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Through all the proofs, we denote the set {1, . . . ,m} by
[m].

A. Proof of Theorem 1
We first state a few properties of the function R:
Proposition 1. For any vector M of N dimensions and
integer r,
Property 1. R(M, r) = a+R((M1�a, . . . ,MN �a), r)
for any real number a and r � 0.
Property 2. R(M, r) is non-decreasing in Mi for each
i = 1, . . . , N .
Property 3. If r > 0, R(M, r)�R(M, r � 1)  1/N .
Property 4. If r > 0, and Pi =

1
N +R(M+ ei, r � 1)�

R(M, r) for each i = 1, . . . , N , then P = (P1, . . . , PN )

is a distribution in the simplex �(N).

Proof of Proposition 1. We omit the proof for Property 1
and 2, since it is straightforward. We prove Property 3 by
induction. For the base case r = 1, let S = {j : Mj =

mini Mi}. If |S| = 1, then R(M+ei, 0) is R(M, 0) for i /2
S and R(M, 0)+1 otherwise. If |S| > 1, then R(M+ei, 0)
is simply R(M, 0) for all i. In either case, we have

R(M, 1) =
1

N

NX

i=1

R(M+ ei, 0) 
1

N
(1 +

NX

i=1

R(M, 0))

=

1

N
+R(M, 0),

proving the base case. Now for r > 1, by definition of R
and induction,

R(M, r)�R(M, r � 1)

=

1

N

NX

j=1

(R(M+ ei, r � 1)�R(M+ ei, r � 2))

 1

N

NX

j=1

1

N
=

1

N
,

completing the induction. For Property 4, it suffices to
prove Pi � 0 for each i and

PN
i=1 Pi = 1. The first part

can be shown using Property 2 and 3:

Pi =
1

N
+R(M+ ei, r � 1)�R(M, r)

� 1

N
+R(M, r � 1)� (

1

N
+R(M, r � 1)) = 0.

The second part is also easy to show by definition of R:
NX

i=1

Pi = 1 +

NX

i=1

R(M+ ei, r � 1)�NR(M, r)

= 1 +NR(M, r)�NR(M, r) = 1.

Proof of Theorem 1. First inductively prove V (M, r) =

r/N � R(M, r) for any r � 0. The base case r = 0 is
trivial by definition. For r > 0,

V (M, r) = min

P2�(N)
max

Z2LS

(P · Z+ V (M+ Z, r � 1))

= min

P2�(N)
max

i2[N ]
(Pi + V (M+ ei, r � 1))

(LS = {e1, . . . , eN})

= min

P2�(N)
max

i2[N ]

✓
Pi +

r � 1

N
�R(M+ ei, r � 1)

◆

(by induction)

Denote Pi + (r � 1)/N � R(M + ei, r � 1) by g(P, i).
Notice that the average of g(P, i) over all i is irrelevant
to P : 1

N

PN
i=1 g(P, i) = r/N � R(M, r). Therefore,

maxi g(P, i) � r/N �R(M, r) for any P, and

V (M, r) = min

P

max

i
g(P, i) � r/N �R(M, r). (11)

On the other hand, from Proposition 1, we know that P ⇤
i =

1/N + R(M + ei, r � 1) � R(M, r) (i 2 [N ]) is a valid
distribution. Also,

V (M, r) = min

P

max

i
g(P, i)  max

i
g(P⇤, i)

= max

i

⇣ r

N
�R(M, r)

⌘
=

r

N
�R(M, r).

(12)

So from Eq. (11) and (12) we have V (M, r) =

r/N � R(M, r), and also P ⇤
i = 1/N + R(M + ei, r �

1) � R(M, r) = V (M, r) � V (M + ei, r � 1) realizes
the minimum, and thus is the optimal strategy.

It remains to prove V (0, T )  cN
p
T . Let Z1, . . . ,ZT

be independent uniform random variables taking values in
{e1, . . . , eN}. By what we proved above,

V (0, T ) =
T

N
�E[min

i2[N ]

TX

t=1

Zt,i] = E[max

i2[N ]

TX

t=1

(1/N�Zt,i)].

Let yt,i = 1/N �Zt,i. Then each yt,i is a random variable
that takes value 1/N with probability 1�1/N and 1/N�1

with probability 1/N . Also, for a fixed i, y1,i, . . . , yT,i are
independent (note that this is not true for yt,1, . . . , yt,N for
a fixed t). It is shown in Lemma 3.3 of Berend & Kon-
torovich (2013) that each yt,i satisfies

E[exp(�yt,i)]  exp(

�2�2

2

), 8� > 0,

where �2
= (N � 1)/N2 is the variance of yt,i. So if we

let Yi =
PT

t=1 yt,i, by the independence of each term, we
have 8� > 0,

E[exp(�Yi)] = E[
TY

t=1

exp(�yt,i)] =
TY

t=1

E[exp(�yt,i)]
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 exp(

�2�2T

2

).

Now using Lemma A.13 from Cesa-Bianchi & Lugosi
(2006), we arrive at

E[max

i2[N ]
Yi]  �

p
2T lnN = cN

p
T .

We conclude the proof by pointing out

V (0, T ) = E[max

i2[N ]

TX

t=1

(1/N�Zt,i)] = E[max

i2[N ]
Yi]  cN

p
T .

As a direct corollary of Proposition 1 and Theorem 1, be-
low we list a few properties of the function V for later use.

Proposition 2. If LS = {e1, . . . , eN}, then for any vector
M and integer r,

Property 5. V (M, r) = V ((M1�a, . . . ,MN �a), r)�a
for any real number a and r � 0.

Property 6. V (M, r) is non-increasing in Mi for each i =
1, . . . , N .

Property 7. V (M, r) is non-decreasing in r.

B. Proof of Theorem 2
Proof. Define ¯Vt(M) = E[V (M, T � t + 1)|T � t] and
q(t0, t) = Pr[T = t0|T � t]. We will prove an important
property of the ¯V function:

¯Vt(M) = min

P2�(N)
max

i2[N ]
(Pi + q(t, t)V (M+ ei, 0)+

(1� q(t, t)) ¯Vt+1(M+ ei)).
(13)

This equation shows that ¯Vt(M) is the conditional expec-
tation of the regret given T � t, starting from cumulative
loss vector M and assuming both the learner and the
adversary are optimal. This is similar to the function V
in the fixed horizon case, and again the value of the game
inf

Alg

sup

Z1:1 ET⇠Q[Reg(LT ,MT )] is simply ¯V1(0).

To prove Eq. (13), we plug the definition of ¯Vt+1(M +

ei) into the right hand side and get min

P

maxi g(P, i)
where g(P, i) = Pi + q(t, t)V (M + ei, 0) +

(1� q(t, t))E[V (M + ei, T � t)|T � t + 1]. Using the
fact that for any t0 � t+ 1,

(1� q(t, t))q(t0, t+ 1)

=Pr[T > t|T � t] Pr[T = t0|T � t+ 1]

=Pr[T = t0|T � t] = q(t0, t),

g(P, i) can be simplified in the following way:

g(P, i) (14)
=Pi + q(t, t)V (M+ ei, 0)+

(1� q(t, t))
1X

T=t+1

(q(T, t+ 1)V (M+ ei, T � t))

=Pi + q(t, t)V (M+ ei, 0)+
1X

T=t+1

(q(T, t)V (M+ ei, T � t))

=Pi + E[V (M+ ei, T � t)|T � t]. (15)

Also, the average of g(P, i) over all i is independent of P:

1

N

NX

i=1

g(P, i)

=

1

N
+

1

N

NX

i

E[V (M+ ei, T � t)|T � t]

=E
"
1

N
+

1

N

NX

i

V (M+ ei, T � t)|T � t

#

=E
"
1

N
+

1

N

NX

i

✓
T � t

N
�R(M+ ei, T � t)

◆
|T � t

#

=E[T � t+ 1

N
�R(M, T � t+ 1)|T � t]

(by definition of R)

=E[V (M, T � t+ 1)|T � t],

which implies

min

P2�(N)
max

i2[N ]
g(P, i) � E[V (M, T � t+1)|T � t]. (16)

On the other hand, let P⇤
= E[PT |T � t], where PT

i =

V (M, T � t + 1) � V (M + ei, T � t). P

⇤ is a valid
distribution since P

T is a distribution for any T . Also, by
plugging into Eq. (15),

g(P⇤, i) = E[V (M, T � t+ 1)� V (M+ ei, T � t)|T � t]

+ E[V (M+ ei, T � t)|T � t]

= E[V (M, T � t+ 1)|T � t].

Therefore,

min

P2�(N)
max

i2[N ]
g(P, i)  max

i2[N ]
g(P⇤, i)

= E[V (M, T � t+ 1)|T � t].
(17)

Eq. (16) and (17) show that min

P

maxi g(P, i) =

E[V (M, T � t + 1)|T � t], which agrees with
the left hand side of Eq. (13). We thus prove
inf

Alg

sup

Z1:1

ET⇠Q[Reg(LT ,MT )] = E[V (0, T )|T � 1] =

ET⇠Q[inf
Alg

sup

Z1:T

Reg(LT ,MT )], and P

⇤ is the optimal

strategy.



Towards Minimax Online Learning with Unknown Time Horizon

C. Proof of Theorem 3
To prove Theorem 3, we need to find out what V (0, T ) is
under the general loss space [0, 1]2. Note that Theorem 1
only tells us the case of the basis vector loss space. For-
tunately, it turns out that they are the same if N = 2. To
be more specific, we will show later in Theorem 10 that if
N = 2 and LS = [0, 1]2, then V (0, T ) = T/2�R(0, T ),
which can be further simplified as

V (0, T ) =
T

2

� 1

2

T

TX

m=0

✓
T

m

◆
min{m,T �m}

=

T

2

T

✓
T � 1

bT
2 c

◆
.

We can now prove Theorem 3 using this explicit scaling
factor, denoted by S(T ) for simplicity.

Proof of Theorem 3. Again, solving Eq. (4) is equivalent
to finding the value function ˜V defined on each state of
the game, similar to the functions V and ¯V we had before.
The difference is that ˜V should be a function of not only
the index of the current round t and the cumulative loss
vector M, but also the cumulative loss L for the learner.
Moreover, to obtain a base case for the recursive definition,
it is convenient to first assume that T is at most T0, where
T0 is some fixed integer. Under these conditions, we define
˜V T0
t (L,M) recursively as:

˜V T0
T0

(L,M) , min

P2�(N)
max

Z2LS

Reg(L+P · Z,M+ Z)

V (0, T0)
,

˜V T0
t (L,M) , min

P2�(N)
max

Z2LS

max

⇢
Reg(L+P · Z,M+ Z)

V (0, t)
,

˜V T0
t+1(L+P · Z,M+ Z)

�
,

which is the scaled regret starting from round t with cu-
mulative loss L for the learner and M for the actions, as-
suming both the learner and the adversary will play opti-
mally from this round on. The value of the game ˜V is now
lim

T0!+1
˜V T0
1 (0,0).

To simplify this value function, we will need three facts.
First, the base case can be related to V (M, 1):

˜V T0
T0

(L,M)

= min

P2�(N)
max

Z2LS

Reg(L+P · Z,M+ Z)

V (0, T0)

=

✓
L+ min

P2�(N)
max

Z2LS

Reg(P · Z,M+ Z)

◆�
V (0, T0)

=

✓
L+ min

P2�(N)
max

Z2LS

P · Z+ V (M+ Z, 0)

◆�
V (0, T0)

=

L+ V (M, 1)

V (0, T0)
.

Second, for any L and M, one can inductively show that

˜V T0
t (L,M) =

˜V T0
t (L�R(M, 0),M0

), (18)

where M 0
i = Mi � R(M, 0). (We omit the details since it

is straightforward.)

Third, when M = 0, by symmetry, one has with Pu =

(

1
N , . . . , 1

N )

˜V T0
t (L,0)

= max

Z2LS

max

⇢
Reg(L+Pu · Z,Z)

V (0, t)
, ˜V T0

t+1(L+Pu · Z,Z)
�

�max

⇢
L+

1
N

V (0, t)
, ˜V T0

t+1(L+

1

N
, e1)

�
. (19)

Now we can make use of the condition N = 2 to lower
bound ˜V . The key point is to consider a restricted adver-
sary who can only place one unit more loss on one of the
action than the other, if not stopping the game. Clearly
the value of this restricted game serves as a lower bound
of ˜V . Specifically, consider the value of ˜V T0

t (L, e1) for
t  T0 � 2:

˜V T0
t (L, e1)

� min

p2[0,1]
max

⇢
Reg(L+ p, 2e1)

S(t)
, ˜V T0

t+1(L+ 1� p, e1 + e2)

�

(restricted adversary)

= min

p2[0,1]
max

⇢
L+ p

S(t)
, ˜V T0

t+1(L� p,0)

�
(by Eq. (18))

� min

p2[0,1]
max

⇢
L+ p

S(t)
,
L+ 1/2� p

S(t+ 1)

, ˜V T0
t+2(L+

1

2

� p, e1)

�

(by Eq. (19))

�min

p2R
max

⇢
L+ p

S(t)
, ˜V T0

t+2(L+

1

2

� p, e1)

�

Therefore, if we assume T0 is even without loss of general-
ity and define function GT0

t (L) recursively as:

GT0
T0
(L) , ˜V T0

T0
(L, e1) =

L+ V (e1, 1)

S(T0)
=

L

S(T0)

GT0
t (L) , min

p2R
max

⇢
L+ p

S(t)
, GT0

t+2(L+

1

2

� p)

�
,

then it is clear that ˜V T0
t (L, e1) � GT0

t (L), and thus by
(19),

˜V T0
1 (0,0) � max{1, ˜V T0

2 (

1

2

, e1)} � max{1, GT0
2 (

1

2

)}.

It remains to compute GT0
2 (

1
2 ). By some elemen-

tary computations and the fact that for two linear func-
tions h1(p) and h2(p) of different signs of slopes,
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minp max{h1(p), h2(p)} = h1(p⇤) where p⇤ is such that
h1(p⇤) = h2(p⇤), one can inductively prove that for t =

2, 4, . . . , T0,

GT0
t (L) =

2

T0�t
2

(L+

1
2 )�

1
2

S(T0) +

(T0�t)/2P
k=1

(2

k�1S(T0 � 2k))

.

Plugging S(t) = t
2t

�
t�1
bt/2c

�
and letting T0 ! 1, we arrive

at

lim

T0!1
GT0

2 (1/2)

= lim

T0!1

0

@
T0/2�1X

k=1

⇣
2

k�T0/2S(T0 � 2k)
⌘
1

A
�1

= lim

T0!1

0

@
T0/2�1X

k=1

✓
S(2k)

2

k

◆1

A
�1

=

0

@
1X

j=0

j

8

j

✓
2j

j

◆1

A
�1

.

Define G(x) =
P1

j=0

�2j
j

�
xj and F (x) = x ·G0

(x). Note
that what we want to compute above is exactly 1/F (

1
8 ).

Lehmer (1985) showed that G(x) = (1� 4x)�1/2. There-
fore, F (x) = 2x · (1� 4x)�3/2 and

lim

T0!1
GT0

2 (1/2) = 1/F (1/8) =
p
2.

We conclude the proof by pointing out

˜V = lim

T0!1
˜V T0
1 (0,0)

� max{1, lim

T0!1
GT0

2 (1/2)} =

p
2.

As we mentioned at the beginning of this section, the last
thing we need to show is that the value V (0, T ) is the same
under the two loss spaces. In fact, we will prove stronger
results in the following theorem claiming that this is true
only if N = 2.

Theorem 10. Let LS1,LS2,LS3 be the three loss
spaces {e1, . . . , eN}, {0, 1}N and [0, 1]N respectively, and
V
LS

(0, T ) be the value of the game V (0, T ) under the loss
space LS. If N > 2, we have for any T ,

V
LS1(0, T ) < V

LS2(0, T ) = V
LS3(0, T ).

However, the three values above are the same if N = 2.

Proof. We first inductively show that for any M and r,
V
LS2(M, r) = V

LS3(M, r) and V
LS3(M, r) is convex in

M. For the base case r = 0, by definition, V
LS2(M, 0) =

V
LS3(M, 0) = �mini Mi. Also, for any two loss vectors

M and M

0, and � 2 [0, 1],

V
LS3(�M+ (1� �)M0, 0)

=�min

i
(�Mi + (1� �)M 0

i)

�min

i
(�Mi)�min

i
((1� �)M 0

i)

=�V
LS3(M, 0) + (1� �)V

LS3(M
0, 0),

showing V
LS3(M, 0) is convex in M. For r > 0,

V
LS3(M, r) = min

P2�(N)
max

Z2LS3

(P · Z+ V
LS3(M+ Z, r � 1)) .

Notice that P · Z + V
LS3(M + Z, r � 1) is equal to P ·

Z+ V
LS2(M+Z, r� 1) and is convex in Z by induction.

Therefore the maximum is always achieved at one of the
corner points of LS3, which is in LS2. In other words,

V
LS3(M, r) = min

P2�(N)
max

Z2LS2

(P · Z+ V
LS2(M+ Z, r � 1))

= V
LS2(M, r).

On the other hand, by introducing a distribution Q over all
the elements in LS2, we have

V
LS3(M, r)

= min

P2�(N)
max

Z2LS2

(P · Z+ V
LS3(M+ Z, r � 1))

= min

P2�(N)
max

Q
E
Z⇠Q [P · Z+ V

LS3(M+ Z, r � 1)]

=max

Q
min

P2�(N)
E
Z⇠Q [P · Z+ V

LS3(M+ Z, r � 1)]

=max

Q

✓
E
Z⇠QVLS3(M+ Z, r � 1) + min

P2�(N)
P · E

Z⇠Q[Z]

◆

where we switch the min and max by Corollary 37.3.2
of Rockafellar (1970). Note that the last expression is
the maximum over a family of linear combinations of
convex functions in M, which is still a convex function
in M, completing the induction step. To conclude,
V
LS2(0, T ) = V

LS3(0, T ) for any N and T .

We next prove if N = 2, V
LS1(0, T ) = V

LS2(0, T ).
Again, we inductively prove V

LS1(M, r) = V
LS2(M, r)

for any M and r. The base case is clear. For r > 0, let
P ⇤
i = V

LS1(M, r) � V
LS1(M + ei, r � 1) (i = 1, 2). By

induction,

V
LS2(M, r)

= min

P2�(2)
max

Z2LS2

(P · Z+ V
LS1(M+ Z, r � 1))

 max

Z1,Z22{0,1}
(P ⇤

1Z1 + P ⇤
2Z2 + V

LS1(M+ (Z1, Z2), r � 1))
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=max{V
LS1(M, r � 1), 1 + V

LS1(M+ (1, 1), r � 1),

V
LS1(M, r)}

=max {V
LS1(M, r � 1), V

LS1(M, r)}
(by Property 5 in Proposition 2)

=V
LS1(M, r). (by Property 7 in Proposition 2)

However, it is clear that V
LS2(M, r) � V

LS1(M, r).
Therefore, V

LS1(M, r) = V
LS2(M, r).

Finally, to prove V
LS1(0, T ) < V

LS2(0, T ) for N > 2, we
inductively prove V

LS1((T�r)e1, r) < V
LS2((T�r)e1, r)

for r = 1, . . . , T . For the base case r = 1, V
LS1((T �

1)e1, 1) = 1/N �R((T � 1)e1, 1) = 1/N , while

V
LS2((T � 1)e1, 1)

= min

P2�(N)
max

Z2LS2

(P · Z+ V
LS2((T � 1)e1 + Z, 0))

� min

P2�(N)
max

i2[N ]
(1� Pi + V

LS2((T � 1)e1 + 1� ei, 0))

= min

P2�(N)
max {�P1, 1� P2, . . . , 1� PN} .

We claim that the value of the last minimax expression
above, denoted by v, is (N � 2)/(N � 1), which is strictly
greater than 1/N if N > 2 and thus proves the base case.
To show that, notice that for any P 2 �(N), there must
exist i 2 {2, . . . , N} such that Pi  1/(N � 1) and

max {�P1, 1� P2, . . . , 1� PN} � 1� Pi �
N � 2

N � 1

,

showing v � (N � 2)/(N � 1). On the other
hand, the equality is realized by the distribution P

⇤
=

(0, 1
N�1 , . . . ,

1
N�1 ).

For r > 1, we have

V
LS2((T � r)e1, r)

= min

P2�(N)
max

Z2LS2

(P · Z+ V
LS2((T � r)e1 + Z, r � 1))

� min

P2�(N)
max

i2[N ]
(Pi + V

LS2((T � r)e1 + ei, r � 1))

� min

P2�(N)

1

N

NX

i=1

(Pi + V
LS2((T � r)e1 + ei, r � 1))

=

1

N
+

1

N

NX

i=1

V
LS2((T � r)e1 + ei, r � 1)

>
1

N
+

1

N

NX

i=1

V
LS1((T � r)e1 + ei, r � 1)

=V
LS1((T � r)e1, r).

Here, the last strict inequality holds because for i = 1,
V
LS2((T � r+1)e1, r� 1) > V

LS1((T � r+1)e1, r� 1)

by induction; for i 6= 1, it is trivial that V
LS2((T � r)e1 +

ei, r � 1) � V
LS1((T � r)e1 + ei, r � 1). Therefore, we

complete the induction step and thus prove V
LS1(0, T ) <

V
LS2(0, T ).

D. Proof of Theorem 5
The proof (and the one of Theorem 8) relies heavily on a
common technique to approximate a sum using an integral,
which we state without proof as the following claim.
Claim 1. Let f(x) be a non-increasing nonnegative func-
tion defined on R+. Then the following inequalities hold
for any integer 0 < j  k.

Z k+1

j

f(x) dx 
kX

i=j

f(i) 
Z k

j�1
f(x) dx

Proof of Theorem 5. By Theorem 4, it suffices to upper
bound ¯V1(0) and

PTs

t=1 qt
¯Vt+1(0). Let St =

P1
t0=t 1/t

0d.
By applying Claim 1 multiple times, we have

1

St

✓Z 1

t

dx

xd

◆�1

= td�1
(d� 1); (20)

qt =
1

St · td
 d� 1

t
;

¯V1(0) = E[V (0, T )|T � 1]

cN
S1

1X

T=1

1

T d� 1
2

(by Assumption 2)

cN
S1

✓
1 +

Z 1

1

dx

xd� 1
2

◆
(by Claim 1)

=

cN (d� 1
2 )

S1(d� 3
2 )


cN (d� 1)(d� 1

2 )

d� 3
2

= O(1). (by Eq. (20))

For

¯Vt+1(0) = E[V (0, T � t)|T � t+ 1]

=

cN
St+1

1X

k=1

p
k

(t+ k)d
,

Claim 1 does not readily apply since the function g(k) =p
k/(t + k)d is increasing on [0, t/(2d � 1)] and then de-

creasing on [t/(2d � 1),1). However, we can still ap-
ply the claim to these two parts separately. Let x0 =

bt/(2d � 1)c and x1 = dt/(2d � 1)e. For simplicity, as-
sume 1  x0 < x1 and g(x0)  g(x1) (other cases hold
similarly). Then we have

¯Vt+1(0) =
cN
St+1

 
g(x1) +

x0X

k=1

g(k) +
1X

k=x1+1

g(k)

!
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 cN
St+1

✓
g(x1) +

Z x1

0
g(x)dx+

Z 1

x1

g(x)dx

◆

=

cN
St+1

✓
g(x1) +

�(d� 3
2 )

2�(d)
·
p
⇡

td�
3
2

◆

 (d� 1)cN
p
⇡ ·

�(d� 3
2 )

2�(d)
·
p
t+ o(

p
t).

So finally we have

TsX

t=1

qt ¯Vt+1(0)

(d� 1)

2cN
p
⇡ ·

�(d� 3
2 )

2�(d)

TsX

t=1

✓
1p
t
+ o(

1p
t
)

◆


�(d� 3

2 )

�(d)
(d� 1)

2cN
p
⇡Ts + o(

p
Ts),

which proves the theorem.

E. Proof of Theorem 6
Proof. Let �T

t =

p
kWt�1k2 + (T � t+ 1) be the po-

tential function for this setting. The key property of the
minimax algorithm Eq. (6) shown by Abernethy et al.
(2008a) is the following:

x

T
t ·wt  �

T
t � �

T
t+1.

Based on this property, the loss of our algorithm after Ts

rounds is

TsX

t=1

E[xT
t |T � t] ·wt =

TsX

t=1

E[xT
t ·wt|T � t]


TsX

t=1

E[�T
t � �

T
t+1|T � t].

Now define Ut = E[�T
t |T � t] and qt = Pr[T < t+1|T �

t]. By the fact that fT�t(t0) = (1 � qt)fT�t+1(t0) for any
t0 � t+1, where fT�t and fT�t+1 are conditional density
functions, we have

TsX

t=1

E[xT
t |T � t] ·wt


TsX

t=1

�
Ut � E[�T

t+1|T � t]
�

=

TsX

t=1

✓
Ut �

Z t+1

t

�

T
t+1fT�t(T )dT � (1� qt)Ut+1

◆


TsX

t=1

✓
Ut � �

t
t+1

Z t+1

t

fT�t(T )dT � (1� qt)Ut+1

◆

(* �

T
t+1 increases in T )

=

TsX

t=1

(Ut � Ut+1 + qt(Ut+1 � kWt�1k))

(* �

t
t+1 = kWt�1k)

= U1 � UTs+1+

TsX

t=1

qtE
hp

kWt�1k2 + (T � t)� kWt�1k | T � t+ 1

i

 U1 � UTs+1 +

TsX

t=1

qtE
hp

T � t | T � t+ 1

i
.

(*
p
a+ b�

p
a 

p
b)

Note that UTs+1 � kWT k, and thus it remains
to plug in the distribution and compute U1 andPTs

t=1 qtE[
p
T � t | T � t + 1], which is almost the same

process as what we did in the proof of Theorem 5 if one re-
alizes qt  (d� 1)/t also holds here. In a word, the regret
can be bounded by

�(d� 3
2 )

�(d)
(d� 1)

2
p

⇡Ts + o(
p
Ts),

which is ⇡
p
Ts + o(

p
Ts) if d = 2. The explicit form in

Eq. (7) comes from a direct calculation.

F. Proof of Lemma 2 and Theorem 7
Proof of Lemma 2. The results follow by a direct cal-
culation. The conditional distribution of ⇠t given T
is 1

�N
T
1{⇠ 2 [0,�T ]

N}. Let St =

R1
t

1/T ddT =

�
(d� 1)td�1

��1
. The marginal distribution for ⇠ that has

negative coordinates is clearly 0. Otherwise, with ¯t =

max{t, k⇠k2
1

bN } one has

ft(⇠) =
1

St

Z 1

t

1

T d
�

N
T

1{⇠ 2 [0,�T ]
N}dT

=

1

St

Z 1

t̄

1

T d
�

N
T

dT

=

(d� 1)td�1

(

p
bN)

N

Z 1

t̄

1

T d+N/2
dT

=

d� 1

d� 1 +N/2
�

�N
t min

(
1,

✓
�t

k⇠k1

◆2d�2+N
)
.

Proof of Theorem 7. Applying Theorem 4.2 of Cesa-
Bianchi & Lugosi (2006), the pseudo-regret of the FPL al-
gorithm is bounded by

E[max

i
⇠Ts,i] +

TsX

t=1

E[max

i
(⇠t�1,i � ⇠t,i)]
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+

TsX

t=1

Z

RN

Ft(⇠)(ft(⇠)� ft(⇠ � Zt))d⇠,

where we define ⇠0 = 0 and Ft(⇠) = Zt,I⇠ with I⇠ 2
argmini(Mt�1,i + ⇠i). Now the key observation is that
the pseudo-regret remains the same if we replace random
variables ⇠1, . . . , ⇠Ts with ⇠01, . . . , ⇠

0
Ts

as long as ⇠t and ⇠0t
have the same marginal distribution for any t. Specifically,
we can let ⇠0Ts

= ⇠TS , and for 1 < t  Ts, let ⇠0t�1 = ⇠0t
with probability St/St�1 = (1 � 1/t)d�1 (recall St =R1
t

1/T ddT ), or with 1�St/St�1 probability be obtained
by first drawing T 2 [t� 1, t] according to density f(T ) /
1/T d, and then drawing a point uniformly in [0,�T ]

N . It
is clear that ⇠t and ⇠0t have the same marginal distribution.
So the pseudo-regret can be in fact bounded by three terms:

A = E[max

i
⇠Ts,i],

B =

TsX

t=1

E[max

i
(⇠0t�1,i � ⇠0t,i)],

C =

TsX

t=1

Z

RN

Ft(⇠)(ft(⇠)� ft(⇠ � Zt))d⇠.

A can be further bounded by

1

STs

Z 1

Ts

�T

T d
dT =

d� 1

d� 3/2

p
bTsN.

For B, by construction of ⇠0t, we have

B 
TsX

t=2

✓
�t

St�1

Z t

t�1

dT

T d
+

St

St�1
· 0
◆

=

TsX

t=2

�t

td�1

�
td�1 � (t� 1)

d�1
�


TsX

t=2

�t

td�1
· (d� 1)td�2 (by convexity)

 2(d� 1)

p
bTsN.

For C, let H = {⇠ : ft(⇠) > ft(⇠ � Zt)}. Since 0 
Ft(⇠)  1, we have C 

PTs

t=1

R
H
ft(⇠)d⇠. Now observe

that when mini ⇠i � 0, ft(⇠) is non-increasing in each ⇠i.
So the only possibility that ft(⇠) > ft(⇠ � Zt) holds is
when there exists an i such that ⇠i is strictly smaller than
Zt,i. That is

H = {⇠ : min

i
⇠i � 0 and 9i, s.t. ⇠i < Zt,i}

So we have

C 
TsX

t=1

1

St

Z 1

t

dT

T d

Z

H

1{⇠ 2 [0,�T ]
N}

�

N
T

d⇠


TsX

t=1

1

St

Z 1

t

N

T d

Zt,i�
N�1
T

�

N
T

dT

 d� 1

d� 1/2

r
N

b

TsX

t=1

1p
t

 2(d� 1)p
b(d� 1/2)

p
TsN.

Combining A,B and C proves the theorem.

G. Proof of Theorem 8
Proof. We will first show that

Reg(LTs ,MTs)  (lnN) · E

1

⌘T
|T � TS + 1

�

| {z }
A

+

1

8

TsX

t=1

E[⌘T |T � t]

| {z }
B

.

(21)

Let �T
t =

1
⌘T

ln

⇣PN
i=1 exp(�⌘TMt�1,i)

⌘
. The key point

of the proof for the non-adaptive version of the exponential
weights algorithm is to use �

T
t as a “potential” function,

and bound the change in potential before and after a single
round (Cesa-Bianchi & Lugosi, 2006). Specifically, they
showed that

P

T
t · Zt 

⌘T
8

+ �

T
t � �

T
t+1.

We also base our proof on this inequality. The total loss of
the learner after Ts rounds is

LTs =

TsX

t=1

E[PT
t |T � t] · Zt =

TsX

t=1

E[PT
t · Zt|T � t]

 B +

TsX

t=1

E[�T
t � �

T
t+1|T � t].

Define Ut = E[�T
t |T � t]. We do the following transfor-

mation:

E[�T
t � �

T
t+1|T � t]

=Ut � ET [�
T
t+1|T � t]

=Ut � qt�
t
t+1 � (1� qt)Ut+1

=Ut � Ut+1 + qt(Ut+1 � �

t
t+1)

=Ut � Ut+1 + qt · E[�T
t+1 � �

t
t+1|T � t+ 1]

=Ut � Ut+1 + qt · E[FT,t(Mt)|T � t+ 1],

where we define

FT,t(M) =

ln (

P
i exp(�⌘TMi))

⌘T
�
ln (

P
i exp(�⌘tMi))

⌘t
.
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A key observation is

max

M2RN+
⌘T <⌘t

FT,t(M) =

lnN

⌘T
� lnN

⌘t
, (22)

which can be verified by a standard derivative analysis that
we omit. (An alternative approach using KL-divergence
can be found in Chapter 2.5 of Bubeck, 2011.)

We further define another potential function ¯

�

T
t =

(lnN)/⌘T and also ¯Ut = E[¯�T
t |T � t]. Note that the new

potential ¯

�

T
t has no dependence on t and thus ¯

�

T
t =

¯

�

T
t0

for any t, t0. We now have

TsX

t=1

E[�T
t � �

T
t+1|T � t]

=

TsX

t=1

�
Ut � Ut+1 + qt · E[�T

t+1 � �

t
t+1|T � t+ 1]

�

= U1 � UTs+1 +

TsX

t=1

�
qt · E[�T

t+1 � �

t
t+1|T � t+ 1]

�

| {z }
C

(23)

 U1 � UTs+1 +

TsX

t=1

✓
qt · E[

lnN

⌘T
� lnN

⌘t
|T � t+ 1]

◆

(by Eq. (22))

=

¯U1 � ¯UTs+1 +

TsX

t=1

�
qt · E[¯�T

t+1 � ¯

�

t
t+1|T � t+ 1]

�

| {z }
D

+

¯UTs+1 � UTs+1. (* U1 =

¯U1)

Notice that D has the exact same form as C except for a
different definition of the potential, and also Eq. (23) is an
equality. Therefore, by a reverse transformation, we have

TsX

t=1

E[�T
t � �

T
t+1|T � t]

=

TsX

t=1

E[¯�T
t � ¯

�

T
t+1|T � t] + ¯UTs+1 � UTs+1

=

¯UTs+1 � UTs+1 (* ¯

�

T
t =

¯

�

T
t+1)

¯UTs+1 is exactly A in Eq. (21), and UTs+1 can be related
to the loss of the best action:

UTs+1 = E
"

1

⌘T
ln

NX

i=1

exp(�⌘TMTs,i) | T � Ts + 1

#

� E

1

⌘T
ln exp(�⌘TR(MTs , 0)) | T � Ts + 1

�

= �R(MTs , 0).

The regret is therefore

Reg(LTs ,MTs) = LTS �R(MTs , 0)

 A+B � UTs+1 �R(MTs , 0)

 A+B,

proving Eq. (21).

The rest of the proof is merely to plug in the distribution
and ⌘T =

p
(b lnN)/T , and upper bound Eq. (21) using

Claim 1. Adopting the notation St =
P1

t0=t 1/t
0d and the

result of Eq. (20) in the proof of Theorem 5, we have

A =

p
lnN

STs+1

p
b

1X

T=Ts+1

1

T d�1/2

 (d� 1)

p
lnNp

b
(Ts + 1)

d�1·
✓Z 1

Ts+1

dx

xd�1/2
+

1

(Ts + 1)

d�1/2

◆

=

d� 1

(d� 3/2)
p
b

p
Ts lnN + o(

p
Ts lnN);

B =

p
b lnN

8

TsX

t=1

1

St

1X

T=t

1

T d+1/2

 (d� 1)

p
b lnN

8

TsX

t=1

td�1

✓Z 1

t

dx

xd+1/2
+

1

td+1/2

◆

 (d� 1)

p
b lnN

8

TsX

t=1

✓
1

(d� 1/2)
p
t
+

1

td+3/2

◆


p
b(d� 1)

4(d� 1/2)

p
Ts lnN + o(

p
Ts lnN).

Combining the bounds above for A and B proves the theo-
rem.

H. Proof of Theorem 9
Proof. The main idea resembles the one of Theorem 8, but
the details are much more technical. Let us first define sev-
eral notations:

St ,
Z 1

mt

dm

md
=

1

(d� 1)md�1
t

,

qt , Pr[m < mt|m � mt�1] =
1

St�1

Z mt

mt�1

dm

md

= 1�
✓
mt�1

mt

◆d�1

,

Y m
t ,

NX

i=1

exp(�⌘mMt�1,i),
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�

m
t ,

✓
1 +

1

⌘m

◆
lnY m

t , Ut , E[�m
t |m � mt�1].

The proof starts from the following property of the expo-
nential weights algorithm (Cesa-Bianchi & Lugosi, 2006):

P

m
t · Zt 

1

1� e�⌘m

�
lnY m

t � lnY m
t+1

�

 �

m
t � �

m
t+1. (* ⌘m � ln(1 + ⌘m))

By the fact that fm�mt�1(m
0
) = (1 � qt)fm�mt(m

0
) for

any m0 � mt, where fm�mt�1 and fm�mt are conditional
density functions, the loss of the learner after Ts rounds
LTs is

TsX

t=1

E[Pm
t · Zt|m � mt�1]


TsX

t=1

E[�m
t � �

m
t+1|m � mt�1]

=

TsX

t=1

 
Ut �

Z mt

mt�1

�

m
t+1fm�mt�1(m)dm+ (1� qt)Ut+1

!


TsX

t=1

 
Ut � �

mt�1

t+1

Z mt

mt�1

fm�mt�1(m)dm+ (1� qt)Ut+1

!

=U1 � UTs+1 +

TsX

t=1

qt(Ut+1 � �

mt�1

t+1 ),

Here the last inequality holds because �

m
t is increasing in

m. To show this, we consider the following

✓
1 +

1

⌘

◆
ln

NX

i=1

exp(�⌘ai)

=

✓
1 +

1

⌘

◆ 
�⌘a1 + ln

NX

i=1

exp(�⌘(ai � a1))

!

=� (⌘ + 1)a1 +

✓
1 +

1

⌘

◆
ln

NX

i=1

exp(�⌘(ai � a1)),

where ⌘, a1, . . . , aN are positive numbers. Since
ln

P
i exp(�⌘(ai � a1)) � 0, the expression above is de-

creasing in ⌘, which along with the fact that ⌘m decreases
in m shows that �m

t increases in m.

We now compute U1 and UTs+1:

U1 = E[(1 +
p
m/ lnN) lnN | m � 1]

= lnN +

d� 1

d� 3/2

p
lnN

UTs+1 = E
"
(1 + 1/⌘m) ln

X

i

exp(�⌘mMTs,i) | m � mTs

#

� E[(1 + 1/⌘m)(�⌘mm⇤
) | m � mTs ]

= �m⇤
(1 + E[⌘m | m � mTs ])

= �m⇤

 
1 +

d� 1

d� 1/2

s
lnN

mTs

!

� �m⇤ � d� 1

d� 1/2

p
m⇤

lnN

(* mTs = m⇤
+ 1)

For Ut+1��

mt�1

t+1 = E[�m
t+1��

mt�1

t+1 | m � mt], we first
upper bound the part inside the expectation:

�

m
t+1 � �

mt�1

t+1

=

✓
lnY m

t+1

⌘m
�

lnY mt�1

t+1

⌘mt�1

◆
+ (⌘mt�1 � ⌘m)min

i
Mt,i

+ ln

P
e�⌘m(Mt,i�mini Mt,i)

P
e�⌘mt�1 (Mt,i�mini Mt,i)

.

The first term above is at most
⇣

1
⌘m

� 1
⌘mt�1

⌘
lnN =

p
lnN(

p
m � p

mt�1) by Eq. (22). The second term
is at most

p
lnN(

1p
mt�1

� 1p
m
)mt�1 since mini Mt,i =

mt � 1  mt�1, and the last term is at most lnN since the
numerator is at most N while the denominator is at least 1.
Therefore, we have

Ut+1 � �

mt�1

t+1

 lnN +

p
lnN · E[

p
m� mt�1p

m
| m � mt]

= lnN +

p
lnN

✓
d� 1

d� 3/2

p
mt �

d� 1

d� 1/2

mt�1p
mt

◆

 lnN +

p
lnN

✓
d� 1

d� 3/2

p
mt �

d� 1

d� 1/2

mt � 1

p
mt

◆

= lnN +

(d� 1)

p
mt lnN

(d� 3/2)(d� 1/2)
+

d� 1

d� 1/2

r
lnN

mt
.

It remains to compute
PTs

t=1 qt(Ut+1��

mt�1

t+1 ), which, us-
ing the above, can be done by computing A =

PTs

t=1 qt,
B =

PTs

t=1 qt
p
mt and C =

PTs

t=1 qt/
p
mt. By inequality

1� x  � lnx for any x > 0, we have

A =

TsX

t=1

 
1�

✓
mt�1

mt

◆d�1
!

 �(d� 1)

TsX

t=1

(lnmt�1 � lnmt)

= (d� 1) ln(m⇤
+ 1).

For B, we first show qt
p
mt  2(d� 1)(

p
mt �

p
mt�1),
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which is equivalent to

qt
p
mtp

mt �
p
mt�1

=

⇣
mt

mt�1

⌘d�1
� 1

⇣
mt

mt�1

⌘d�1
�
⇣

mt
mt�1

⌘d�3/2
 2(d�1)

if mt 6= mt�1 (it is trivial otherwise). Define h(x) =

(xd�1 � 1)/(xd�1 � xd�3/2
) for x 2 [1, 2] (note that

mt/mt�1 is within this interval). One can verify that
h0
(x) < 0 and thus h(x)  limx!1 h(x) = 2(d � 1).

So we prove qt
p
mt  2(d� 1)(

p
mt �

p
mt�1) and

B  2(d� 1)

TsX

t=1

(

p
mt �

p
mt�1)

= 2(d� 1)(

p
mTs � 1)  2(d� 1)

p
m⇤.

A simple comparison of B and C shows C = o(
p
m⇤

). We
finally conclude the proof by combining all we have

Reg(LTs ,MTs)

 U1 � UTs+1 +

TsX

t=1

qt(Ut+1 � �

mt�1

t+1 )�m⇤

= (1 + (d� 1) ln(m⇤
+ 1)) lnN

+

✓
d� 1

d� 1/2
+

2(d� 1)

2

(d� 3/2)(d� 1/2)

◆p
m⇤

lnN

+ o(
p
m⇤

lnN)

=

3(d� 7/6)(d� 1)

(d� 3/2)(d� 1/2)

p
m⇤

lnN

+ (1 + (d� 1) ln(m⇤
+ 1)) lnN + o(

p
m⇤

lnN).

I. Examples
The first example shows that the results stated in Theorem 2
can not generalize to other loss spaces.

Example 1. Consider the following Hedge setting: N =

3,LS = {1 � e1,1 � e2,1 � e3} where 1 = (1, 1, 1).
Suppose the adversary picked 1�e1 and 1�e2 for the first
two rounds and we are now on round t = 3 with M2 =

(1, 1, 2). Also the conditional distribution of the horizon
given T � 3 is Pr[T = 3] = Pr[T = 4] = 1/2. Let
P

⇤ be the minimax strategy for this round and P

T be the
minimax strategy assuming the horizon to be T . Then P

⇤ 6=
E[PT |T � 3], and also

inf

Alg

sup

Z3:1

E[Reg(LT ,MT )|T � 3]

6= E[inf
Alg

sup

Z3:T

Reg(LT ,MT )|T � 3].
(24)

Proof. Recall the V function we had in Section 3. Ignoring
the loss for the learner for the first two rounds (which is the
same for both sides of Eq. (24)), we point out that the right
hand side of Eq. (24) is essentially

1

2

V (M2, 1) +
1

2

V (M2, 2),

and the left hand side, denoted by V 0, is

min

P

max

Z

(P · Z+

1

2

V (M2 + Z, 0) +
1

2

V (M2 + Z, 1)).

Also P

⇤ and P

T are the distributions that realize the mini-
mum in the definition of V 0 and V (M2, T�2) respectively.
Below we show the values of these quantities without giv-
ing full details:

V (M2, 1) = min

P

max

i
{1� Pi + V (M2 + 1� ei, 0)}

= min

P

max{�P1,�P2,�P3 � 1}

= �1/2,

with P

3
= (1/2, 1/2, 0);

V (M2, 2) = min

P

max

i
{1� Pi + V (M2 + 1� ei, 1)}

= min

P

max{�P1,�P2,�P3 � 1/3}

= �4/9,

with P

4
= (4/9, 4/9, 1/9);

V 0
= min

P

max

i

⇣
1� Pi +

1

2

V (M2 + 1� ei, 0)

+

1

2

V (M2 + 1� ei, 1)
⌘

= min

P

max{�P1,�P2,�P3 � 2/3}

= �1/2,

with P

⇤
= (1/2, 1/2, 0). We thus conclude that

E[PT |T � 3] = (17/36, 17/36, 1/18) 6= P

⇤

and

E[V (M2, T � 2)|T � 3] = �17/36 6= V 0.

The next two examples show that the idea of “treating the
current round as the last round” does not work for minimax
algorithms.
Example 2. Consider the following Hedge setting: N =

2,LS = [0, 1]2 and the horizon T is a even number. Sup-
pose on round t, the learner chooses Pt using the minimax
algorithm assuming horizon T = t. Then the adversary
can make the regret after T rounds to be T/4 by choosing
e1 and e2 alternatively.
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Proof. As shown in Theorem 10, when N = 2, the min-
imax algorithm with LS = [0, 1]2 is the same as the one
with LS = {e1, e2}, which we already know from The-
orem 1. If the learner treats the current round as the last
round, then Pt,1 is

V (Mt�1, 1)� V (Mt�1 + e1, 0)

=

1

2

�
1 + min{Mt�1,1 + 1,Mt�1,2}

�min{Mt�1,1,Mt�1,2 + 1}
�
.

Hence, for any round t where t is odd, we have Mt�1 =

(

t�1
2 , t�1

2 ) and thus Pt,1 = Pt,2 = 1/2 and the learner
suffers loss 1/2. For any round t where t is even, we have
Mt�1 = (

t
2 ,

t
2 � 1) and thus Pt,1 = 0, Pt,2 = 1 and the

learner suffers loss 1 since the adversary will choose e2

for this round. Finally, at the end of T rounds, the loss
of the best action is clearly T/2. So the regret would be
3T/4� T/2 = T/4.

Example 3. Consider the online linear optimization prob-
lem described in Section 6.1. If horizon T is even and the
learner predicts using the minimax algorithm Eq (6) with
T replaced with t. Then the adversary can make the re-
gret to be

p
2T/4 after T rounds by choosing e1 and �e1

alternatively.

Proof. For any round t where t is odd, we have Wt�1 = 0

and thus xt = 0. So the loss for this round is 0. For any
round t where t is even, we have Wt�1 = e1 and thus
xt = �

p
2
2 e1. So the loss for this round is

p
2/2 since

the adversary will pick �e1. At the end of T rounds, since
WT = 0, the regret will simply be

p
2T/4.


