

Proceedings of the 31°" International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

& Vapnik, 1995), LASSO (after decomposing z into posi-
tive and negative parts) (Tibshirani, 1996), and logistic re-
gression. Algorithms based on gradient and approximate
or partial gradient information have proved effective in
these settings. We mention in particular gradient projec-
tion and its accelerated variants (Nesterov, 2004), acceler-
ated proximal gradient methods for regularized objectives
(Beck & Teboulle, 2009), and stochastic gradient methods
(Nemirovski et al., 2009; Shamir & Zhang, 2013). These
methods are inherently serial, in that each iteration depends
on the result of the previous iteration. Recently, paral-
lel multicore versions of stochastic gradient and stochastic
coordinate descent have been described for problems in-
volving large data sets; see for example (Niu et al., 2011;
Richtdrik & Takac, 2012; Avron et al., 2014).

This paper proposes an asynchronous stochastic coordinate
descent (ASYSCD) algorithm for convex optimization.
Each step of ASYSCD chooses an index i € {1,2,...,n}
and subtracts a short, constant, positive multiple of the par-
tial gradient df /Ox; from component i of z. When sepa-
rable constraints (2) are present, the update is “clipped” to
maintain feasibility with respect to 2;. Updates take place
in parallel across the cores of a multicore system.

We use a simple model of computation that matches well
to modern multicore architectures. We assume that each
core makes coordinate-descent modifications to a centrally
stored vector x in an asynchronous, uncoordinated fashion.
We assume that there is a bound 7 on the age of the updates,
that is, no more than 7 updates to x occur between the time
at which a processor reads = (and uses it to evaluate one el-
ement of the gradient) and the time at which this processor
makes its update to a single element of x. (A similar model
of parallel asynchronous computation was used in HOG-
WILD! (Niu et al., 2011).) Our implementation, described
in Section 6, is a little more complex than this simple model
would suggest, as it is tailored to the architecture of the In-
tel Xeon machine that we use for experiments.

An Asynchronous Parallel Stochastic Coordinate Descent Algorithm

We show that linear convergence can be attained if an “es-
sential strong convexity” property (3) holds, while sublin-
ear convergence at a “1/K” rate can be proved for general
convex functions. Our analysis also defines a sufficient
condition for near-linear speedup in the number of cores
used. This condition relates the value of delay parameter
7 (which relates to the number of cores / threads used in
the computation) to the problem dimension n. A parame-
ter that quantifies the cross-coordinate interactions in V f
also appears in this relationship. When the Hessian of f is
nearly diagonal, the minimization problem can almost be
separated along the coordinate axes, so higher degrees of
parallelism are possible.

We review related work in Section 2. Section 3 specifies
the proposed algorithm. Convergence results for uncon-
strained and constrained cases are described in Sections 4
and 5, respectively, with proofs given in the full version of
this paper (Liu et al., 2013). Computational experience is
reported in Section 6. Some conclusions are given in Sec-
tion 7.

Notation and Assumption

We use the following notation.

e; € R™ denotes the ith natural basis vector.

|l - || denotes the Euclidean norm || - ||o.

S C (2 denotes the set on which f attains its optimal
value, which is denoted by f*.

Ps(+) and Pq () denote Euclidean projection onto S and
Q, respectively.

We use x; for the ith element of x, and V,f(x),
(Vf(x))s, or Of /Ox; for the ith element of V f(x).

o We define the following essential strong convexity con-
dition for a convex function f with respect to the optimal
set S, with parameter [> 0:

[#) ~ 1) = (V(w)w—) + Lo~ ol
Va,y € Q with Pg(x) = Ps(y). 3)

This condition is significantly weaker than the usual
strong convexity condition, which requires the inequal-
ity to hold for all x,y €). In particular, it allows for
non-singleton solution sets .S, provided that f increases
at a uniformly quadratic rate with distance from S. (This
property is noted for convex quadratic f in which the
Hessian is rank deficient.) Other examples of essentially
strongly convex funcions that are not strongly convex in-
clude:
— f(Az) with arbitrary linear transformation A, where
f () is strongly convex;

- f(z) = max(aTz — b,0)2, for a # 0.

e Define L, as the restricted Lipschitz constant for V f,
where the “restriction” is to the coordinate directions:

We have forall: = 1,2, ..
te; € Q

.,nandt € R, with x,xz +

IV f(z) = Vf(x+te)| < Lres|t]-

e Define L; as the coordinate Lipschitz constant for V f
in the ith coordinate direction: We have for ¢ €
{1,2,...,n},and z,x + te; € Q

L;
flx+te) = flx) <(Vif(2), t) + ?tQ,
or equivalently

|Vif(x) = Vif(z +te;)| < Lilt|.

,,,,,

Note that Les > Lpax.

We use {xj}j=0,1,27,,_ to denote the sequence of iter-
ates generated by the algorithm from starting point xg.
Throughout the paper, we make the following assumption.

Assumption 1.

o The optimal solution set S of (1) is nonempty.
o The radius of the iterate set {x;} =012, .. defined by

R:= sup |z; —Ps(z)|

§7=0,1,2,...

is bounded, that is, R < +o0.

Lipschitz Constants

The nonstandard Lipschitz constants Lies, Linax, and L;,
i =1,2,...,n defined above are crucial in the analysis of
our method. Besides bounding the nonlinearity of f along
various directions, these quantities capture the interactions
between the various components in the gradient V f, as
quantified in the off-diagonal terms of the Hessian V2 f ()
(when this matrix exists).

We have noted already that Lyes/ Linax > 1. Let us consider
upper bounds on this ratio under certain conditions. When
f is twice continuously differentiable, we have

(V2 f ()]s

L; =sup max
zeQ =1,2,..,n

Since V2f(z) = 0 for x € 2, we have that
V2 f(2))i5] <

Thus L5, which is a bound on the largest column norm for
V2 f(x) over all x € €, is bounded by \/7Lyyay, s0 that

LI’S§

Lmax

LiLj SLmaxa Vi,j:l,Z,...,n.

If the Hessian is structurally sparse, having at most p
nonzeros per row/column, the same argument leads to

Lres/Lmax < \/]3

An Asynchronous Parallel Stochastic Coordinate Descent Algorithm

If f(z) is a convex quadratic with Hessian), We have

Lax = miaX Qii, Lres = miax ”Q'i”??

where ().; denotes the ith column of Q. If () is diagonally
dominant, we have for any column ¢ that

1Quill2 < Qui + [Quiljillz < Qus + Y 1@l < 2Qui,
J#i
which, by taking the maximum of both sides, implies that
Lyes/ Limax < 2 in this case.

Finally, consider the objective f(z) = 3||Az — b||? and
assume that A € R™*"™ is a random matrix whose entries
are i.i.d from A(0,1). The diagonals of the Hessian are
AT A.; (where A.; is the ith column of A), which have ex-
pected value m, so we can expect L.« to be not less than
m. Recalling that L. is the maximum column norm of
AT A, we have

E([ATAl) < E(IATA]) + E(I[AG A jzill)

=m+E Y [ATA2<m+ [> E[ATA;?
Jj#i Jj#i

=m + n—l

where the second inequality uses Jensen’s inequality and
the final equality uses

E(|AT A%
=E(ALIA,)

=E(ATE(AAT)A)

We can thus estimate the upper bound on Lyes/Limax
roughly by 1 + y/n/m for this case.

2. Related Work

This section reviews some related work on coordinate re-
laxation and stochastic gradient algorithms.

Among cyclic coordinate descent algorithms, Tseng (2001)
proved the convergence of a block coordinate descent
method for nondifferentiable functions with certain con-
ditions. Local and global linear convergence were es-
tablished under additional assumptions, by Luo & Tseng
(1992) and Wang & Lin (2013), respectively. Global
linear (sublinear) convergence rate for strongly (weakly)
convex optimization was proved in (Beck & Tetruashvili,
2013). Block-coordinate approaches based on proximal-
linear subproblems are described in (Tseng & Yun, 2009;
2010). Wright (2012) uses acceleration on reduced spaces
(corresponding to the optimal manifold) to improve the lo-
cal convergence properties of this approach.

Stochastic coordinate descent is almost identical to cyclic
coordinate descent except selecting coordinates in a ran-
dom manner. Nesterov (2012) studied the convergence rate

for a stochastic block coordinate descent method for un-
constrained and separably constrained convex smooth opti-
mization, proving linear convergence for the strongly con-
vex case and a sublinear 1/K rate for the convex case.
Extensions to minimization of composite functions are
described by Richtdrik & Takac¢ (2011) and Lu & Xiao
(2013).

Synchronous parallel methods distribute the workload and
data among multiple processors, and coordunate the com-
putation among processors. Ferris & Mangasarian (1994)
proposed to distribute variables among multiple processors
and optimize concurrently over each subset. The synchro-
nization step searches the affine hull formed by the cur-
rent iterate and the points found by each processor. Sim-
ilar ideas appeared in (Mangasarian, 1995), with a dif-
ferent synchronization step. Goldfarb & Ma (2012) con-
sidered a multiple splitting algorithm for functions of the
form f(z) = Z,]jzl fx(z) in which N models are opti-
mized separately and concurrently, then combined in an
synchronization step. The alternating direction method-
of-multiplier (ADMM) framework (Boyd et al., 2011) can
also be implemented in paralle. It dissects the problem into
multiple subproblems (possibly after replication of primal
variables) and optimizes concurrently, then synchronizes to
update multiplier estimates. Duchi et al. (2012) described a
subgradient dual-averaging algorithm for partially separa-
ble objectives, with subgradient evaluations distributed be-
tween cores and combined in ways that reflect the structure
of the objective. Parallel stochastic gradient approaches
have received broad attention; see Agarwal & Duchi (2012)
for an approach that allows delays between evaluation and
update, and (Cotter et al., 2011) for a minibatch stochas-
tic gradient approach with Nesterov acceleration. Shalev-
Shwartz & Zhang (2013) proposed an accelerated stochas-
tic dual coordinate ascent method.

Among synchronous parallel methods for (block) coordi-
nate descent, Richtarik & Takac (2012) described a method
of this type for convex composite optimization problems.
All processors update randomly selected coordinates or
blocks, concurrently and synchronously, at each iteration.
Speedup depends on the sparsity of the data matrix that de-
fines the loss functions. Several variants that select blocks
greedily are considered by Scherrer et al. (2012) and Peng
et al. (2013). Yang (2013) studied the parallel stochastic
dual coordinate ascent method and emphasized the balance
between computation and communication.

We turn now to asynchronous parallel methods. Bertsekas
& Tsitsiklis (1989) introduced an asynchronous parallel
implementation for general fixed point problems = = ¢(x)
over a separable convex closed feasible region. (The op-
timization problem (1) can be formulated in this way by
defining q(z) := Pq[(I—aV f)(x)] for some fixed o > 0.)

An Asynchronous Parallel Stochastic Coordinate Descent Algorithm

Their analysis allows inconsistent reads for x, that is, the
coordinates of the read = have different “ages.” Linear
convergence is established if all ages are bounded and
V2 f(x) satisfies a diagonal dominance condition guaran-
teeing that the iteration z = ¢(z) is a maximum-norm
contraction mapping for sufficient small a. However, this
condition is strong — stronger, in fact, than the strong
convexity condition. For convex quadratic optimization
f(z) = 32T Az + bz, the contraction condition requires
diagonal dominance of the Hessian: A;; > >, |Aqj|
for all + = 1,2,...,n. By comparison, ASYSCD guar-
antees linear convergence rate under the essential strong
convexity condition (3), though we do not allow inconsis-
tent read. (We require the vector x used for each evaluation
of V; f(x) to have existed at a certain point in time.)

HoGgwiLD! (Niu et al., 2011) is a lock-free, asynchronous
parallel implementation of a stochastic-gradient method,
targeted to a multicore computational model similar to the
one considered here. Its analysis assumes consistent read-
ing of z, and it is implemented without locking or coordina-
tion between processors. Under certain conditions, conver-
gence of HOGWILD! approximately matches the sublinear
1/K rate of its serial counterpart, which is the constant-
steplength stochastic gradient method analyzed in (Ne-
mirovski et al., 2009).

We also note recent work by Avron et al. (2014), who pro-
posed an asynchronous linear solver to solve Az = b where
A is a symmetric positive definite matrix, proving a linear
convergence rate. Both inconsistent- and consistent-read
cases are analyzed in this paper, with the convergence re-
sult for inconsistent read being slightly weaker.

Algorithm 1 Asynchronous Stochastic Coordinate Descent
Algorithm x i1 = ASYSCD(xg, 7, K)
Require: zy € , v, and K
Ensure: zx 1
: Initialize j < O;
: while j < K do
Choose i(j) from {1,. .., n} with equal probability;

1
2
3
4 zjp < Po (%' - %eiudvz'(j)f(ffk(j)))?
5
6

Jei+L
: end while

3. Algorithm

In ASYSCD, multiple processors have access to a shared
data structure for the vector x, and each processor is able
to compute a randomly chosen element of the gradient vec-
tor V f(x). Each processor repeatedly runs the following
coordinate descent process (the steplength parameter 7 is
discussed further in the next section):

R: Choose an index ¢ € {1,2,...,n} at random, read z,

and evaluate V; f(z);
U: Update component ¢ of the shared x by taking a step of
length v/ Lyyax in the direction —V,; f(x).

Since these processors are being run concurrently and with-
out synchronization, may change between the time at
which it is read (in step R) and the time at which it is
upatted (step U). We capture the system-wide behavior of
ASYSCD in Algorithm 1. There is a global counter j for
the total number of updates; x; denotes the state of x af-
ter j updates. The index i(j) € {1,2,...,n} denotes the
component updated at step j. k(j) denotes the z-iterate
at which the update applied at iteration j was calculated.
Obviously, we have k(j) < j, but we assume that the de-
lay between the time of evaluation and updating is bounded
uniformly by a positive integer 7, that is, j — k() < 7 for
all j. The value of 7 captures the essential parallelism in
the method, as it indicates the number of processors that
are involved in the computation.

The projection operation Py, onto the feasible set is not
needed in the case of unconstrained optimization. For sepa-
rable constraints (2), it requires a simple clipping operation
on the i(j) component of x.

We note several differences with earlier asynchronous ap-
proaches. Unlike the asynchronous scheme in Bertsekas
& Tsitsiklis (1989, Section 6.1), the latest value of x is
updated at each step, not an earlier iterate. Although
our model of computation is similar to HOGWILD! (Niu
et al., 2011), the algorithm differs in that each iteration of
ASYSCD evaluates a single component of the gradient ex-
actly, while HOGWILD! computes only a (usually crude)
estimate of the full gradient. Our analysis of ASYSCD be-
low is comprehensively different from that of (Niu et al.,
2011), and we obtain stronger convergence results.

4. Unconstrained Smooth Convex Case

This section presents results about convergence of
ASYSCD in the unconstrained case {2 = R". The theorem
encompasses both the linear rate for essentially strongly
convex f and the sublinear rate for general convex f. The
result depends strongly on the delay parameter 7. (Proofs
of results in this section appear in the full version of this
paper (Liu et al., 2013).)

A crucial issue in ASYSCD is the choice of steplength pa-
rameter . This choice involves a tradeoff: We would like ~y
to be long enough that significant progress is made at each
step, but not so long that the gradient information computed
at step k(j) is stale and irrelevant by the time the update is
applied at step j. We enforce this tradeoff by means of a
bound on the ratio of expected squared norms on V f at
successive iterates; specifically,

An Asynchronous Parallel Stochastic Coordinate Descent Algorithm

-\

— EIVi@)Ir T

where p > 1 is a user defined parameter. The analy-

sis becomes a delicate balancing act in the choice of p

and steplength v between aggression and excessive conser-

vatism. We find, however, that these values can be chosen

to ensure steady convergence for the asynchronous method

at a linear rate, with rate constants that are almost consis-
tent with vanilla short-step full-gradient descent.

“4)

Theorem 1. Suppose that Q2 = R"™ in (1) and that Assump-
tion 1 is satisfied. For any p > 1, define the quantity v as
follows:

277 Liyes

\/ELmax

Suppose that the steplength parameter v > 0 satisfies the
following three upper bounds:

< 1 < (p —1)VnLmax
TS TS —)
/lp 2p Lres

Wo=14 (5)

(p - l)ﬁLmax

T LeespT (24)

Then we have that for any j > 0 that

P E(IVf(@)I?) ENVF(@0)I17) < pE(IV f(25)]?)-

Moreover, if the essentially strong convexity property (3)
holds with | > 0, we have

- 2)) G,
(6)

E(f(wj)—f*>§(1— 2y (4

n max

while for general smooth convex functions f, we have
1

(flao) =)+ st (L= 575
@)

This theorem demonstrates linear convergence (6) for
ASYSCD in the unconstrained essentially strongly con-
vex case. This result is better than that obtained for HOG-
WILD! (Niu et al., 2011), which guarantees only sublinear
convergence under the stronger assumption of strict con-
vexity.

E(f(z;) = f7) <

The following corollary proposes an interesting particular
choice of the parameters for which the convergence expres-
sions become more comprehensible. The result requires a
condition on the delay bound 7 in terms of n and the ratio
Lmax/ Lres«

Corollary 2. Suppose that Assumption 1 holds, and that

\/ﬁLmax

1<
THES 2€Lyes

®)

Then if we choose

9

define 1 by (5), and set v = 1/1, we have for the essen-
tially strongly convex case (3) with | > 0 that

l
2nLrnax

E(/(e)) - f*) < (1) (Fao) = £, (10)

while for the case of general convex f, we have

1
(f(zo) = [+ o

E(f(z;) = f7) < (11

We note that the linear rate (10) is broadly consistent with
the linear rate for the classical steepest descent method ap-
plied to strongly convex functions, which has a rate con-
stant of (1 — 21/ L), where L is the standard Lipschitz con-
stant for V f. If we assume (not unreasonably) that n steps
of stochastic coordinate descent cost roughly the same as
one step of steepest descent, and note from (10) that n steps
of stochastic coordinate descent would achieve a reduc-
tion factor of about (1 — 1/(2Lmax)), a standard argument
would suggest that stochastic coordinate descent would re-
quire about 4L,,., /L times more computation. (Note that
Lyax/L € [1/n,1].) The stochastic approach may gain
an advantage from the parallel implementation, however.
Steepest descent would require synchronization and care-
ful division of evaluation work, whereas the stochastic ap-
proach can be implemented in an asynchronous fashion.

For the general convex case, (11) defines a sublinear rate,
whose relationship with the rate of the steepest descent for
general convex optimization is similar to the previous para-
graph.

As noted in Section 1, the parameter 7 is closely related
to the number of cores that can be involved in the compu-
tation, without degrading the convergence performance of
the algorithm. In other words, if the number of cores is
small enough such that (8) holds, the convergence expres-
sions (10), (11) do not depend on the number of cores, im-
plying that linear speedup can be expected. A small value
for the ratio Lyes/ Limax (not much greater than 1) implies a
greater degree of potential parallelism. As we note at the
end of Section 1, this ratio tends to be small in some impor-
tant applications. In these situations, the maximal number
of cores could be as high as O(y/n).

5. Constrained Smooth Convex Case

This section considers the case of separable constraints
(2). We show results about convergence rates and high-
probability complexity estimates, analogous to those of the
previous section. Proofs appear in the full version (Liu
et al., 2013).

As in the unconstrained case, the steplength v should be
chosen to ensure steady progress while ensuring that up-

An Asynchronous Parallel Stochastic Coordinate Descent Algorithm

date information does not become too stale. Because con-
straints are present, the ratio (4) is no longer appropriate.
We use instead a ratio of squares of expected differences in
successive primal iterates:

Ellzj—1 — Z;]*/Ellz; — Zj41l*, (12)
where T ;1 is the hypothesized full update obtained by ap-
plying the single-component update to every component of
x;, that is,

max

5 —

Zj1 = argmin (V f(zy(5)), @ — 25) +

We have the following result concerning convergence of the
expected error to zero.

Theorem 3. Suppose that 2 has the form (2), that Assump-
tion 1 is satisfied, and that n > 5. Let p be a constant with
p>(1— 2/\/5)71, and define the quantity 1 as follows:

Liestp” (Lax 2T>
2+ +— .
\/ﬁLmax \/ﬁLres n

Suppose that the steplength parameter v > 0 satisfies the
following two upper bounds:

Yi=1+ (13)

1 1 2 Lmax
vl g1l Ay Vrkee gy
P P n) ALwTp"
Then we have
Ellzj—1—2;)* < pE|lzj—2j4al?, j=1,2,.... (15)

If the essential strong convexity property (3) holds with | >
0, we have for j = 1,2, ... that

2 (Ef(a;) -)

Lmax

Elz; — Ps(z;)|* +

(16)

<(1- w) (74 2 - 1)

For general smooth convex function f, we have

(Rszax +2v(f(z0) — 7)) .

)
Ef(e) ~ 1" < it 7

a7)

Similarly to the unconstrained case, the following corollary
proposes an interesting particular choice for the parameters
for which the convergence expressions become more com-
prehensible. The result requires a condition on the delay
bound 7 in terms of n and the ratio Lyax / Lyes.

Corollary 4. Suppose that Assumption 1 holds, that T > 1
and n > 5, and that

\/ﬁLmax

1) < .
T(r+1) < Tol.

(18)

If we choose
4eT Lyes

\/ﬁLmaX ’

then the steplength v = 1/2 will satisfy the bounds (14). In
addition, for the essentially strongly convex case (3) with

p=1+ (19)

1l >0, we have for j = 1,2, ... that
n=1l J 9
N F£*) < A _px
B (a)-1) < (17 1 5p) (w1 0) 1),
(20)
while for the case of general convex f, we have
. n(LmaxR2 + f(x0) — f*
E(f(z;)— 1) < ™ fwo) =10y

j+n

Similarly to Section 4, and provided 7 satisfies (18), the
convergence rate is not affected appreciably by the delay
bound 7, and close-to-linear speedup can be expected for
multicore implementations when (18) holds. This condi-
tion is more restrictive than (8) in the unconstrained case,
but still holds in many problems for interesting values of 7.
When Lyes/Liax is bounded independently of dimension,
the maximal number of cores allowed is of the the order
of n!/4, which is slightly smaller than the O(n'/?) value
obtained for the unconstrained case.

6. Experiments

We illustrate the behavior of two variants of the stochastic
coordinate descent approach on test problems constructed
from several data sets. Our interests are in the efficiency of
multicore implementations (by comparison with a single-
threaded implementation) and in performance relative to
alternative solvers for the same problems.

All our test problems have the form (1), with either 2 = R"
or () separable as in (2). The objective f is quadratic, that
is,

fla) = 5o Qu + T,

with () symmetric positive definite.

Our implementation of ASYSCD is called DIMM-
WITTED (or DW for short). It runs on various numbers
of threads, from 1 to 40, each thread assigned to a sin-
gle core in our 40-core Intel Xeon architecture. Cores on
the Xeon architecture are arranged into four sockets — ten
cores per socket, with each socket having its own memory.
Non-uniform memory access (NUMA) means that memory
accesses to local memory (on the same socket as the core)
are less expensive than accesses to memory on another
socket. In our DW implementation, we assign each socket
an equal-sized “slice” of (), a row submatrix. The compo-
nents of x are partitioned between cores, each core being
responsible for updating its own partition of z (though it

An Asynchronous Parallel Stochastic Coordinate Descent Algorithm

can read the components of x from other cores). The com-
ponents of = assigned to the cores correspond to the rows of
(@ assigned to that core’s socket. Computation is grouped
into “epochs,” where an epoch is defined to be the period of
computation during which each component of x is updated
exactly once. We use the parameter p to denote the number
of epochs that are executed between reordering (shuffling)
of the coordinates of x. We investigate both shuffling after
every epoch (p = 1) and after every tenth epoch (p = 10).
Access to x is lock-free, and updates are performed asyn-
chronously. This update scheme does not implement ex-
actly the “sampling with replacement” scheme analyzed in
previous sections, but can be viewed as a high performance,
practical adaptation of the ASYSCD method. Please refer
to Zhang & Ré (2014) for more details about DW.

To do each coordinate descent update, a thread must read
the latest value of x. Most components are already in the
cache for that core, so that it only needs to fetch those com-
ponents recently changed. When a thread writes to x;, the
hardware ensures that this z; is simultaneously removed
from other cores, signaling that they must fetch the updated
version before proceeding with their respective computa-
tions.

The first test problem QP is an unconstrained, regularized
least squares problem constructed with synthetic data. It
has the form
: _ 1 2, @y 2

min f(@) = 5[Az = b2+ Slel? @)
All elements of A € R™*", the true model £ € R", and
the observation noise vector § € R™ are generated in i.i.d.
fashion from the Gaussian distribution A/(0, 1), following
which each column in A is scaled to have a Euclidean norm
of 1. The observation b € R™ is constructed from AZ +
5]|AZ||/(5m). We choose m = 6000, n = 20000, and
a = 0.5. We therefore have L,,x =1+ o = 1.5 and

Les _ 1++/n/m+a
Lypax 1+«
This problem is diagonally dominant, and the condition (8)
is satisfied when delay parameter 7 is less than about 95.
In Algorithm 1, we set the steplength parameter v to 1,
and we choose initial iterate to be £y = 0. We measure
convergence of the residual norm ||V f (x)]|.

~ 2.2.

Our second problem QP c is a bound-constrained version of
(22):)
min - f(z) = (v - DHTATA+ o) (z — 7). (23)
z€RY
The methodology for generating A and Z and for choosing
the values of m, n, v, and x is the same as for (22). We
measure convergence via the residual ||z —Pq(z—V f(2))||
where (2 is the nonnegative orthant R’}. At the solution
of (23), about half the components of = are at their lower
bound of 0.

Our third and fourth problems are quadratic penalty func-
tions for linear programming relaxations of vertex cover
problems on large graphs. The variable vector x in these
problems has dimension n = |V| + |E|, where V and E
are the vertex and edge sets for the graph, respectively. The
feasible set €2 = [0, 1]™ has the separable form (2), and the
problem has the following form, for some penalty parame-
ter 3:

min ¢’z + é||Agc —b|* + i\|gc||2, (24)

zeRY 2 26
with 8 = 5. Details appear in the full version (Liu
et al., 2013). Amazon has n = 561050 and DBLP has
n = 520891.

We tracked the behavior of the gradient as a function of
the number of epochs, when executed on different numbers
of cores. We found that in this respect, the performance of
the algorithm does not change appreciably as the number of
cores is increased. Thus, any deviation from linear speedup
is due not to degradation of convergence speed in the algo-
rithm but rather to systems issues in the implementation.
Graphs of convergence behavior for different numbers of
cores are shown in the full version (Liu et al., 2013).

We define speedup of DW on multicore implementations
as follows:
runtime a single core using DW

runtime on P cores

Results are shown in Figures 1 for a variant of DW in which
the indexes are reshuffled only every tenth epoch (p = 10).
Near-linear speedup can be observed for the two QP prob-
lems with synthetic data. For Problems 3 and 4, speedup
is at most 12-14, and there are few gains when the number
of cores exceeds about 12. We believe that the degradation
is due mostly to memory contention. Although these prob-
lems have high dimension, the matrix @) is very sparse (in
contrast to the dense () for the synthetic data set). Thus, the
ratio of computation to data movement / memory access
is much lower for these problems, making memory con-
tention effects more significant. Figures 1 also shows re-
sults of a global-locking strategy for the parallel stochastic
coordinate descent method, in which the vector x is locked
by a core whenever it performs a read or update. The per-
formance curve for this strategy hugs the horizontal axis; it
is not competitive.

The time required for the four test problems on 1 and 40
cores, to reduce residuals below 1072, are shown in Ta-
ble 1. (Similar speedups are noted when we use a conver-
gence tolerance looser than 107°.)

All problems reported on above are essentially strongly
convex. Similar speedup properties can be obtained in the
weakly convex case as well. We illustrate this claim by
showing speedups for the QPc problem with av = 0, see
the full version (Liu et al., 2013).

An Asynchronous Parallel Stochastic Coordinate Descent Algorithm

Synthetic Unconstrained QP: n = 20000 Synthetic Constrained QP: n = 20000

Amazon: n = 561050 DBLP: n = 520891

0 20 25 B 0 25
threads threads

—Ideal —Ideal —Ideal —Ideal
ssf| o AsySCD-DW s5l] -0~ AsySCD-DW sl o AsySCD-DW sf| o AsySCD-DW
<~ Global Locking < Global Locking| <~ Global Locking <~ Global Locking
E w0 a0
] ’ g
a & a® o o
3 o’ 3 ‘o’ 3 3
D) D 3 B
° o o]
a a a a
i L @ @
1 R e e s TN IR R R S S SR @--iis
o - ¢ O ---- e Q@--=mm ¢
4 -
B

0 B 25 0 0 &
threads threads

Figure 1. Test problems 1, 2, 3, and 4: Speedup of multicore implementations of DW on up to 40 cores of an Intel Xeon architecture.
Ideal (linear) speedup curve is shown for reference, along with poor speedups obtained for a global-locking strategy.

Problem | 1core 40 cores
QP 98.4 3.03
QPc 59.7 1.82
Amazon 17.1 1.25
DBLP 11.5 91

Table 1. Runtimes (s) for the four test problems on 1 and 40 cores.

#cores Time(sec) Speedup
SynGD / AsYSCD SynGD/ AsySCD

1 121./27.1 0.22/1.00

10 11.4/2.57 2.38/10.5

20 6.00/1.36 4.51/19.9

30 4.44/1.01 6.10/26.8

40 391/0.88 6.93/30.8

Table 2. Efficiency comparison between SynGD and ASYSCD
for the QP problem. The running time and speedup are based
on the residual achieving a tolerance of 1075,

Dataset # of # of Train time(sec)
Samples Features | LIBSVM AsYSCD
adult 32561 123 16.15 1.39
news 19996 1355191 214.48 7.22
rcv 20242 47236 40.33 16.06
reuters 8293 18930 1.63 0.81
w8a 49749 300 33.62 5.86

Table 3. Efficiency comparison between LIBSVM and ASYSCD
for kernel SVM using 40 cores using homogeneous kernels
(K (xi,2;) = (] x;)?). The running time and speedup are cal-
culated based on the “residual” 10~3. Here, to make both algo-
rithms comparable, the “residual” is defined by ||z — Pa(x —

V@)oo

Turning now to comparisons between ASYSCD and alter-
native algorithms, we start by considering the basic gra-
dient descent method. We implement gradient descent in
a parallel, synchronous fashion, distributing the gradient
computation load on multiple cores and updates the vari-
able z in parallel at each step. The resulting implemen-
tation is called SynGD. Table 2 reports running time and
speedup of both ASYSCD over SynGD, showing a clear
advantage for ASYSCD.

Next we compare ASYSCD to LIBSVM (Chang & Lin,
2011) a popular parallel solver for kernel support vector
machines (SVM). Both algorithms are run on 40 cores to
solve the dual formulation of kernel SVM, without an in-
tercept term. All datasets used in Table 3 except reuters
were obtained from the LIBSVM dataset repository'. The
dataset reuters is a sparse binary text classification dataset
constructed as a one-versus-all version of Reuters-21592.
Our comparisons, shown in Table 3, indicate that ASYSCD
outperforms LIBSVM on these test sets.

7. Conclusions

This paper proposed an asynchronous parallel stochas-
tic coordinate descent algorithm for problems with no
constraints and separable constraints, which is proven to
achieve sublinear convergence (at rate 1/K) on general
convex functions and linear convergence on functions that
satisfy an essential strong convexity property. Our analysis
also indicates the extent to which parallel implementations
can be expected to yield near-linear speedup, in terms of a
parameter that quantifies the cross-coordinate interactions
in the gradient V f. Our computational experience confirms
the theory, as deviations from linear speedup are due to im-
plementation issues rather than algorithmic issues.

The analysis extends almost immediately to a block-
coordinate update scheme, provided that the constraints are
block-separable.

8. Acknowledgements

This project is supported by NSF Grants DMS-0914524,
DMS-1216318, and CCF-1356918; NSF CAREER
Award I1S-1353606; ONR Awards N00014-13-1-0129 and
NO00014-12-1-0041; AFOSR Award FA9550-13-1-0138;
a Sloan Research Fellowship; and grants from Oracle,
Google, and ExxonMobil.

"http://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/

ttp://www.daviddlewis.com/resources/
testcollections/reuters21578/

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.daviddlewis.com/resources/testcollections/reuters21578/

An Asynchronous Parallel Stochastic Coordinate Descent Algorithm

References

Agarwal, A. and Duchi, J. C. Distributed delayed stochastic opti-
mization. CDC, pp. 5451-5452, 2012.

Avron, H., Druinsky, A., and Gupta, A. Revisiting asynchronous
linear solvers: Provable convergence rate through randomiza-
tion. IPDPS, 2014.

Beck, A. and Teboulle, M. A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM J. Imaging Sci-
ences, 2(1):183-202, 2009.

Beck, A. and Tetruashvili, L. On the convergence of block coor-
dinate descent type methods, 2013. To appear in SIAM Journal
on Optimization.

Bertsekas, D. P. and Tsitsiklis, J. N. Parallel and Distributed
Computation: Numerical Methods. Pentice Hall, 1989.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. Dis-
tributed optimization and statistical learning via the alternating
direction method of multipliers. Foundations and Trends in
Machine Learning, 3(1):1-122, 2011.

Chang, C.-C. and Lin, C.-J. LIBSVM: A library for support vec-
tor machines, 2011. URL http://www.csie.ntu.edu.
tw/~cjlin/libsvm/.

Cortes, C. and Vapnik, V. Support vector networks. Machine
Learning, pp. 273-297, 1995.

Cotter, A., Shamir, O., Srebro, N., and Sridharan, K. Better
mini-batch algorithms via accelerated gradient methods. arXiv:
1106.4574, 2011.

Duchi, J. C., Agarwal, A., and Wainwright, M. J. Dual aver-
aging for distributed optimization: Convergence analysis and
network scaling. /EEE Transactions on Automatic Control, 57
(3):592-606, 2012.

Ferris, M. C. and Mangasarian, O. L. Parallel variable distribu-
tion. SIAM Journal on Optimization, 4(4):815-832, 1994.

Goldfarb, D. and Ma, S. Fast multiple-splitting algorithms for
convex optimization. SIAM Journal on Optimization, 22(2):
533-556, 2012.

Liu, J., Wright, S. J., Ré, C., Bittorf, V., and Sridhar, S. An
asynchronous parallel stochastic coordinate descent algorithm.
Arxiv: 1311.1873,2013.

Lu, Z. and Xiao, L. On the complexity analysis of randomized
block-coordinate descent methods. TechReport, 2013.

Luo, Z. Q. and Tseng, P. On the convergence of the coordinate de-
scent method for convex differentiable minimization. Journal
of Optimization Theory and Applications, 72:7-35, 1992.

Mangasarian, O. L. Parallel gradient distribution in unconstrained
optimization. SIAM Journal on Optimization, 33(1):916-1925,
1995.

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. Robust
stochastic approximation approach to stochastic programming.
SIAM Journal on Optimization, 19:1574-1609, 2009.

Nesterov, Y. Introductory Lectures on Convex Optimization: A
Basic Course. Kluwer Academic Publishers, 2004.

Nesterov, Y. Efficiency of coordinate descent methods on huge-
scale optimization problems. SIAM Journal on Optimization,
22(2):341-362, 2012.

Niu, F, Recht, B., Ré, C., and Wright, S. J. HOGWILD!: A lock-
free approach to parallelizing stochastic gradient descent. Ad-
vances in Neural Information Processing Systems 24, pp. 693—
701, 2011.

Peng, Z., Yan, M., and Yin, W. Parallel and distributed sparse
optimization. preprint, 2013.

Richtarik, P. and Taka¢, M. Iteration complexity of randomized
block-coordinate descent methods for minimizing a composite
function. arXiv:1107.2848, 2011.

Richtarik, P. and Takac¢, M. Parallel coordinate descent methods
for big data optimization. ArXiv: 1212.0873,2012.

Scherrer, C., Tewari, A., Halappanavar, M., and Haglin, D. Fea-
ture clustering for accelerating parallel coordinate descent.
NIPS, pp. 28-36, 2012.

Shalev-Shwartz, S. and Zhang, T. Accelerated mini-batch
stochastic dual coordinate ascent. Arxiv: 1305.2581, 2013.

Shamir, O. and Zhang, T. Stochastic gradient descent for non-
smooth optimization: Convergence results and optimal averag-
ing schemes. ICML, 2013.

Tibshirani, R. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society, Series B, 58:267-288,
1996.

Tseng, P. Convergence of a block coordinate descent method for
nondifferentiable minimization. Journal of Optimization The-
ory and Applications, 109:475-494, 2001.

Tseng, P. and Yun, S. A coordinate gradient descent method for
nonsmooth separable minimization. Mathematical Program-
ming, Series B, 117:387-423, June 2009.

Tseng, P. and Yun, S. A coordinate gradient descent method for
linearly constrained smooth optimization and support vector
machines training. Computational Optimization and Applica-
tions, 47(2):179-206, 2010.

Wang, P-W. and Lin, C.-J. Iteration complexity of feasible de-
scent methods for convex optimization. Technical report, 2013.

Wright, S. J. Accelerated block-coordinate relaxation for regu-
larized optimization. SIAM Journal on Optimization, 22(1):
159-186, 2012.

Yang, T. Trading computation for communication: Distributed
stochastic dual coordinate ascent. NIPS, pp. 629-637, 2013.

Zhang, C. and Ré, C. Dimmwitted: A study of main-memory
statistical analytics. ArXiv: 1403.7550, 2014.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

