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Through all the proofs, we denote the set {1,...,
[m].

m} by

A. Proof of Theorem 1

We first state a few properties of the function R:
Proposition 1. For any vector M of N dimensions and
integer r,

Property 1. R(M,r) =a+ R((M; —a,...,
for any real number a and r > 0.

MN 70')77")

Property 2. R(M,r) is non-decreasing in M; for each
i=1,...,N.

Property 3. Ifr >0, R(M,r) — R(M,r — 1) <1/N.
Property 4. Ifr >0, and P, = 1 + R(M +e;,7 — 1) —
R(M,r) foreachi = 1,...,N, then P = (Py,..., Py)
is a distribution in the simplex A(N).

Proof of Proposition 1. We omit the proof for Property 1
and 2, since it is straightforward. We prove Property 3 by
induction. For the base case r = 1, let S = {j : M; =
min; M, }. If | S| = 1, then R(M+-e;,0) is R(M, 0) fori ¢
Sand R(M, 0)+1 otherwise. If | S| > 1, then R(M+e;, 0)
is simply R(M., 0) for all 7. In either case, we have

N
Z (M + e;,0) %lJrZRM 0))

i=1
1
=—+ R(M,0
N + ( 9 )7
proving the base case. Now for » > 1, by definition of R

and induction,

R(M,r) — R(M,r —1)

=z

completing the induction. For Property 4, it suffices to
prove P; > 0 for each 4 and Zf;l P; = 1. The first part
can be shown using Property 2 and 3:

1
Pi:N—&—R(M—&—ei,T—l)—

1
2N+R<M,T—1

R(M, )

)—(%-ﬁ-R(M,r—l)):O.

The second part is also easy to show by definition of R:

N N
ZPZ = 1+ZR(M+81,T*1)*NR(M,7")
i=1 =1

=1+ NR(M,r) - NR(M,r) =

Proof of Theorem 1. First inductively prove V(M,r) =
r/N — R(M,r) for any r > 0. The base case r = 0 is
trivial by definition. For r > 0,

VIM,r)= min max (P-Z4+V(M+Z,r—1))

PeA(N) ZeLS
= min max (P, +V(M+e;,r—1))

PcA(N) i€[N]
(LS ={e1,...,en})

= i P - M “ 1
i, oy (Pt T~ RO+ our-1)

(by induction)

Denote P; 4+ (r — 1)/N — R(M + e;,r — 1) by g(P, ).
Notice that the average of g(P,7) over all i is irrelevant
to P : %Zf;l g(P,i) = r/N — R(M,r). Therefore,
max; g(P,i) > r/N — R(M,r) for any P, and

V(M,r) = ngnmaxg(P,i) >r/N —RM,r). (11)

On the other hand, from Proposition 1, we know that P} =
1/N+RM +e;,r—1)— R(M,r) (i € [N]) is a valid
distribution. Also,

V(M,7) = minmax g(P, ) < maxg(P", )

12
= max (%—R(M,r}) :%—R(M,T (12

So from Eq. (11) and (12) we have V(M,r) =
r/N — R(M,r), and also P = 1/N + R(M + e;,r —
1) = RM,r) = V(M,r) — V(M + e;,r — 1) realizes
the minimum, and thus is the optimal strategy.

It remains to prove V(0,7) < enVT. Let Zq,...,Zp
be independent uniform random variables taking values in
{e1,...,en}. By what we proved above,

——E mln ZZ“ =

Lety,; = 1/N — Z, ;. Then each y, ; is a random variable
that takes value 1 /N with probability 1—1/N and 1/N —1
with probability 1/N. Also, for a fixed ¢, y1 5, . .., yr,; are
independent (note that this is not true for y; 1, ...,y n for
a fixed ¢). It is shown in Lemma 3.3 of Berend & Kon-
torovich (2013) that each y, ; satisfies

V(0,T) = E[m 2

202

Elexp(Ay:,s)] < exp( ), VA >0,

where 0 = (N — 1)/N? is the variance of y; ;. So if we

letY;, = Zthl Yt,i» by the independence of each term, we
have VA > 0,

T
Hexp (M)l = [ Elexp(hgr,q)]

t=1

Elexp(A\Y;)]



Towards Minimax Online Learning with Unknown Time Horizon

A2o2T
2

).

< exp(

Now using Lemma A.13 from Cesa-Bianchi & Lugosi
(2006), we arrive at

Emax Y;] <ov2TIn N = enVT.

1€[N]
We conclude the proof by pointing out

T

V(0,T) = E[max
i€[N] = i€[N]

O

As a direct corollary of Proposition 1 and Theorem 1, be-
low we list a few properties of the function V' for later use.
Proposition 2. IfLS = {ey, ..
M and integer r,

Property 5. V(M,r) =V ((M;—a,...,My—a),r)—a
for any real number a and r > 0.

., en }, then for any vector

Property 6. V (M, r) is non-increasing in M; for each i =
1 N.

Property 7. V (M, r) is non-decreasing in r.

yeeey

B. Proof of Theorem 2

Proof. Define V;(M) = E[V(M,T —t + 1)|T > t] and
q(t',t) = Pr[T = #'|T" > t]. We will prove an important
property of the V' function:

Vi(M) = min max(P; + q(t,t)V(M +e;,0)+

PeA(N)i€[N]
(1 —q(t, 1) Vigr (M + &)
(13)

This equation shows that V;(M) is the conditional expec-
tation of the regret given 7' > ¢, starting from cumulative
loss vector M and assuming both the learner and the
adversary are optimal. This is similar to the function V'
in the fixed horizon case, and again the value of the game
ianlg Supzl:m ETNQ[Reg(LT, MT)] is simply V1 (0)

To prove Eq. (13), we plug the definition of V; 1 (M +
e;) into the right hand side and get minp max; g(P,1)
where ¢(P,i) = P, + q(t,t)V(M + e€;,0) +
(1 —gq(t,t))E[V(M + e;,T — t)|T > t + 1]. Using the
fact that for any ¢ > ¢ + 1,

(1 - Q(t7 t))Q(tlv t+ 1)
=Pr[T > ¢|T > t]Pr[T =¢'|T >t + 1]
=Pr[T =t|T >t] = q(t',t),

(1/N—=Z,,)] = E[max Y;] < enVT.

g(P, 1) can be simplified in the following way:

g(P,1) (14)
=P +q(t,t)V (M + e;, 0)+

oo

(1—q(t.t)) > (a(T,t+1)V(M+e;, T 1))
T=t+1

=P; +q(t,t)V(M + e;,0)+

o0

> (T V(M +e;, T —t))
T=t+1

=P, +E[V(M +e;, T — t)|T > t]. (15)

Also, the average of g(P, %) over all i is independent of P:

1 N
=1

1

N
1
== —E T — >
N+N i E[VIM+e;, T —t)|T >t

N
1
—+N;V(M+ei,T—t)|th

— RM,T —t+1)|T >t

(by definition of R)
=E[VIM,T —t+1)|T > t],
which implies

i P,o)>EV(M, T —-t+1)|T >t]. (16
o 2ty 235071 2 BV M=t e
On the other hand, let P* = E[PT|T > t], where P! =
VM, T —t+1) - V(M + e, T —t). P*is a valid
distribution since P is a distribution for any 7'. Also, by
plugging into Eq. (15),
gP* i) =EVM,T—-t+1) - V(M+e;, T —1t)|T >t
+EV(M+e;, T —t)|T >t
=E[VIM, T —t+1)|T >t.
Therefore,
i P,i) < P* i
plin, | max g(P,i) < max g(P*,1) -
=E[VIM,T —t+1)|T > t.

Eq. (16) and (17) show that minp max; g(P,:) =
E[V(M,T — t + 1)|]T > ], which agrees with
the left hand side of Eq. (13). We thus prove
inf sup Er.q[Reg(Lr,Mr)| = E[V(0,T)|T > 1] =
AlgZi.

Erg[inf sup Reg(Ly,My)], and P* is the optimal
Alg Z.7
strategy. O
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C. Proof of Theorem 3

To prove Theorem 3, we need to find out what V' (0,7T) is
under the general loss space [0, 1]2. Note that Theorem 1
only tells us the case of the basis vector loss space. For-
tunately, it turns out that they are the same if N = 2. To
be more specific, we will show later in Theorem 10 that if
N =2and LS = [0,1]%, then V(0,T) = T/2 — R(0,T),
which can be further simplified as

V(0,T) ——Q—TZ ( )min{m,T—m}

B 2£T <TL§_J1>'

We can now prove Theorem 3 using this explicit scaling
factor, denoted by S(7") for simplicity.

Proof of Theorem 3. Again, solving Eq. (4) is equivalent
to finding the value function V defined on each state of
the game, similar to the functions V" and V we had before.
The difference is that V should be a function of not only
the index of the current round ¢ and the cumulative loss
vector M, but also the cumulative loss L for the learner.
Moreover, to obtain a base case for the recursive definition,
it is convenient to first assume that 7" is at most 1}y, where
Ty is some fixed integer. Under these conditions, we define
V.70 (L, M) recursively as:

Reg(L+P-Z, M+ 7Z)

PénAl?N) ZoLs V(0,Tp) ’

Vg (L, M) £

Reg(L+P-Z,M+Z)  pelo] max{ S

V(L,M) 2 min max max {

PEA(N) ZELS V(0,t)

%(L+P~27M+Z>}7

which is the scaled regret starting from round ¢ with cu-

mulative loss L for the learner and M for the actions, as-

suming both the learner and the adversary will play opti-

mally from this round on. The value of the game V' is now
lim  V;(0,0).

To—4+o0

To simplify this value function, we will need three facts.
First, the base case can be related to V' (M, 1):

Vi (L, M)
Reg(L+P-Z,M+Z)
V(OaTO)

= min max
PcA(N) Z€LS

<L+ min max Reg(P -Z,M + Z) )/V (0,Tp)
PEA(N) ZELS

<L+ min max P-Z+V(M+Z, O)/V (0,Tp)
PcA(N) ZELS

_L+V(M,1)

B V(OaTO)

Second, for any L and M, one can inductively show that
‘zTU(LvM) = f/;TU(L—R(M,O),M/), (18)

where M/ = M; — R(M,0). (We omit the details since it
is straightforward.)

Third, when M = 0, by symmetry, one has with P,, =
(%)

v (L,0)

B Reg(L+P,-Z,Z) -1,

ani)émax{ V(0,0) , VtJrl(L +P,-Z2,7)
L++ . 1

>max{v(oftv) V;Jrol(L—l—N,el)}. (19)

Now we can make use of the condition N = 2 to lower
bound V. The key point is to consider a restricted adver-
sary who can only place one unit more loss on one of the
action than the other, if not stopping the game. Clearly
the value of this restricted game serves as a lower bound
of V. Specifically, consider the value of TN/tTO (L,eq) for
t < T() —2:

VtTO (L7 el)

(restricted adversary)

L
U N p,0>} (by Eq. (18))

{L—Fp L+1/2—p

~ 1
) ‘/t,l-;-OQ(L + 5 — b, el)}

Pel0.1] St) " S(t+1)
(by Eq. (19))
. L+p (710 1_
zgléﬁmax{s(t), ‘/H_Q(L“' 2 pyel)}

Therefore, if we assume 7 is even without loss of general-
ity and define function G7°(L) recursively as:

L+V(e,1) L

Gho(Ly 2 VvI(L, e) = =
To( ) To( 1) S(TO) S(TO)
b . L+p 1
GT(0) 2 mipmax { 52 6l (o 4 5 -
then it is clear that V;"°(L,e;) > GI°(L), and thus by
19),

V0 (0,0) > max{1, V, (f e1)} > max{1, GTO(;)}.

It remains to compute GQTO(%) By some elemen-
tary computations and the fact that for two linear func-
tions hi(p) and ha(p) of different signs of slopes,

, V(L +1—p,e; +e2)}
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min, max{h1(p), ha(p)} = hi(p*) where p* is such that
h1(p*) = ha(p*), one can inductively prove that for ¢ =
2,4,.... Ty,
To—t
e poy
(To—t)/2
S(To)+ > (2F-1S(Tp — 2k))
k=1

Gi'(L) =

Plugging S(t) = 2%(&721]) and letting Ty — oo, we arrive
at

lim GZ2°(1/2)

To—00
To/2—1 -1
; k—To/2 _
N BCEE
k=1
To/2—1 -1
K (S(Qk;))
= lim
T0—>OO 2k
k=1
-1
>3 (%)
J=0 8\

Define G(z) = > 72 (233)1] and F'(z) = z - G'(x). Note
that what we want to compute above is exactly 1/F ().
Lehmer (1985) showed that G(x) = (1 — 42)~ /2. There-

fore, F(x) = 2x - (1 — 4)~3/2 and

Jim GI(1/2) =1/F(1/8) = V2.

We conclude the proof by pointing out

V = lim V{(0,0)

To—o0

> max{1, lim G2°(1/2)} = V2.
To—)OO
O

As we mentioned at the beginning of this section, the last
thing we need to show is that the value V' (0, T') is the same
under the two loss spaces. In fact, we will prove stronger
results in the following theorem claiming that this is true
only if N = 2.

Theorem 10. Let LS,,LS;,LS3 be the three loss
spaces {eq,...,enx},{0,1}" and [0, 1]V respectively, and
Vis(0,T') be the value of the game V (0, T) under the loss
space LS. If N > 2, we have for any T,

Vis, (O, T) < Ws, (07 T) = WLs, (0, T).

However, the three values above are the same if N = 2.

Proof. We first inductively show that for any M and r,
Vis,(M,r) = Vis, (M, ) and Vs, (M, ) is convex in
M. For the base case r = 0, by definition, Vs, (M, 0) =
Vs, (M, 0) = —min; M;. Also, for any two loss vectors
M and M/, and ) € [0,1],

Vis, AM + (1 — )M, 0)
=—min (AM; + (1 = \)M))

?

< —min (AM;) — min ((1 — \)M))

K2

=AVLs, (M, 0) + (1 — \)Vs,(M',0),
showing V1,g, (M, 0) is convex in M. For r > 0,

Vis, (M, ) = PénAi?N) Znel%}s(g P-Z+Wsg,M+Z,r—1)).
Notice that P - Z + Vi,g,(M + Z,r — 1) is equal to P -
Z+Vis,(M+Z,r — 1) and is convex in Z by induction.
Therefore the maximum is always achieved at one of the
corner points of LS3, which is in LSs. In other words,

Vis,(M,r) = pluin  max. (P-Z+Vis,M+Z,r—-1))

= Vs, M, 7).

On the other hand, by introducing a distribution ) over all
the elements in LSy, we have

VL83 (M7 7‘)

— mi P-Z4+Vis(M+Z,r—1
pluin, guax (P24 Vis,(M+Z,r —1))

= mi Ezo [P Z+ Vis,(M+Z, 7 — 1
P2l B [P 2 Vi (M 2 )

_ in Epo[P-Z+ Vis,(M+Z,7—1
max L min z~Q | + Vis, (M +Z,r — 1)]

— EzoVis. (M +Z,r — 1 in P-EyolZ
m3X<ZQLSs( +Z,r )+Pg1A1?N) z~q/ ])

where we switch the min and max by Corollary 37.3.2
of Rockafellar (1970). Note that the last expression is
the maximum over a family of linear combinations of
convex functions in M, which is still a convex function
in M, completing the induction step. To conclude,
VL52 (0, T) = VLS3 (0, T) for any N and T.

We next prove if N = 2,V15,(0,T) = Vis,(0,7).
Again, we inductively prove Vi,s, (M, r) = Vis,(M,r)
for any M and r. The base case is clear. For » > 0, let
P =Ws, (M,r) — Wis, (M +e;,r — 1) (Z = 1,2). By
induction,

VL52 (M, 7“)

= min m P-Z+W M+Z,r—1
1( ) ax ( Sl( , T ))
17ma?{< 1) (1 1 2 42 LSl( ( 1 22)7 ))
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=max{Vs, (M, r —
Vis, (M, r)}
=max{Vs, (M, r —

1,14+ Vs, M+ (1,1),r — 1),

1)7 VLS1 (M> 7“)}
(by Property 5 in Proposition 2)

=Vis, (M, r). (by Property 7 in Proposition 2)

However, it is clear that Vis,(M,r) > Vs, (M,r).
Therefore, Vig, (M, r) = Vs, (M, 7).

Finally, to prove Vs, (0,7) < Vis,(0,T) for N > 2, we
inductively prove V.5, ((T'—r)e1,r) < Vs, (T —7)e1, r)
forr = 1,...,T. For the base case r = 1, Vg, (T —
l)e1,1) =1/N — R((T — 1)ey,1) = 1/N, while

VLSQ(( - 1)8171)

PénAl?N) z][g%)s(2 ( + Vis, (T — 1)e; +Z,0))

Z piin max (1= P+ Vis, (T — 1er +1 —e;,0))
= min max{-P;,1-P,,...,1 - Py}.

PEA(N)

We claim that the value of the last minimax expression
above, denoted by v, is (N — 2)/(N — 1), which is strictly
greater than 1/N if N > 2 and thus proves the base case.
To show that, notice that for any P € A(N), there must
existi € {2,..., N} suchthat P, <1/(N — 1) and

N -2
— Py, 1-Py}>1-P >

—P.1 -
max {— P, 2 N1

showing v > (N — 2)/(N — 1). On the other
hand, the equality is realized by the distribution P* =
(07 ﬁ7 MR ﬁ)'

For r > 1, we have

Vis, ((T - 7“)61, )

= PénAlFN) ng%}écz (P-Z+Ws,(T—r)e1 +Z,r —1))

> P, + W T— i, —1
PénAl(HN)ng[aX]( + Vs, (( r)e; +e;,r —1))

N

1
> i P;
PEA(N) N — (Pi+ Vis, (T

f—i—*ZVLsz

1 1
>N + = Z;Vle((T

=Vus, (T —r)e1, ).

—r)e; +e;,r—1))

—r)e; +e;,r—1)

77")61 +ei,r — 1)

Here, the last strict inequality holds because for i = 1,
Vs, (T —r+1)e;,r—1) > Vs, (T —r+ ey, r—1)
by induction; for ¢ # 1, it is trivial that V5,5, ((T' — r)e; +

e;,r—1) > Ws, (T —r)es + e;,r — 1). Therefore, we
complete the induction step and thus prove Vg, (0,7) <
Wis, (0,7). O

D. Proof of Theorem 5

The proof (and the one of Theorem 8) relies heavily on a
common technique to approximate a sum using an integral,
which we state without proof as the following claim.
Claim 1. Let f(x) be a non-increasing nonnegative func-
tion defined on R.. Then the following inequalities hold
for any integer 0 < j < k.

k+1 k k
JRNCIIE SIUEY ATt

Proof of Theorem 5. By Theorem 4, it suffices to upper
bound V3 (0) and 317, ¢;Viy1(0). Let Sy = S50, 1/t
By applying Claim 1 multiple times, we have

1  dx —1_d_1 .
sf(/t xd) — i d-1); ()

1 _d-1
LT

Vi(0) =E[V(0,7)|T > 1]

CN > 1 .
<— T by Assumption 2
<3 TZde_f (by ption 2)
<N <1+/OO du > (by Claim 1)
<3, s y
_en(d—3)

Si(d—3)

en(d—1)(d -1
< all y )(3 2) =0(1) (by Eq. (20))

—3
For
Vit1(0) = E[V(0,T = )|T >t +1]

_ o i Vk
St+1 P (t+ k)4’

Claim 1 does not readily apply since the function g(k) =
VE/(t + k)% is increasing on [0,t/(2d — 1)] and then de-
creasing on [t/(2d — 1),00). However, we can still ap-
ply the claim to these two parts separately. Let zg =
[t/(2d — 1)] and 1 = [t/(2d — 1)]. For simplicity, as-
sume 1 < g < 27 and g(xo) < g(x1) (other cases hold
similarly). Then we have

(:cl Jng +

Ve (0) = £

i g(’f))

k=x1+1



Towards Minimax Online Learning with Unknown Time Horizon

< 2 (ston+ [ oo [ OO sla)is)

St 2(d) i3
I'(d—32)
<(d—-1 =
(d Jen VT 2T (d) \/i—l—o(\/i)
So finally we have
T
> Vit (0)
t=1
T
<= 1Pyt S (ol )
=\t \f
I'(d—3)
<——22(d—1)2 T VT,
which proves the theorem. O
E. Proof of Theorem 6
Proof. Let @] = \/[[W;_1|2+ (T —t +1) be the po-

tential function for this setting. The key property of the
minimax algorithm Eq. (6) shown by Abernethy et al.
(2008a) is the following:

x;{ -wy <@ — @l .

Based on this property, the loss of our algorithm after 7

rounds is
Ts
ZE ">t -w, = T Wy |T > 1]
t=1

MH HM%

< E[‘I’T Of 4T > ).

o~
Il
-

Now define U; = E[®]|T > t]and ¢; = Pr[T < t+1|T >
t]. By the fact that fr>(t') = (1 — q¢) fr>141(¢') for any
t' > t+1, where fr>, and fr>;41 are conditional density
functions, we have

b

E[xI|T > t] - w,

o~
Il
i

Ts
< ) (Ui =E[@/,|T > 1])
=1
T t+1
= (Uf / O, freo(T)dT — (1 — %)Ut+1>
t=1 t
Ts t+1
< (Ut - Py, ) Jr>¢(T)dT — (1 — Qt)Ut+1>
1

~
Il

(.- ®f,, increases in T)

M=
S

= U1+ @(Upy1 — [[We1]))

(- Ppyy =

t=1

W1l
=U; — UT5+1+

Ts
>l [VIW P+ (T -
t=1

= IWea |l | T2t +1]

Ts
<O -Ur+ Y aE[VT—E|T>t+1].
t=1
¢ Va+b—a< Vb

Note that Ur,41 > |[Wrpl|, and thus it remains
to plug in the distribution and compute U; and
ZtTil @E[VT —t | T > t + 1], which is almost the same
process as what we did in the proof of Theorem 5 if one re-
alizes ¢; < (d — 1)/t also holds here. In a word, the regret
can be bounded by

—2 (d = 127 T, + o(VT),

which is /T + o(v/Ts) if d = 2. The explicit form in
Eq. (7) comes from a direct calculation. O]

F. Proof of Lemma 2 and Theorem 7

Proof of Lemma 2. The results follow by a direct cal-
culation. The conditional distribution of &; given T
is —1{5 € [O,AT]N}. Let S, = [°1/T4T =

((d— 1)t 1) . The marginal distribution for £ that has
negative coordinates is clearly 0. Otherwise, with ¢ =

€Nz

, "I} one has

max{t
fi(§) = s% /t Td1AN1{£ € [0, Ap)V}dT

1~ 1
== | T
5| Ty

 q\4d—1 poo
_ (-1t / .
H

(\/W)N Td+N/2
B d—1 Nmin 1( A, >2d2+N
d—1+N/2 "\ €lloo '
O]

Proof of Theorem 7. Applying Theorem 4.2 of Cesa-
Bianchi & Lugosi (2006), the pseudo-regret of the FPL al-
gorithm is bounded by

Ts

E[mgx Er,4) + Z E[mzax(gtfl,i — &)l

t=1
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+z/

where we define § = 0 and F;(§) = Z;, with I¢ €
arg min; (M;_1; + &;). Now the key observation is that
the pseudo-regret remains the same if we replace random
variables &1, ..., &7, with &,..., &} aslong as & and &;
have the same marginal distribution for any ¢. Specifically,
we can let £, = &7, and for 1 <t < Ty, let & | = &
with probability S;/S; 1 = (1 — 1/t)?! (recall S; =
[°1/T4dT), or with 1 — S; /S, probability be obtained
by first drawing T' € [t — 1, ¢] according to density f(T")
1/T4, and then drawing a point uniformly in [0, Ap]V. It
is clear that &; and &; have the same marginal distribution.
So the pseudo-regret can be in fact bounded by three terms:

— fi(§ = 2Z4))dE,

A= E[max fTs,i]v
Ts

B= ZE[miaX(@;—u - fé,i)],
t=1

Ts
cz_j/ Fi€)(fu(€) -

A can be further bounded by

Si/ e 1\/bTN
Ts

7. Td d—3/2

fi(& = Zy))dE.

For B, by construction of &}, we have

A, [t AT S,
<St 1 / Td - Si—1 .0>

A -
= D)

B

IN

|
= &Mﬂ gt WM*
.

(4t —(t -

Ay
td—1

—1)\/bT,N.

For C, let H = {& : f:(&) > fi(& — Z;)}. Since 0 <
Fy(€) < 1,wehave C < 3[% [, fi(£)d€. Now observe
that when min; &; > 0, f;(&€) is non-increasing in each &;.
So the only possibility that f;(&) > f:(€ — Z;) holds is
when there exists an ¢ such that &; is strictly smaller than

Zy ;. That is

IN

S(d—1)t12 (by convexity)

H={¢:min¢ >0and Ji,s.t. & < Zp;}

So we have

<§;;/ ) 1{ € OAT] HE (0.0}

d—1 N 1
< s —
e

2(d-1)
< ———/TxN.
= Vb(d—1/2)
Combining A, B and C proves the theorem. O

G. Proof of Theorem 8§

Proof. We will first show that

1
Reg(Lr,,Mr,) < (InN)-E [T >Ts + 1}
) nr

A
T, 21

+ = ZEnT|T>t]
t1

B

Let 7 = n% In (Zf\; exp(fnTMt_M)). The key point
of the proof for the non-adaptive version of the exponential
weights algorithm is to use ®7 as a “potential” function,
and bound the change in potential before and after a single
round (Cesa-Bianchi & Lugosi, 2006). Specifically, they

showed that

nr
Pr.z, < 2 + o) — o ;.
We also base our proof on this inequality. The total loss of

the learner after 7T’; rounds is

T
ZE[P:&T “Zy|T > ]

t=1

Ts
Ly, =Y E[PTIT > 2, =
t=1

T,
+ > E[®] — o, |T > 1.
t=1

Define U; =
mation:

E[®]|T > t]. We do the following transfor-

E[@f — @f,|T > 1]

=U; — Ep[®/[,,|T > 1]

(1= q)Uss1

=Up — Uppr + (U1 — 97 14)

=U; — Upp1 + @ - E[@], — @ |T >t +1]
=U; — Upy1 + q - E[Fp(My)|T >t + 1],

=U; — ¢ Ppsq —

where we define

In (3, exp(—nrM;)) In (3, exp(—nM;))
nr i '

Fr (M) =
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A key observation is

InN InN
max Fr (M) = —— — = (22)
merY nr e
np<ng

which can be verified by a standard derivative analysis that
we omit. (An alternative approach using KL-divergence
can be found in Chapter 2.5 of Bubeck, 2011.)

We further define another potential function ®] =
(In N)/nr and also U; = E[®]'|T > t]. Note that the new
potential 7 has no dependence on ¢ and thus ®] = &7
for any ¢,¢'. We now have

Ts
E[®] — & | |T > 1]
=1
Ts
= (U = Upgr + g0 - E[@F); — )4y [T >t + 1))
=1
Ts
=Ui=Urs1 + Z (gr - E[®fyy — (4 |T >t +1))
=1
c
(23)
& N InN
<Ui —Ur,41+ <q -E )
+1 ; ¢ - B o ” ]
(by Eq. (22))
— — TS
=U1 - U1+ Z (¢r - E[®fy, — @} 4|T >t +1))
=1
D
+Ur, 41— Uz, 11 (.U =0U))

Notice that D has the exact same form as C' except for a
different definition of the potential, and also Eq. (23) is an
equality. Therefore, by a reverse transformation, we have

Ts
E[®] — /[T > 1]
=1
Ts
=> E[® — &/4|T > 1]+ Ur,41 — Ur, 11
t=1
=Ur,41 — U, 11 (-l =af )

UTS+1 is exactly A in Eq. (21), and Uz, 4+ can be related
to the loss of the best action:

N
1
—1In E exp(—nrMr, ;) | T >Ts+1
n i=1

Ur,+1=E

1
>E { Inexp(—nrR(M7,,0)) | T > Ts + 1}
nr

_R(MTS ’ 0)

The regret is therefore

Reg(LTs,MTS) = LTS — R(MTS,O)
<A+ B- UTSJrl — R(MTS,O)
<A+ B,

proving Eq. (21).

The rest of the proof is merely to plug in the distribution

and nr = /(bln N)/T, and upper bound Eq. (21) using
Claim 1. Adopting the notation S; = >, 1/t'* and the

result of Eq. (20) in the proof of Theorem 5, we have

oo

Vin N
A=
ST +1\[ Z Td— 1/2

T=T,+1
< (d—1)VInN
B Vb

b dx 1
_— xd71/2 + (T, + 1)%-1/2
d—

- 3/2)\f

(Ts + 1)d_1'

VT;InN + o(\/T,In N);

4d—1 < dx 1
\ Lavi2 T iz

_ [d=)VbmN Tz(( 1 1 )

+
d— 1/2)\/% td+3/2

\/T In N + o(y/Ts In N).

I
oo

Vo(d -
S Ad-172)

Combining the bounds above for A and B proves the theo-
rem. O

H. Proof of Theorem 9

Proof. The main idea resembles the one of Theorem 8, but
the details are much more technical. Let us first define sev-
eral notations:

* dm 1

S, & L —
e md T (d=1)m{T

@ = Prim < mym > my_q] =

Il
—_
|
/—g
3|<
~ |
-
N———
Q.
L
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1
P £ (1 + > Y™ U, 2 E[®]"|m > m;_1].

Nm
The proof starts from the following property of the expo-
nential weights algorithm (Cesa-Bianchi & Lugosi, 2006):

P-Z, < (lnYt 1nYt+1)

1
1—e"m

< O — @Y. Co N > In(1 4 9m))

By the fact that fr,>m, , (M) = (1 — q¢) frm>m, (M) for
any m’ > my, where fi,>m,_, and fr,>m, are conditional
density functions, the loss of the learner after T rounds
LTS is

Ts
]E[P;n . Zt|m 2 mt,l]
t=1
T,
<Y E[®] — 7L |m > my_]
t=1
T, me
= (Ut - / QY41 frnzm,_, (m)dm + (1 — Qt)Ut+1>
t=1 mi—1
Ts my
< (Ut N i / fmzm,_, (m)dm + (1 - CIt)Ut+1>
t=1 me—1

T,
=U; — UT+1+Z% U1 — q)f_l,_fll)a

t=1

Here the last inequality holds because ®}*
m. To show this, we consider the following

(1 + 717> lnieXP(—mi)
_ <1 I 717> (—nal + lniexr)(—ﬂ(ai - al))>
1) mZN:exp(—
n i=1

where 17,a1,...,ay are positive numbers. Since
In)". exp(—n(a; —a1)) > 0, the expression above is de-
creasing in 7, which along with the fact that 7,,, decreases
in m shows that ®}" increases in m.

is increasing in

(4 Dar + (1 i (@i - ar)),

We now compute U; and U, 41:

=E[(1++/m/InN)InN | m > 1]

-1
vVin N

d
N+ 2T
N YD

Ur,+1

i

=K (1 + 1/77m) aneXp(_anTs,i) | m > mr,

> E[(1 4+ 1/1m)(=1mm®) | m = mr,]
=—m" (1 +E[nm | m = mz,])

iy, d=1 [mN
I Sy

d—1
—_— m*lnN
d—1/2

*

( mr, = m* + 1)

For Upp1 — @/ = E[@%, — @)\, | m > my], we first
upper bound the part inside the expectation:

m me—1
Q1 — Py
In Y, Iny, "t ?
+1 t+1 .
( - + (Mmy—y — Nm) min M ;
Tm MNme_1 ?
Z efnm(Mt,i*mini M ;)
+In - .
e—ﬂmt,l(Mt,i—mlnz: My,:)
The first term above is at most (nl - 1 >1nN =
m my_q

vInN(y/m — /m;—1) by Eq. (22). The second term
is at most vIn N (\/mi \})mt 1 since min; M; ; =
m; — 1 < my_1, and the last term is at most In /N since the
numerator is at most /N while the denominator is at least 1.
Therefore, we have

mt_l

Ut+1 - t+1

<InN +VInN -E[ym — \F | m > m,]
m

d—1 me—1
=InN + VI _—
niV o+ vin N (d 3/2 d—1/2,ﬁmt)
<InN++vVInN ( d_lmt_l)
)

d— 3/2 Cd—1/2 Jmg

(d—1)vm;In N d—1 [/InN
=InN + .
(@—3/2)(d—1/2) " d—1]2
— ®;""1"), which, us-

It remains to compute Z?;l qt (Ut 41
ing the above, can be done by computing A = ZtT;1 qt,

B= ZtTL gi+/my¢ and C' = Eﬁl qt/+/m¢. By inequality

1 —2 < —Inz for any x > 0, we have

(1—("“ )

(Inmy—1 — Inmy)

»ﬂ

=(d- )1njn*+1)

For B, we first show q;/m; < 2(d — 1)(y/m; — /mi—1),
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which is equivalent to

d—1
()"
me—1

qir/ My

Vi = i (=) = ()" 7 = 20

me—1 me—1

if my # my_1 (it is trivial otherwise). Define h(z) =
(21 — 1) /(x4 — 2973/2) for 2 € [1,2] (note that
my/my—1 is within this interval). One can verify that
R(z) < 0 and thus h(x) < lim, 1 h(z) = 2(d — 1).
So we prove q;y/m; < 2(d — 1)(y/m; — \/m;_1) and

B <2 Z\/ﬁt Vi)
— o(d 1)y — 1) < 2(d — )V

A simple comparison of B and C shows C' = o(v/m*). We
finally conclude the proof by combining all we have

Reg(LTs N MTS )
Ts

SUr=Ur + ZQt(Ut-H ) —m*
t=1
=(14+({d-1)Inm"+1))lnN
d—1 2(d — 1) -
* (d—1/2 * <d—3/2><d—1/2>) Vo ¥
+o(Vm*In )

_ 3(d—"7/6)(d—1) I N

(@—3/2)(d—1/2)
+(1+(d=1In(m*+1))InN + o(Vm*InN).

O

I. Examples

The first example shows that the results stated in Theorem 2
can not generalize to other loss spaces.

Example 1. Consider the following Hedge setting: N =
3,LS = {1 — e1,1 — 82,1 — 63} where 1 = (1,1,1).
Suppose the adversary picked 1 —e1 and 1 — ey for the first
two rounds and we are now on round t = 3 with My =
(1,1,2). Also the conditional distribution of the horizon
givenT > 3is Pr[T = 3] = Pr[T = 4] = 1/2. Let
P* be the minimax strategy for this round and P be the
minimax strategy assuming the horizon to be T. Then P* %
E[PT|T > 3], and also

inf sup E[Reg(Lz, Mr)|T > 3]
Alg Zs.oo

# Elinf sup Reg(Lr,M7)|T > 3].
Alg Z3.T

(24)

Proof. Recall the V' function we had in Section 3. Ignoring
the loss for the learner for the first two rounds (which is the
same for both sides of Eq. (24)), we point out that the right
hand side of Eq. (24) is essentially

V(M. 1)+ ZV(M,2),
and the left hand side, denoted by V", is
ngnmzax(P -7+ %V(Mg +7Z,0) + %V(Mg +7Z,1)).
Also P* and P are the distributions that realize the mini-
mum in the definition of V' and V' (M, T —2) respectively.

Below we show the values of these quantities without giv-
ing full details:

V(My, 1) = minmax{l — P, + V(M; + 1 - e;,0)}
= H%Dil’l max{—Py,—Ps,—P3 — 1}
=-1/2,

with P? = (1/2,1/2,0);

V(Mz,2) = minmax{l — P; + V(Mz + 1 —e;, 1)}

= n%)inmax{fPl, —Py,—P3 —1/3}

= —4/9,

with P4 = (4/9,4/9,1/9);

1
V' = m}inmax (1 — P+ §V(M2 +1—¢;0)

1
+5V(Mz+1 e, 1))
—py—2/3}

= mri)nmax{—Pl, —DP,
=-1/2,
with P* = (1/2,1/2,0). We thus conclude that

E[PT|T > 3] = (17/36,17/36,1/18) # P*

and

E[V(M,, T — 2)|T >3] = —17/36 # V'

O

The next two examples show that the idea of “treating the
current round as the last round” does not work for minimax
algorithms.

Example 2. Consider the following Hedge setting: N =
2,LS = [0,1]? and the horizon T is a even number. Sup-
pose on round t, the learner chooses Py using the minimax
algorithm assuming horizon T = t. Then the adversary
can make the regret after T' rounds to be T' /4 by choosing
ey and e, alternatively.
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Proof. As shown in Theorem 10, when N = 2, the min-
imax algorithm with LS = [0, 1]? is the same as the one
with LS = {ej, es}, which we already know from The-
orem 1. If the learner treats the current round as the last
round, then P, ; is

V(Mtfla 1) - V(Mtfl + 91,0)
1

:5 (1 + HliIl{Mt_Ll +1, Mt_LQ}
—min{M;_1,1, My_12+1}).

Hence, for any round ¢ where ¢ is odd, we have M;_; =
(%, tgl) and thus P,; = P, = 1/2 and the learner
suffers loss 1/2. For any round ¢ where ¢ is even, we have
M; 1 = (5,£ —1) and thus P,; = 0, P, = 1 and the
learner suffers loss 1 since the adversary will choose es
for this round. Finally, at the end of 7" rounds, the loss
of the best action is clearly 7'/2. So the regret would be

3T/4—T/2=T/4. O

Example 3. Consider the online linear optimization prob-
lem described in Section 6.1. If horizon T is even and the
learner predicts using the minimax algorithm Eq (6) with
T replaced with t. Then the adversary can make the re-
gret to be ﬂT/4 after T rounds by choosing e; and —eq
alternatively.

Proof. For any round ¢ where ¢ is odd, we have W;_; = 0
and thus x; = 0. So the loss for this round is 0. For any
round ¢t where t is even, we have W;_; = e; and thus

X; = fgel. So the loss for this round is ﬁ/? since

the adversary will pick —e;. At the end of 7" rounds, since
W = 0, the regret will simply be v/27'/4. O



