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A. Proof of Proposition 1
The usual way of writing the CGM distribution is to replace
f(n; θ) in Eq. (3) by

f �(n; θ) =

�
C∈C,iC∈X |C| µC(iC)

nC(iC)

�
S∈S,iS∈X |S|

�
µS(iS)nS(iS)

�ν(S)
(21)

We will show that f(n; θ) = f �(n; θ) for any n such that
h(n) > 0 by showing that both descibe the probability of
an ordered sample with sufficient statistics n. Indeed, sup-
pose there exists some ordered sample X = (x1, . . . ,xN )
with sufficient statistics n. Then it is clear from inspection
of Eq. (3) and Eq. (21) that f(n; θ) =

�N
m=1 p(x

m;θ) =
f �(n; θ) by the junction tree reparameterization of p(x; θ)
(Wainwright & Jordan, 2008). It only remains to show that
such an X exists whenever h(n) > 0. This is exactly what
was shown by Sheldon & Dietterich (2011): for junction
trees, the hard constraints of Eq. (4), which enforce local
consistency on the integer count variables, are equivalent
to the global consistency property that there exists some or-
dered sample X with sufficient statistics equal to n. (Since
these are integer count variables, the proof is quite differ-
ent from the similar theorem that local consistency implies
global consistency for marginal distributions.) We briefly
note two interesting corollaries to this argument. First, by
the same reasoning, any reparameterization of p(x; θ) that
factors in the same way can be used to replace f(n; θ) in
the CGM distribution. Second, we can see that the base
measure h(n) is exactly the number of different ordered
samples with sufficient statistics equal to n.

B. Proof of Theorem 1: Additional Details
Suppose {nN} is a sequence of random vectors that con-
verge in distribution to n, and that nN

A , nN
B , and nN

S are
subvectors that satisfy

nN
A ⊥⊥ nN

B | nN
S (22)

for all N . Let α, β, and γ be measurable sets in the appro-
priate spaces and define

z = Pr(nA ∈ α,nB ∈ β | nS ∈ γ)− (23)
Pr(nA ∈ α | nS ∈ γ) Pr(nB ∈ β | nS ∈ γ)

Also let zN be the same expression but with all instances of
n replaced by nN and note that zN = 0 for all N by the as-
sumed conditional independence property of Eq. (22). Be-
cause the sequence {nN} converges in distribution to n, we
have convergence of each term in zN to the corresponding
term in z, which means that

z = lim
N→∞

zN = lim
N→∞

0 = 0,

so the conditional independence property of Eq. (22) also
holds in the limit.

C. Proof of Theorem 3: Linear Function from
Ĩ to I

We need to show IA can be recovered from ĨA+ with a
linear function.

Suppose the last indicator variable in IA is i0A, which cor-
responds to the setting that all nodes in A take value L. Let
I�A be a set of indicators which contains all entries in IA but
the last one i0A. Then IA can be recovered from I�A by the
constraint

�
iA

IA(iA) = 1.

Now we only need to show that I�A can be recovered from
IA+ linearly. We claim that there exists an invertible matrix
H such that H I�A = ĨA+ .

Showing the existence of H. Let ĨA+(iD) be the iD entry
of ĨA+ , which is for configuration iD of clique D,D ⊆ A.

ĨA+(iD) =
�

iA\D

I�A(iD, iA\D) (24)

Since no nodes in D take value L by definition of ĨD,
(iD, iA\D) cannot be the missing entry i0A of I�A, and the
equation is always valid.

Showing that H is square. For each D, there are (L− 1)|D|

entries, and A has
�|A|
|D|

�
sub-cliques with size |D|. So ĨA+

have overall L|A| − 1 entries, which is the same as I�A. So
H is a square matrix.

We view I�A and ĨA+ as matrices and each row is a indi-
cator function of graph configurations. Since no trivial lin-
ear combination of ĨA+ is a constant by the conclusion in
Loh and Wainwright (2013), ĨA+ has linearly independent
columns. Therefore, H must have full rank and I�A must
have linearly independent columns.


