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Abstract

One popular method for dealing with large-scale
data sets is sampling. Using the empirical statis-
tical leverage scores as an importance sampling
distribution, the method of algorithmic leverag-
ing samples and rescales data matrices to reduce
the data size before performing computations on
the subproblem. Existing work has focused on
algorithmic issues, but none of it addresses sta-
tistical aspects of this method. Here, we provide
an effective framework to evaluate the statistical
properties of algorithmic leveraging in the con-
text of estimating parameters in a linear regres-
sion model. In particular, for several versions
of leverage-based sampling, we derive results for
the bias and variance. We show that from the sta-
tistical perspective of bias and variance, neither
leverage-based sampling nor uniform sampling
dominates the other. This result is particularly
striking, given the well-known result that, from
the algorithmic perspective of worst-case analy-
sis, leverage-based sampling provides uniformly
superior worst-case algorithmic results, when
compared with uniform sampling. Based on
these theoretical results, we propose and analyze
two new leveraging algorithms: one constructs
a smaller least-squares problem with “shrinked”
leverage scores (SLEV), and the other solves a
smaller and unweighted (or biased) least-squares
problem (LEVUNW). The empirical results indi-
cate that our theory is a good predictor of prac-
tical performance of existing and new leverage-
based algorithms and that the new algorithms
achieve improved performance.
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1. Introduction

One popular method for dealing with large-scale data sets
is sampling. In this approach, one first chooses a small
portion of the full data, and then one uses this sample as a
surrogate to carry out computations of interest for the full
data. For example, one might randomly sample a small
number of constraints or variables in a regression prob-
lem and then perform a regression computation on the sub-
problem thereby defined. For many problems, it is very
easy to construct “worst-case” input for which uniform ran-
dom sampling will perform very poorly. Motivated by this,
there has been a great deal of work on developing algo-
rithms for matrix-based machine learning and data analysis
problems that construct the random sample in a nonuni-
form data-dependent fashion (Mahoney, 2011). Of par-
ticular interest here is when that data-dependent sampling
process selects rows or columns from the input matrix ac-
cording to a probability distribution that depends on the
empirical statistical leverage scores of that matrix. This
recently-developed approach of algorithmic leveraging has
been applied to matrix-based problems that are of inter-
est in large-scale data analysis, e.g., least-squares approx-
imation (Drineas et al., 2006; 2010), least absolute de-
viations regression (Clarkson et al., 2013; Meng & Ma-
honey, 2013), and low-rank matrix approximation (Ma-
honey & Drineas, 2009; Clarkson & Woodruff, 2013). A
detailed discussion of this approach can be found in (Ma-
honey, 2011). This algorithmic leveraging paradigm has al-
ready yielded impressive algorithmic benefits (Avron et al.,
2010; Meng et al., 2014). In spite of these impressive al-
gorithmic results, none of this recent work on leveraging
or leverage-based sampling addresses statistical aspects of
this approach. This is in spite of the central role of statisti-
cal leverage, a traditional concept from regression diagnos-
tics (Hoaglin & Welsch, 1978; Chatterjee & Hadi, 1986;
Velleman & Welsch, 1981).

In this paper, we bridge that gap by providing the first
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statistical analysis of the algorithmic leveraging paradigm.
We do so in the context of parameter estimation in fit-
ting linear regression models for large-scale data—where,
by “large-scale,” we mean that the data define a high-
dimensional problem in terms of sample size n, as opposed
to the dimension p of the parameter space. Althoughn > p
is the classical regime in theoretical statistics, it is a rela-
tively new phenomenon that in practice we routinely see a
sample size n in the hundreds of thousands or millions or
more. This is a size regime where sampling methods such
as algorithmic leveraging are indispensable to meet com-
putational constraints.

Our main theoretical contribution is to provide an analytic
framework for evaluating the statistical properties of algo-
rithmic leveraging under a linear regression model. This
involves performing a Taylor series analysis around the or-
dinary least-squares solution to approximate the subsam-
pling estimators as linear combinations of random sam-
pling matrices. Within this framework, we consider biases
and variances, both conditioned as well as not conditioned
on the data, for several versions of the basic algorithmic
leveraging procedure. We show that both leverage-based
sampling and uniform sampling are unbiased to leading or-
der; and that while leverage-based sampling improves the
“size-scale” of the variance, relative to uniform sampling,
the presence of very small leverage scores can inflate the
variance considerably. It is well-known that, from the algo-
rithmic perspective of worst-case analysis, leverage-based
sampling provides uniformly superior worst-case algorith-
mic results, when compared with uniform sampling. How-
ever, our statistical analysis here reveals that from the sta-
tistical perspective of bias and variance, neither leverage-
based sampling nor uniform sampling dominates the other.

Based on these theoretical results, we propose and ana-
lyze two new leveraging algorithms designed to improve
upon vanilla leveraging and uniform sampling algorithms
in terms of bias and variance. The first of these (denoted
SLEV below) involves increasing the probability of low-
leverage samples, and thus it also has the effect of “shrink-
ing” the effect of large leverage scores. The second of these
(denoted LEVUNW below) constructs an unweighted ver-
sion of the leverage-subsampled problem; and thus for a
given data set it involves solving a biased subproblem. In
both cases, we obtain the algorithmic benefits of leverage-
based sampling, while achieving improved statistical per-
formance.

Our main empirical contribution is to provide a detailed
evaluation of the statistical properties of these algorithmic
leveraging estimators on both synthetic and real data sets.
These empirical results indicate that our theory is a good
predictor of practical performance for both existing algo-
rithms and our two new leveraging algorithms as well as

that our two new algorithms lead to improved performance.
In addition, we show that using shrinked leverage scores
typically leads to improved conditional and unconditional
biases and variances; and that solving a biased subproblem
typically yields improved unconditional biases and vari-
ances. Depending on whether one is interested in results
unconditional on the data (which is more traditional from a
statistical perspective) or conditional on the data (which is
more natural from an algorithmic perspective), we recom-
mend the use of SLEV or LEVUNW, respectively, in the
future.

2. Background, Notation, and Related Work

We consider a Gaussian linear model y = X 3, + €, where
y is an n X 1 response vector, X is an n X p fixed predictor
or design matrix, 3, is a p x 1 coefficient vector, and the
noise vector € ~ N(0,02I). The unknown coefficient 3,
can be estimated using least squares (LS) method,

argminBeRpHy—XBHQ, (D

where || - || represents the Euclidean norm on R™. The
resulting estimate is

Bi. = argminglly — XB(|* = (XTX)" ' X"y, ()

in which case the predicted response vector is § = Huy,
where H = X(XTX)"1XT is the so-called Hat Ma-
trix, which is of interest in classical regression diagnos-
tics (Hoaglin & Welsch, 1978; Chatterjee & Hadi, 1986;
Velleman & Welsch, 1981). The ith diagonal element of
H, hi; = I (XTX) 'ax;, where T is the i'" row of
X, is the statistical leverage of i*" observation or sample.
The statistical leverage scores have been used historically
to quantify the extent to which an observation is an out-
lier (Hoaglin & Welsch, 1978; Chatterjee & Hadi, 1986;
Velleman & Welsch, 1981), and they will be important for
our main results below.

2.1. Algorithmic Leveraging for Least-squares
Approximation

A prototypical example of algorithmic leveraging is given
by the following meta-algorithm (Drineas et al., 2006;
Mahoney, 2011; Drineas et al., 2012), which we call
SubsampleLsS, and which takes as input an n X p matrix
X, where n > p, a vector y, and a probability distribu-
tion {m;}7_,, and which returns as output an approximate
solution B which is an estimate of B of Eqn. (2).

ols» ols

e Randomly sample r > p constraints, i.e., rows of X
and the corresponding elements of y, using {m; }7" ;
as an importance sampling distribution.

e Rescale each sampled row/element by 1/,/rm; to
form a weighted LS subproblem.
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e Solve the weighted LS subproblem, formally given in
Eqn. (3) below, and then return the solution 3

ols*

It is convenient to describe SubsampleLS in terms of
a random “sampling matrix” S% and a random diagonal
“rescaling matrix” D, in the following manner. If we draw
r samples (rows or constraints or data points) with replace-
ment, then define an r X n sampling matrix, S};, where
each of the r rows of S% has one non-zero element indi-
cating which row of X (and element of y) is chosen in a
given random trial. That is, if the k" data unit (or obser-
vation) in the original data set is chosen in the i*” random
trial, then the it" row of Sg; equals ey; and thus S)T( is a
random matrix that describes the process of sampling with
replacement. Then, an 7 X r diagonal rescaling matrix D
can be defined so that i*" diagonal element of D equals
1//rmy, if the k'™ data point is chosen in the i*" random
trial. With this notation, SubsampleLS constructs and
solves the weighted LS estimator:

argminﬁeRpHDS)Y;y —~ DSL X2 3)

Since SubsampleLS samples constraints and not vari-
ables, the dimensionality of the vector 3, that solves the
(still overconstrained, but smaller) weighted LS subprob-
lem is the same as that of the vector Bols that solves the
original LS problem. The former may thus be taken as an
approximation of the latter, where, of course, the quality
of the approximation depends critically on the choice of
{m;}™_,. There are several distributions that have been con-
sidered previously (Drineas et al., 2006; Mahoney, 2011;
Drineas et al., 2012).

e Uniform Subsampling. Let 7; = 1/n, forall i € [n],
i.e., draw the sample uniformly at random.

e Leverage-based Subsampling. Let m; =
hii/ % 1 hii = hyi/p be the normalized statis-
tical leverage scores, i.e., draw the sample according
to a sampling distribution that is proportional to the
leverage scores of the data matrix X.

Although Uniform Subsampling (with or without replace-
ment) is very simple to implement, it is easy to con-
struct examples where it will perform very poorly (e.g.,
see (Drineas et al., 2006; Mahoney, 2011)).

Due to the crucial role of the statistical leverage scores, we
refer to algorithms of the form of SubsampleLS as the
algorithmic leveraging approach to approximating LS ap-
proximation. Several versions of the SubsampleLS algo-
rithm are of particular interest to us in this paper. We start
with two versions that have been studied in the past.

e Uniform Sampling Estimator (UNIF) is the estima-
tor resulting from uniform subsampling and weighted
LS estimation, i.e., where Eqn. (3) is solved, where
both the sampling and rescaling/reweighting are done

with the uniform sampling probabilities. This version
corresponds to vanilla uniform sampling, and it’s so-
lution will be denoted by B,y -

e Basic Leveraging Estimator (LEV) is the estima-
tor resulting from exact leverage-based sampling and
weighted LS estimation, i.e., where Eqn. (3) is solved,
where both the sampling and rescaling/reweighting
are done with the leverage-based sampling probabili-
ties. This is the basic algorithmic leveraging algorithm
that was originally proposed in (Drineas et al., 2006),
and it’s solution will be denoted by 3; /.

Motivated by our statistical analysis (to come later in the
paper), we will introduce two variants of SubsampleLS;
since these are new to this paper, we also describe them
here.

e Shrinked Leveraging Estimator (SLEV) is the esti-
mator resulting from a shrinked leverage-based sam-
pling and weighted LS estimation. By shrinked
leverage-based sampling, we mean that we will sam-
ple according to a distribution that is a convex com-
bination of a leverage score distribution and the uni-
form distribution, thereby obtaining the benefits of
each; and the rescaling/reweighting is done accord-
ing to the same distribution. Thus, with SLEV,
Eqn. (3) is solved, where both the sampling and rescal-
ing/reweighting are done with the above probabilities.
This estimator will be denoted by 3 sLEv» and to our
knowledge it has not been explicitly considered previ-
ously.

e Unweighted Leveraging Estimator (LEVUNW) is
the estimator resulting from a leverage-based sam-
pling and unweighted LS estimation. That is, after the
samples have been selected with leverage-based sam-
pling probabilities, rather than solving the unweighted
LS estimator of (3), we will compute the solution of
the unweighted LS estimator:

argmin g, [[STy — SEXBP. @

Whereas the previous estimators all follow the ba-
sic framework of sampling and rescaling/reweighting
according to the same distribution, with LEVUNW
they are essentially done according to two differ-
ent distributions—the reason being that not rescaling
leads to the same solution as rescaling with the uni-
form distribution. This estimator will be denoted by
B LEVUNW and to our knowledge it has not been con-
sidered previously.

These methods can all be used to estimate the coefficient
vector 3, and we will analyze—both theoretically and
empirically—their statistical properties in terms of bias and
variance.
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A naive algorithm involves using a QR decomposition or
the thin SVD of X to obtain the exact leverage scores. Un-
fortunately, this exact algorithm takes O(np?) time and is
thus no faster than solving the original LS problem exactly.
However, (Drineas et al., 2012) developed an algorithm
that computes relative-error approximations to all of the
leverage scores of X in O(nplog(p)/e) time, where the
error parameter € € (0,1). Thus, it provides a way to im-
plement BELV, SLEV, or LEVUNW in o(an) time.

Our leverage-based methods for estimating 3 are related
to resampling methods (Efron, 1979; Wu, 1986; Miller,
1974b;a; Jaeckel, 1972; Efron & Gong, 1983; Politis et al.,
1999). They usually produce resamples at a similar size
to that of the full data, whereas algorithmic leveraging is
primarily interested in constructing subproblems that are
much smaller than the full data. In addition, the goal of
resampling is traditionally to perform statistical inference
and not to improve the running time of an algorithm, ex-
cept in the very recent work (Kleiner et al., 2012).

3. Bias and Variance Analysis of Subsampling
Estimators

Analyzing the subsampling methods is challenging for at
least the following two reasons: first, there are two layers
of randomness in the estimators, i.e., the randomness inher-
ent in the linear regression model as well as random sub-
sampling of a particular sample from the linear model; and
second, the estimators depends on random subsampling
through the inverse of random sampling matrix, which is
a nonlinear function.

3.1. Traditional Weighted Sampling Estimators

We start with the bias and variance of the traditional
weighted sampling estimator 3y;,, given in Eqn. (5) below.
The estimate obtained by solving the weighted LS problem
of (3) can be represented as

By = (XTWX) ' XTWy, (5)

where W = Sx D?S% is an r x r diagonal random matrix,
i.e., all off-diagonal elements are zeros, and where both S'x
and D are defined in terms of the sampling/rescaling prob-
abilities. Clearly, the vector BW can be regarded as a func-
tion of the random weight vector w = (wy, wa, ..., w,)7T,
denoted as By (w), where (wy,ws, . .. ,w,) are diagonal
entries of W. By setting wy, the vector around which we
will perform our Taylor series expansion, to be the all-
ones vector, i.e., wy = 1, then B(w) can be expanded
around the full sample ordinary LS estimate J¢]

BW(]') = Bols'

Lemmal Let BW be the output of the SubsampleLS
Algorithm, obtained by solving the weighted LS problem

olss 1-€.

of (3). Then, a Taylor expansion of BW around the point
wo = 1 yields

Bw = B, + (XTX)"*XT Diag {&} (w — 1) + Ry,

wheree =y — X f)’ols is the LS residual vector, and where
Ryy is the Taylor expansion remainder.

Remark. The significance of Lemma 1 is that, to leading
order, the vector w that encodes information about the sam-
pling process and subproblem construction enters the esti-
mator of BW linearly. The additional error, Ry depends
strongly on the details of the sampling process, and in par-
ticular will be very different for UNIF, LEV, and SLEV.

Remark. Our approximations hold when the Taylor se-
ries expansion is valid, i.e., when Ry is “small,” e.g.,
Ry = o,(]|]w — wo||), where 0,(-) means “little 0” with
high probability over the randomness in the random vec-
tor w. Here, we simply make two observations. First, this
expression will fail to hold if rank is lost in the sampling
process. This is because in general there will be a bias due
to failing to capture information in the dimensions that are
not represented in the sample. (Recall that one may use
the Moore-Penrose generalized inverse for inverting rank-
deficient matrices.) Second, this expression will tend to
hold better as the subsample size r is increased. However,
for a fixed value of r, the linear approximation regime will
be larger when the sample is constructed using information
in the leverage scores—since, among other things, using
leverage scores in the sampling process is designed to pre-
serve the rank of the subsampled problem (Drineas et al.,
2006; Mahoney, 2011; Drineas et al., 2012).

Given Lemma 1, we can establish the following lemma,

Lemma 2 The conditional expectation and conditional
variance for the traditional algorithmic leveraging proce-
dure, i.e., when the subproblem solved is a weighted LS
problem of the form (3), are given by:

Ew {BWW}:ﬁols + Ew [Rw]; (6)

~ 1
Vary, {ﬁw|y}: (XTx)7txT {Diag {é} Diag {m}
Diag {&}] X(X"X)™! + Vary [Rw], 7
where W specifies the probability distribution used in the
sampling and rescaling steps. The unconditional expecta-

tion and unconditional variance for the traditional algo-
rithmic leveraging procedure are given by:

E [BW}:ﬁm (8
Var [BW}:UQ(XTX)*1 + %Q(XTX)*XT
Diag {(1 —hs)’

i

} X(XTX)"'4Var [Rw].(9)
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Remark. Eqn. (6) states that, when the Ey, [Ry/| term
is negligible, i.e., when the linear approximation is valid,
then, conditioning on the observed data y, the estimate ,Z'}W
is approximately unbiased, relative to the full sample ordi-
narily LS estimate fiols; and Eqn. (8) states that the esti-
mate BW is unbiased, relative to the “true” value 3, of
the parameter vector 3. That is, given a particular data set
(X, y), the conditional expectation result of Eqn. (6) states
that the leveraging estimators can approximate well Bols;
and, as a statistical inference procedure for arbitrary data
sets, the unconditional expectation result of Eqn. (8) states
that the leveraging estimators can infer well 3.

Remark. Both the conditional variance of Eqn. (7) and the
(second term of the) unconditional variance of Eqn. (9) are
inversely proportional to the subsample size r; and both
contain a sandwich-type expression, the middle of which
depends on how the leverage scores interact with the sam-
pling probabilities. Moreover, the first term of the uncon-
ditional variance, 0?( X7 X)~1, equals the variance of the
ordinary LS estimator; this implies, e.g., that the uncondi-
tional variance of Eqn. (9) is larger than the variance of the
ordinary LS estimator, which is consistent with the Gauss-
Markov theorem.

3.2. Leverage-based Sampling and Uniform Sampling
Estimators

Here, we specialize Lemma 2 by stating two lemmas. A
key conclusion from the lemmas is that, with respect to
their variance or MSE, neither LEV nor UNIF is uniformly
superior for all input.

We start with the bias and variance of the leverage subsam-
pling estimator 3; 5y .

Lemma 3 The conditional expectation and conditional
variance for the LEV procedure are given by:

Ew {BLEV“J}:BOLQ + Ew [Rrev];

Var,, {BLEV|y}:§(XTX)_1XT {Diag {é} Diag {hl}

Diag{e}] X(XTX)"'"+Var, [Rrrv].

The unconditional expectation and unconditional variance
for the LEV procedure are given by:

E [BLEV} = Bo;
Var [BLEV] = 2(XTX)! + #(XTX)*IXT

) (1= hyi)?
D T M)
zag{ >

Remark. Two points are worth making. First, the variance
expressions for LEV depend on the size (i.e., the number of

} X(XTX)""4Var [Rrgyv]. (10)

columns and rows) of the n X p matrix X and the number of
samples r as p/r. This variance size-scale many be made
to be very small if p < r < n. Second, the sandwich-
type expression depends on the leverage scores as 1/h;;,
implying that the variances could be inflated to arbitrarily
large values by very small leverage scores. Both of these
observations will be confirmed empirically in Section 4.

We next turn to the pias and variance of the uniform sub-
sampling estimator B¢ 1.

Lemma 4 The conditional expectation and conditional
variance for the UNIF procedure are given by:

Ew [BUNIF\y] = Bots + Ew [Run1r)
Vary |Bywirly| = ©(XTX) "' X" [Diag {&} Diag {}]
X(XTX)_1+V3.I'W [RUNIF]~ (11)

The unconditional expectation and unconditional variance
for the UNIF procedure are given by:

E [BUNIF} = Bo;
Var {BUN,F} = o2(XTX)! + gUQ(XTX)‘lXT
Dzag {(1—]7,“)2} X(XTX)_1+V3P [RUNIF] (12)

Remark. Two points are worth making. First, the variance
expressions for UNIF depend on the size (i.e., the number
of columns and rows) of the n X p matrix X and the number
of samples r as n/r. Since this variance size-scale is very
large, e.g., compared to the p/r from LEV, these variance
expressions will be large unless 7 is nearly equal to n. Sec-
ond, the sandwich-type expression is not inflated by very
small leverage scores.

Remark. Apart from a factor n/r, the conditional variance
for UNIF, as given in Eqn. (11), is the same as Hinkley’s
weighted jackknife variance estimator (Hinkley, 1977).

3.3. Novel Leveraging Estimators

In view of Lemmas 3 and 4, we consider several ways to
take advantage of the complementary strengths of the LEV
and UNIF procedures. Recall that we would like to sample
with respect to probabilities that are “near” those defined by
the empirical statistical leverage scores. We at least want to
identify large leverage scores to preserve rank. This helps
ensure that the linear regime of the Taylor expansion is
large, and it also helps ensure that the scale of the variance
is p/r and not n/r. But we would like to avoid rescaling
by 1/h;; when certain leverage scores are extremely small,
thereby avoiding inflated variance estimates.
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3.3.1. THE SHRINKED LEVERAGING (SLEV)
ESTIMATOR

Consider first the SLEV procedure. As described in Sec-
tion 2.1, this involves sampling and reweighting with re-
spect to a distribution that is a convex combination of the
empirical leverage score distribution and the uniform dis-
tribution. That is, let 72¢? denote a distribution defined by
the normalized leverage scores (i.e., wiLe” = h;;/p), and let
7Unif denote the uniform distribution (i.e., 7" = 1/n,
for all i € [n]); then the sampling probabilities for the
SLEV procedure are of the form

™= art + (1 — a)rl ™, (13)

where o € (0, 1).

Since SLEV involves solving a weighted LS problem of
the form of Eqn. (3), expressions of the form provided by
Lemma 2 hold immediately. In particular, SLEV enjoys
approximate unbiasedness, in the same sense that the LEV
and UNIF procedures do. The particular expressions for
the higher order terms can be easily derived, but they are
much messier and less transparent than the bounds pro-
vided by Lemmas 3 and 4 for LEV and UNIF, respectively.
Thus, rather than presenting them, we simply point out sev-
eral aspects of the SLEV procedure that should be imme-
diate, given our earlier theoretical discussion. First, note
that min; m; > (1 — «)/n, with equality obtained when
hi; = 0. Thus, assuming that 1 — « is not extremely small,
e.g., 1 — a = 0.1, then none of the SLEV sampling prob-
abilities is too small, and thus the variance of the SLEV
estimator does not get inflated too much, as it could with
the LEV estimator. Second, assuming that 1 — « is not too
large, e.g., 1 — a = 0.1, then the amount of oversampling
that is required, relative to the LEV procedure, is not much,
e.g., 10%. In this case, the variance of the SLEV procedure
has a scale of p/r, as opposed to n/r scale of UNIF, assum-
ing that r is increased by that 10%. Third, since Eqn. (13)
is still required to be a probability distribution, combining
the leverage score distribution with the uniform distribu-
tion has the effect of not only increasing the very small
scores, but it also has the effect of performing shrinkage
on the very large scores. Finally, all of these observations
also hold if, rather that using the exact leverage score dis-
tribution (which recall takes O(np?) time to compute), we
instead use approximate leverage scores, as computed with
the fast algorithm of (Drineas et al., 2012). For this rea-
son, this approximate version of the SLEV procedure is the
most promising for very large-scale applications.

3.3.2. THE UNWEIGHTED LEVERAGING (LEVUNW)
ESTIMATOR

Consider next the LEVUNW procedure. As described in
Section 2.1, this estimator is different than the previous es-

timators, in that the sampling and reweighting are done ac-
cording to different distributions. For this reason, we have
examined the bias and variance of the unweighted lever-
aging estimator 3 .evuNw- Rather than presenting these
lemmas in detail, we mention three remarks.

Remark. Since the sampling and reweighting are per-
formed according to different distributions, the point about
which the Taylor expansion is performed, as well as the
prefactors of the linear term, are somewhat different than
in Section 3.1

Remark. The two expectation results state: (i), when
Evw [RrLevunw] is negligible, then, conditioning on the
observed data y, the estimator (3 LEVUNW 1S approxi-
mately unbiased, relative to the full sample weighted LS
estimator Bwls; and (ii) the estimator 3 gy ¢y ny 1S unbi-
ased, relative to the “true” value 3, of the parameter vec-
tor 3. That is, if we apply LEVUNW to a given data set
N times, then the average of the N LEVUNW estimates
are not centered at the LS estimate, but instead are cen-
tered roughly at the weighted least squares estimate; while
if we generate many data sets from the true model and ap-
ply LEVUNW to these data sets, then the average of these
estimates is centered around true value 3.

Remark. As expected, when the leverage scores are all the
same, the variance is the same as the variance of uniform
random sampling. This is expected since, when reweight-
ing with respect to the uniform distribution, one does not
change the problem being solved, and thus the solutions
to the weighted and unweighted LS problems are identical.
More generally, the variance is not inflated by very small
leverage scores, as it is with LEV. For example, the condi-
tional variance expression is also a sandwich-type expres-
sion, the center of which is Wy = Diag {rh;;/n}, which
is not inflated by very small leverage scores.

4. Main Empirical Evaluation

We consider synthetic data of 1000 runs generated from
y = XB+¢, where € ~ N(0,91,,), where several different
values of n and p, leading to both “very rectangular” and
“moderately rectangular” matrices X, are considered. The
design matrix X is generated from one of three different
classes of distributions introduced below.

e Nearly uniform leverage scores (GA). We generated
an n x p matrix X from multivariate normal N (1, 3),
where the (i, 7)th element of ;; = 2 x 0.5/"77/, and
where we set 3 = (110,0.11,_29,110)7. (Referred
to as GA data.)

e Moderately nonuniform leverage scores (75). We
generated X from multivariate ¢-distribution with 3
degree of freedom and covariance matrix X as before.
(Referred to as T3 data.)
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Figure 1. Comparison of variances and squared biases of the LEV
and UNIF estimators in three data sets (GA, T3, and 17) for n =
1000 and p = 50. Left panels are GA data; Middle panels are
T3 data; Right panels are 77 data. Upper panels are Logarithm
of Variances; Lower panels are Logarithm of Squared bias. Black
lines are LEV; Dash lines are UNIF.

e Very nonuniform leverage scores (77). We gener-
ated X from multivariate ¢-distribution with 1 degree
of freedom and covariance matrix Y as before. (Re-
ferred to as T} data.)

4.1. Leveraging Versus Uniform Sampling on Synthetic
Data

Here, we will describe the properties of LEV versus UNIF
for synthetic data. See Figure 1 for the results on data ma-
trices with n = 1000 and p = 50. (The results for data
matrices for other values of n are similar.)

The simulation results corroborate what we have learned
from our theoretical analysis, and there are several things
worth noting. First, in general the squared bias is much less
than the variance, even for the 7 data, suggesting that the
solution is unbiased in the sense quantified in Lemmas 3
and 4. Second, LEV and UNIF perform very similarly for
GA, somewhat less similarly for 73, and quite differently
for 17, indicating that the leverage scores are very uniform
for GA and very nonuniform for 7;. In addition, when
they are different, LEV tends to perform better than UNIF,
i.e., have a lower MSE for a fixed sampling complexity.
Third, as the subsample size increases, the squared bias
and variance tend to decrease monotonically. In particu-
lar, the variance tends to decrease roughly as 1/r, where r
is the size of the subsample, in agreement with Lemmas 3
and 4. Moreover, the decrease for UNIF is much slower, in
a manner more consistent with the leading term of n/r in
Eqn. (12), than is the decrease for LEV, which by Eqn. (10)
has leading term p/r. All in all, LEV is comparable to or
outperforms UNIF, especially when the leverage scores are
nonuniform.
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Figure 2. Comparison of variances and squared biases of the
LEV, SLEV, and LEVUNW estimators in three data sets (GA,
T3, and T1) for n = 1000 and p = 50. Left panels are GA data;
Middle panels are 73 data; Right panels are T} data. Grey lines
are LEVUNW; black lines are LEV; dotted lines are SLEV with
a = 0.1; dotdashed lines are SLEV with o = 0.5; thick black
lines are SLEV with o = 0.9.

4.2. Improvements from Shrinked Leveraging and
Unweighted Leveraging

Consider Figure 2, which present the variance and bias for
synthetic data matrices (for GA, T3, and 7} data) of size
n X p, where n = 1000 and p = 50. In each case, LEV,
SLEV for three different values of the convex combination
parameter o, and LEVUNW were considered. Several ob-
servations are worth making. First of all, for GA data , all
the results tend to be quite similar; but for 75 data and even
more so for 77 data, differences appear. Second, SLEV
with o ~ 0.1, i.e., when SLEV consists mostly of the uni-
form distribution, is notably worse in a manner similarly as
with UNIF. Moreover, there is a gradual decrease in both
bias and variance for our proposed SLEV as « is increased;
and when o >~ 0.9 SLEV is slightly better than LEV. Fi-
nally, our proposed LEVUNW often has the smallest bias
and variance over a wide range of subsample sizes for both
T3 and T7, although the effect is not major. All in all, these
observations are consistent with our main theoretical re-
sults.

Consider next Figure 3. This figure examines the optimal
convex combination choice for o in SLEV, and « is the x-
axis in all the plots. Different column panels in Figure 3
correspond to different subsample sizes r. Recall that there
are two conflicting goals for SLEV: adding (1 — «)/n to
the small leverage scores will avoid substantially inflating
the variance of the resulting estimate by samples with ex-
tremely small leverage scores; and doing so will lead to
larger sample size r. Figure 3 plots the variance and bias
for T7 data for a range of parameter values and for a range
of subsample sizes. In general, one sees that using SLEV
to increase the probability of choosing small leverage com-
ponents with o around 0.8 — 0.9 (and relatedly shrinking
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Figure 3. Varying « in SLEV. Comparison of variances and
squared biases of the SLEV estimator in data generated from 7%
with n = 1000 and variable p. Left panels are subsample size
r = 3p; Middle panels are » = 5p; Right panels are » = 10p.
Circles connected by black lines are p = 10; squares connected
by dash lines are p = 50; triangles connected by dotted lines are
p = 100. Grey corresponds to the LEVUNW estimator.

the effect of large leverage components) has a beneficial
effect on bias as well as variance. As a rule of thumb,
these plots suggest that choosing @ = 0.9, and thus us-
ing m; = anF®’ + (1 — a)/n as the importance sampling
probabilities, strikes a balance between needing more sam-
ples and avoiding variance inflation. One can also see in
Figure 3 the grey lines, dots, and dashes, which correspond
to LEVUNW for the corresponding values of p, that LEV-
UNW consistently has smaller variances than SLEV for all
values of . We should emphasize, though, that these are
unconditional biases and variances. Since LEVUNW is ap-
proximately unbiased relative to the full sample weighted
LS estimate Bwls, however, there is a large bias away from
the full sample unweighted LS estimate Bols. This sug-
gests that LEVUNW may be used when the primary goal is
to infer the true 3,; but that when the primary goal is rather
to approximate the full sample unweighted LS estimate, or
when conditional biases and variances are of interest, then
SLEV may be more appropriate.

4.3. Conditional Bias and Variance

Consider Figure 4, which presents our main empirical re-
sults for conditional biases and variances. As before, matri-
ces were generated from GA, 75 and 7% ; and we calculated
the empirical bias and variance of UNIF, LEV, SLEV with
a = 0.9, and LEVUNW—in all cases, conditional on the
empirical data y. Several observations are worth making.
First, for GA the variances are all very similar; and the bi-
ases are also similar, with the exception of LEVUNW. This
is expected, since LEVUNW is approximately unbiased,
relative to the full sample weighted LS estimate Bwls—
and thus there should be a large bias away from the full
sample unweighted LS estimate. Second, for 75 and even
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Figure 4. Comparison of conditional variances and squared bi-
ases of the LEV and UNIF estimators in three data sets (GA, T3,
and 77) for n = 1000 and p = 50. Left panels are GA data; Mid-
dle panels are T3 data; Right panels are 7' data. Upper panels are
Variances; Lower panels are Squared Bias. Black lines for LEV
estimate; dash lines for UNIF estimate; grey lines for LEVUNW
estimate; dotted lines for SLEV estimate with o« = 0.9.

more prominently for 77, the variance of LEVUNW is less
than that for the other estimators. Third, when the leverage
scores are very nonuniform, as with 77, the relative merits
of UNIF versus LEVUNW depend on the subsample size
r. In particular, the bias of LEVUNW is larger than that
of even UNIF for very aggressive downsampling; but it is
substantially less than UNIF for moderate to large sample
sizes.

Based on these and our other results, our default recom-
mendation is to use SLEV (with either exact or approxi-
mate leverage scores) with @ ~ 0.9: it is no more than
slightly worse than LEVUNW when considering uncondi-
tional biases and variances, and it can be much better than
LEVUNW when considering conditional biases and vari-
ances.

5. Discussion and Conclusion

In this paper, we have adopted a statistical perspective on
algorithmic leveraging, and we have demonstrated how this
leads to improved performance of this paradigm on syn-
thetic data. We should note that, while our results are
straightforward and intuitive, obtaining them was not easy,
in large part due to seemingly-minor differences between
problem formulations in statistics, computer science, ma-
chine learning, and numerical linear algebra. Now that we
have “bridged the gap” by providing a statistical perspec-
tive on a recently-popular algorithmic framework, we ex-
pect that one can ask even more refined statistical questions
of this and other related algorithmic frameworks for large-
scale computation.
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