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Abstract
We consider a multi-armed bandit problem
where the reward distributions are indexed by
two sets –one for arms, one for type– and can
be partitioned into a small number of clusters ac-
cording to the type. First, we consider the setting
where all reward distributions are known and all
types have the same underlying cluster, the type’s
identity is, however, unknown. Second, we study
the case where types may come from different
classes, which is significantly more challenging.
Finally, we tackle the case where the reward dis-
tributions are completely unknown. In each set-
ting, we introduce specific algorithms and derive
non-trivial regret performance. Numerical exper-
iments show that, in the most challenging agnos-
tic case, the proposed algorithm achieves excel-
lent performance in several difficult scenarios.

1. Introduction
In a recommender system (Li et al., 2010; 2011; Adomavi-
cius & Tuzhilin, 2005), an agent must display an ad to each
incoming client, and a context vector summarizes the ob-
served properties of a client, such as its navigation history
or its geographic localization. In a cognitive radio (Avner
et al., 2012; Filippi et al., 2008), an agent must select a
communication channel, based on its current known loca-
tion and network conditions, while avoiding collision with
other sources (such as radar, WiFI, etc). Both examples
can be analyzed within the contextual-multi-armed ban-
dit framework (Langford & Zhang, 2007; Lu et al., 2010),
where the contexts summarize the information available to
the learner. However, the context alone may not be suffi-
cient to solve these problems optimally: In recommender
systems, information such as gender or salary, is typically
missing (due to privacy). In cognitive radios, information
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that a source (or an existing user) is close or far is un-
known. In both cases, important information about the re-
ward structure is not observed. Such would enable to clas-
sify similar situations and possibly output much better pre-
dictions.
We study in this paper the underlying problem that we call
the latent multi-armed bandit problem (we do not consider
the contextual part of the problem, that is handled by pre-
vious work). More formally, let {νa,b}a∈A,b∈B be a set of
real-valued probability distributions, that is indexed by two
finite sets A of items (actions) and B of types. For clarity,
and to highlight the role of latent information, we assume
that both sets are finite. Extension to continuous parametric
settings such as linear contextual-bandit (Abbasi-Yadkori
et al., 2011; Dani et al., 2008) is straightforward. We de-
note µa,b ∈ R the mean of νa,b and assume νa,b to be R-
sub-Gaussian (with known R), that is

∀λ ∈ R logEνa,b
exp (λ(X − µa,b)) 6 R2λ2/2 . (1)

At each step n ∈ N, Nature selects some bn ∈ B accord-
ing to some unknown stochastic process Υ. Then bn is re-
vealed, and we must select some an ∈ A. Finally, a reward
Xn is sampled from νan,bn and observed. Our goal is to
find for all N a sequence of actions a1:N = {an}16n6N
with maximal cumulated reward. The optimal sequence is
given by {?bn}n∈N where ?b ∈ argmaxa∈A EX∼νa,b

[X].
The expected regret of an algorithm A that produces a se-
quence of actions a1:N is then simply defined by

RA
N =

N∑
n=1

EXn∼ν?bn ,bn

[
Xn

]
−

N∑
n=1

EXn∼νan,bn

[
Xn

]
.

We model the latent information by assuming that B is par-
titioned into C clusters C = {Bc}c=1,...,C such that the
distributions {νa,b}a∈A are the same for each b ∈ Bc. This
common distribution is denoted νa,c and called a cluster
distribution. We denote the optimal action in Bc by ?c, and
introduce the optimality gaps ∆a,c = µ?c,c − µa,c. Both
the partition and the number of clusters are unknown.
In the recommender system example, B would be the set
of Ids of users having a same context, partitioned for in-
stance into C = 4 groups according to whether the user is
a Male/Female and has High/Low income. In the cognitive
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radio scenario, B could represent hours of the day, parti-
tioned into C = 23 parts according to three local radios
being active or not1.
Previous work In (Agrawal et al., 1989) and more recently
in (Salomon & Audibert, 2011) the case when all clus-
ter distributions are known and all users b come from the
same unknown cluster c is considered. In this already non-
trivial setting, (Agrawal et al., 1989) provided an asymp-
totic lower bound that significantly differs from the stan-
dard lower bound known for the multi-armed bandit prob-
lem (Lai & Robbins, 1985; Burnetas & Katehakis, 1996),
thus showing that the problem is intrinsically different from
a bandit problem. They also analyze a near-optimal (yet
costly) algorithm for that problem. In (Salomon & Audib-
ert, 2011), a simpler algorithm is introduced and analyzed
with less tight guarantee. We contribute to that setting in
Section 2 with a tighter regret bound for a simple algo-
rithm. We then consider two challenging extensions. In
Section 3 users may come from different (instead of one)
clusters, and in Section 4 nothing is known about the en-
vironment. These new settings could be loosely related to
(Slivkins, 2011) and (Hazan & Megiddo, 2007).
Contribution In Section 2, we review the important case
when the cluster distributions {νa,c}a∈A,c∈C are known,
and all users come from the same cluster c. We provide in-
tuition about the setting, introduce a new algorithm called
Single-K-UCB that is computationally less demanding
than that of (Agrawal et al., 1989), and prove an explicit
finite-time bound (Theorem 4) on its regret, improving on
(Salomon & Audibert, 2011).
In Section 3, we analyze the significantly harder and largely
unaddressed setting when the cluster distributions are still
known, but the users may now come from all clusters. We
provide a lower bound (Theorem 5) showing that when the
number of clusters is too large with respect to the time hori-
zon, sub-linear regret is not attainable. We introduce an al-
gorithm called Multiple-K-UCB and prove a non-trivial
regret bound (Theorem 6) that makes explicit the effect of
the distribution of users Υ on the regret.
In Section 4, we target the challenging setting when noth-
ing is known (neither Υ, the cluster distributions, nor even
the number of clusters). We provide regret bounds for
benchmark UCB-like algorithms (Theorem 7), and a new
algorithm called A-UCB. Despite the very general setting
and poor available information, we are able to prove a
weak result (Proposition 1), that enables us to deduce a
regret guarantee under mild conditions on the structure of
arms (Lemma 1,2). Numerical simulations show in Sec-
tion 4.2 that the introduced algorithm achieves excellent
performance in a number of hard situations. All proofs
are provided in the extended version (Maillard & Mannor,
2013).

1We assume that radios are active at the same time everyday.

Notations. At round n, we denote the number of obser-
vations for the pair (a, b) by Na,b(n) =

∑n
t=1 I{at =

a, bt = b} and use ν̂a,b(n) and µ̂a,b(n) to denote the em-
pirical distribution and empirical mean built from the same
observations, respectively. We also introduce Nb(n) =∑
a∈ANa,b(n). For observations associated to the pair

a, b, we denote Ua,b(n) a high probability upper bound on
the mean µa,b, and La,b(n) a high probability lower bound.
Unless specified, in the sequel we choose the following
Ua,b(n) coming from concentration inequality for R-sub-
Gaussian variables (see (1)), and define La,b(n) symmetri-
cally:

Ua,b(n) = µ̂a,b(n) +R

√
2 log(Nb(n)3)

Na,b(n)
.

One could instead use Hoeffding’s inequality if the dis-
tributions have bounded support, empirical Bernstein’s in-
equality to take the variance into account, self-normalized
concentration inequality such as in (Garivier & Moulines,
2008; Abbasi-Yadkori et al., 2011), or even tighter upper
bounds based on Kullback-Leibler divergence as explained
in (Cappé et al., 2013). These would lead to slightly im-
proved constants in the regret bounds, at the price of clarity.
Thus we focus here on bounds based on the mean only. Let
the confidence set be Sa,b(n) = [La,b(n), Ua,b(n)] and its
size (the gap) be Ga,b(n) = Ua,b(n) − La,b(n). To avoid
some technical considerations, we assume that Sa,b(n) is
centered around µ̂a,b(n).

2. Known cluster distributions with single
cluster arrivals.

In this section, we consider the case when all the distribu-
tions {νa,c}a∈A,c∈C are known and arrivals {bn}n>1 be-
long to the same unknown cluster c ∈ C. The difference
from a standard multi-armed bandit problem is that the set
of possible distributions is finite and known. We can have
for instance three arms, two clusters and Bernoulli distri-
butions of respective parameter 0.2, 0.6, 0.8 for one cluster,
and Bernoulli distributions of parameter 0.8, 0.1, 0.5 for the
second one. This modifies the achievable guarantees:
Theorem 1 (Agrawal et al. (1989)) Let c ∈ C be the true
class (that is supp(Υ) ⊂ Bc), and A− = A \ {?c} be the
set of sub-optimal arms. Then, a lower performance bound
is

lim inf
N→∞

RN

log(N)
> min
ωc∈P(A−)

max
c′∈C(c)

∑
a∈A−

ωc,a∆a,c∑
a∈A−

ωc,aKL(νa,c||νa,c′)
,

where C(c) =

{
c′ ∈ C : ν?c,c′ = ν?c,c and ?c 6= ?′c

}
.

Theorem 2 (Agrawal et al. (1989)) For each c ∈ C, let
ω?c that achieves the minimum in the lower bound of The-
orem 1. The algorithm proposed by (Agrawal et al., 1989)
makes use of {ω?c}c∈C and achieves

RN 6

(
max
c′∈C(c)

∑
a∈A− ω

?
c,a∆a,c∑

a∈A− ω
?
a,cKL(νa,c||νa,c′)

+o(1)

)
log(N) .
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Although theoretically appealing, it may be in general ex-
pensive to compute the quantities {ω?c}c∈C , which makes
the algorithm less practical. On the other hand, (Salomon
& Audibert, 2011) introduced the GCL algorithm, seem-
ingly without being aware of the work of (Agrawal et al.,
1989) and got the following non-asymptotic result:
Theorem 3 (Salomon & Audibert (2011)) Assume
that for all c, c′ ∈ C, for all a ∈ A, then either
νa,c 6= νa,c′ or (either ?c 6= a or ?′c = a), or
∃a′ 6= a : Pνa′,c(

dνa′,c
dνa′,c′

(X) > 0) = 0. Then if
c ∈ C with unique best arm is the true environment, then
for all β > 0 it holds for some constants C,C ′ that

∀n∀a 6= ?c P
( ∑
b∈Bc

Na,b(n) > C
log(n)

∆2
a,c

)
6 C ′n−β .

GCL is fairly easy to implement, however the way this
bound is stated makes it hard to understand, all the more
so that the constants are not explicit. Also the dependency
with ∆2

a,c seems sub-optimal.

For completeness, we now introduce an efficient algorithm
directly inspired from Agrawal’s work. The price for the
reduced complexity is that we lose the asymptotic optimal-
ity. We start with some intuition about our setting.

High level intuition For clarity, we focus on means only
(instead of distributions). Let Cn−1 =

{
c ∈ C,∀a ∈ A :

µa,c ∈ Sa,B(n − 1)
}

be the set of admissible classes at
round n− 1, where the confidence set Sa,B(n− 1) is built
using observations for the pairs {(a, b)}b∈B. Note that by
concentration of measure, with high probability the true
class c is admissible and thus Cn−1 is not empty. Let then
c̃ ∈ Cn−1 be an admissible class. It makes sense to pull its
optimal arm ?c̃ = argmaxa∈A µa,c̃ (that is known). Now
several situations may occur:
a) For another class c′ ∈ C, if |µ?c̃,c′ − µ?c̃,c̃| > Ga,B(n−
1), then c′ cannot be admissible. Now if when c′ is ad-
missible then ?c̃ = ?c′ , it means that choosing to play ?c̃
for c̃ ∈ Cn−1 is safe (that is ?c̃ = ?c happens with high
probability).

b) If ∃c′ ∈ C such that both |µ?c̃,c′ −µ?c̃,c̃| 6 Ga,B(n− 1)
and ?c̃ 6= ?c′ , there are many admissible classes that lead
to different actions to play. The situation is tricky since
playing arm ?c̃ does not separate c̃ from c′ (it may be that
ν?c̃,c̃ = ν?c̃,c′ ), and may moreover be sub-optimal since we
may have ?c̃ 6= ?c.

Algorithm (Agrawal et al., 1989) uses a fancy procedure to
handle case b). Here, we note that if we choose the class c̃
(and thus action ?c̃) with maximal best mean, this ensures
that µ?c,c − µ?c̃,c 6 µ?c̃,c̃ − µ?c̃,c and thus a controlled
error. This observation leads to the Single-K-UCB al-
gorithm, whose pseudo-code is provided in Algorithm 1.
Straightforwardly, if Cn−1 is empty, it reduces to playing
round-robin, in case a),A?n−1 is a singleton, and in case b),
we have a controlled error.

Algorithm 1 The Single-K-UCB algorithm.
Require: The cluster distributions {νa,c}a∈A,c∈C .

1: for n = 1...N do
2: Receive bn ∼ Υ.
3: Define the set of admissible classes

Cn−1 =
{
c ∈ C : ∀a ∈ Aµa,c ∈ Sa,B(n− 1)

}
.

4: Define the set of “elite” admissible arms
A?n−1 = {a ∈ A;∃c ∈ Cn−1 ?c = a}.

5: Choose the next arm (breaks ties with round-robin)
an = argmax

a=?c,c∈Cn−1

µ?c,c . (2)
6: end for

Regret bound Such an algorithm enjoys the following re-
gret performance:
Theorem 4 The regret of Single-K-UCB satisfies

RSingle-K-UCB
N 6

∑
a∈A?

24R2∆a,c log(N)

∆+2
a,c

+ ∆a,c

(
1+

π2

3

)
,

where A? =

{
a ∈ A : ∃c ∈ C s.t. ?c = a

}
and

∆+
a,c = inf

c′∈C

{
µa,c′ − µa,c : ?c′ = a ∩ µ?c′ ,c′ > µ?c,c

}
.

The notation ∆+
a,c comes from the fact that ∆+

a,c > ∆a,c.
Note the link between this bound and that of Theorem 2
(also ∆+

a,c and C(c)). Of course the bound of Theorem 2
can be better and this seems to be the price for the sim-
plicity of Single-K-UCB. On the other hand, since The-
orem 4 scales with ∆+

a,c (which can be arbitrarily larger
than ∆a,c; see Figure 1), it improves on the result of The-
orem 3, and moreover provides explicit constants. Finally,
it is straightforward to improve the constants using tighter
confidence bounds as discussed in the introduction.

3. Known cluster distributions with multiple
cluster arrivals.

We now turn to the more challenging case when the dis-
tributions {νa,c}a∈A,c∈C are still known to the learner, but
when the users may come from different clusters, and the
learner does not know what class c corresponds to some in-
put b ∈ B. In this setting, the lower bound from Theorem 1
can be strengthen. Indeed, without further assumptions, it
may be the case that if the number of clusters C is too large
with respect to the time horizon N , we don’t have time to
learn and we can not ensure to have sub-linear regret:
Theorem 5 Let Υ be the uniform distribution over B and
consider that the distributions are partitioned exactly into
C > A groups of equal size. Then, it holds

inf
algo

sup
νa,c

RN >
1

20
min{

√
NAC,N} .

This shows that for the scaling C = Ω(N) the problem be-
comes hopeless, since for any bandit algorithm there exists
a set of distributions {νa,b}a∈A,b∈B such that the regret is
linear in N .
Despite this difficulty, it is possible to slightly modify
Single-K-UCB for that setting, which leads to algo-
rithm 2 that enjoys the following regret performance.
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Algorithm 2 The Multiple-K-UCB algorithm.
Require: The cluster distributions {νa,c}a∈A,c∈C .

1: for n = 1...N do
2: Receive b = bn ∼ Υ.
3: Define the set of admissible classes

Cn−1(b) =
{
c ∈ C,∀a ∈ A : µa,c ∈ Sa,b(n− 1)

}
.

4: Define the set of “elite” admissible arms
A?n−1 = {a ∈ A;∃c ∈ Cn−1(bn) ?c = a}.

5: Choose the most optimistic “elite” arm
an = argmax

a=?c, c∈Cn−1(bn)

µ?c,c .

6: end for
Theorem 6 The regret of Multiple-K-UCB satisfies

RMultiple-K-UCB
N 6

∑
b∈B

∑
a∈A?

min

{
24R2∆a,cb log(NΥ(b))

∆+2
a,cb

+ O
(
Υ(b)−1

)
,∆a,cbNΥ(b)

}
,

where cb ∈ C denotes the class corresponding to b ∈ B.
In order to see the benefit of knowing the distributions
{νa,c}a∈A,c∈C , a natural benchmark algorithm is the one
that simply plays independent copies of UCB on each b ∈ B
(see (Auer, 2003)), without using the knowledge of the
cluster distributions. We call this algorithm UCB on B; see
Algorithm 3. Importantly, due to the inequality ∆+

a,cb
>

∆a,cb and because only elite arms a ∈ A? are pulled, the
regret of Multiple-K-UCB is never worse than that of
UCB on B (Theorem 7); it can potentially be much smaller.
Algorithm 3 The UCB on B algorithm

1: for n = 1...N do
2: Receive bt ∼ Υ.
3: Compute the empirical means µ̂a,b(n− 1).
4: Choose the next arm (breaks ties arbitrary)

an = argmax
a∈A

Ua,bn(n− 1) . (3)
5: end for

Illustration In order to highlight the role played by ∆+
a,c,

Figure 1 depicts the upper-bounds from Theorem 6 and and
from Theorem 7, for one randomly generated problem (we
do not compare the regret, but the bounds, to emphasize the
theoretical gap). For clarity, we reported the values of ∆+

a,c

as well as of the optimality gaps ∆a,c for each arm and
each class. Here three arms that may be pulled by UCB on
B are never pulled by Multiple-K-UCB. Note that the
improvement can sometimes be huge: for instance when all
?c are equal, then ∆+

a,c = ∞ for all sub-optimal arm and
the bound from Theorem 6 equals zero.

4. The agnostic case.
In Sections 2 and 3, using the knowledge of the cluster dis-
tributions, we derived regret bounds that may significantly
improve on their equivalent agnostic version. We now de-
tail an improvement that is even more effective and appli-
cable both in case cluster distributions are known or not.
We first note that using estimates from each distributions
νa,b separately in order to decide the best action for the

Figure 1. Theoretical regret bounds for Multiple-K-UCB
(Theorem 6) and UCB on B (Theorem 7) for one prob-
lem characterized by |A| = 3, |B| = 50, |C| = 4 and

1 2 3 4
µa,c : 1 0.527 0.209 0.713 0.762

2 0.717 0.193 0.575 0.230
3 0.669 0.751 0.120 0.485

∆+
a,c : 1 0.235 0.553 0.0 0.0

2 0.0 +∞ 0.142 +∞
3 0.082 0.0 0.631 +∞

∆a,c : 1 0.190 0.542 0.0 0.0
2 0.0 0.558 0.138 0.533
3 0.0475 0.0 0.593 0.277

cluster c(b) = c seems sub-optimal since the number of
samples Na,b(n) available for the couple (a, b) is typically
small, while we could possibly gain much more by using
all observations in each Bc (This is basically what happens
in Section 2). Indeed, if two distributions νa,b and νa,b′
are the same, then grouping the corresponding observations
provides a faster convergence speed. In general, grouping
subsets of {νa,b}b∈B may lead to a dramatic speed-up if we
group similar distributions, and may create a bias if they
significantly differ. Thus, there is a trade-off between get-
ting fast versus accurate convergence, and it is a priori not
clear whether we can get a provable improvement.
Benchmark We now introduce a (pseudo-)oracle that
knows the identity of the clusters perfectly. The simplest
one is an algorithm that runs a version of UCB separately
on each group Bc (and not each b). We call this benchmark
UCB on C. Note that although it knows the clusters this is
not the best oracle: In some cases, it may be better to fur-
ther group some clusters together. This algorithm is easy to
analyze. To understand the kind of improvement we are tar-
geting, the following theorem compares the regret of UCB
on B, to that of the pseudo-oracle UCB on C.
Theorem 7 The expected regret at timeN of the algorithm
UCB on B is upper bounded by

RUCB on B
N 6

∑
b∈B

∑
a∈A

min
{24R2 log(NΥ(b))

∆a,b

+ O
(

Υ(b)−1
)
,∆a,bNΥ(b)

}
,

where ∆a,b = µπ?(b),b − µa,b is the optimality gap of arm
a for environment b. Similarly, the expected regret at time
N of UCB on C is upper bounded by



Latent Bandits

RUCB on C
N 6

C∑
c=1

∑
a∈A

min
{24R2 log(NΥ(Bc))

∆a,c

+ O
(

Υ(Bc)−1
)
,∆a,cNΥ(Bc)

}
,

where ∆a,c is the common value of the ∆a,b for b ∈ Bc.
As a result, the regret of UCB on C can be substantially
smaller than the one of UCB on B. Indeed, only looking at
the term in factor of log(N), we get an improvement going
from

∑
b∈B

∑
a∈A∆−1a,b to

∑C
c=1

∑
a∈A∆−1a,c, that can be

substantial, since typically C is much smaller thanB. Note
of course that the partition C is unknown in practice. We
emphasize that the lower bound of Theorem 5 also holds
for that setting.
Grouping distributions We now detail the improvement
we are going to use. Let B ⊂ B. We define, similarly to
µ̂a,b(n), La,b(n) and Ua,b(n) the empirical group estimate
ν̂a,B(n) with associated group mean µa,B(n), confidence
intervals Ua,B(n), La,B(n) and set Sa,B(n), where

ν̂a,B(n) =

∑
b′∈B ν̂a,b′(n)Na,b′(n)I{b′ ∈ B}∑

b′∈BNa,b′(n)I{b′ ∈ B}
,

µa,B(n) =

∑
b′∈B µa,b′Na,b′(n)I{b′ ∈ B}∑
b′∈BNa,b′(n)I{b′ ∈ B}

.

Note that for B = Bc, then µa,Bc(n) = µa,c, which
may not hold for other sets B since there may be a bias
when the {µa,b′}b′∈B are distinct. However, the speed
of convergence of the group depends on Na,B(n) =∑
b′∈BNa,b′(n)I{b′ ∈ B}, which is typically much faster

than that of a single point b (that depends on Na,b(n)).
Thus Sa,B(n) = [La,B(n), Ua,B(n)] is potentially much
smaller than Sa,b(n). Finally, note that, by construction,
we have µa,B(n) ∈ Sa,B(n) with high probability, but that
for some b ∈ B there is no reason that µa,b ∈ Sa,B(n) due
to the introduced bias.
In order to leverage the estimation bias, we restrict possible
groups B, using two observations. First, if µa,b = µa,b′ ,
then we must have Sa,b(n) ∩ Sa,b′(n) 6= ∅ with high prob-
ability. More generally, some B such that µa,b = µa,b′

for all b, b′ ∈ B, must satisfy that for all B′ ⊂ B and all
B′′ ⊂ B, with high probability, Sa,B′′(n) ∩ Sa,B′(n) 6= ∅.
Second, we define for an adaptive ε = εa,b,b′,n the enlarged
confidence bounds
Ua,b(n; 1 + ε) = µ̂a,b(n) + (1 + ε)

(
Ua,b(n)− µ̂a,b(n)

)
,

La,b(n; 1 + ε) = µ̂a,b(n)− (1 + ε)
(
µ̂a,b(n)− La,b(n)

)
,

and then Sa,b(n; 1+ε)= [La,b(n; 1+ε), Ua,b(n; 1+ε)]. Now,
if µa,b = µa,b′ and Ga,b′(n) 6 ε

2Ga,b(n)2, we must have
Sa,b′(n) ⊂ Sa,b(n; 1 + ε) with high probability. Finally,
we focus only on mean-based procedures for clarity, but it

2This is because we restrict to confidence interval cen-
tered around µ̂a,b(n); in general we would need Ga,b′(n) 6
εmin{Ua,b(n)− µ̂a,b(n), µ̂a,b(n)− La,b(n)} .

is possible to use empirical distributions ν̂a,b(n) to remove
b′ with obvious mismatch in Kullback-Leibler divergence.
We do not discuss this.
All in all, we define two sets of sets: First Bb(n) for com-
patible sets, and then B+

b (n) for maximally compatible
(or “elite”) sets, that have maximal group speed of con-
vergence and a controlled bias:

Bb(n)
def
=

{
B⊂B:∀a∈A∀b′,b′′∈B Sa,b′(n)⊂Sa,b′′(n; 1+ε)

∩ b ∈ B ∩ ∀B′, B′′ ⊂ B, Sa,B′′(n) ∩ Sa,B′(n) 6= ∅
}
,

B+
b (n)

def
= Argmax

B∈Bb(n)

B (for the relation ⊂ ) . (4)

(Note that Argmax returns a set, contrary to argmax.)
4.1. The Agnostic UCB for clustered-bandits.
We are now ready to introduce A-UCB, whose pseudo-code
is provided as Algorithm 4.
Proving strong regret bounds in this agnostic setting is dif-
ficult without further assumptions, since the true class may
change at each single time step. For that reason, we pro-
ceed in two steps: Proposition 1 controls the number of
pulls of sub-optimal arms under some events, that we then
handle in specific cases.

Algorithm 4 The A-UCB algorithm
Require: Parameter γ.

1: for n = 1...N do
2: Receive bn ∼ Υ,
3: Compute µ̂a,b(n − 1), then Ua,b(n − 1), La,b(n −

1), Sa,b(n− 1) and Ga,b(n− 1).
4: Define the quantity ε = εbn,b′,n−1 by

max

{√
2γ log(Nb′(n− 1))

log(Nbn(n− 1))
− 1, 0

}
.

5: Compute the set B+
bn

(n− 1) of maximally compat-
ible aggregation sets via (4).

6: Pull an elite arm that is the most optimistic
an ∈ argmax

a∈A
max

B∈B+
bn

(n−1)
Ua,B(n− 1) (5)

7: end for

Proposition 1 Let Ωn =
{
Bcn ∈ Bbn(n − 1)

}
be the

event that the true class cn is admissible at round n, and
Eαn =

{
G?cn ,Bcn

(n − 1) < α∆an,cn

}
the event that the

confidence interval of the optimal arm of cluster Bcn
is

small enough, for small α ∈ (0, 1). Then,3 for a subop-
timal an, under Ωn ∩ Eαn and for all η ∈ (α, 1],

either Nan,bn(n− 1)<
(

1+
ε

2

)2 24R2 log(Nbn(n− 1))

(η − α)2∆2
an,cn

,

or Nan,Bcn
(n− 1) <

24R2 log(NBcn
(n− 1))

(1− η)2∆2
an,cn

m.

3In section C.2 of the extended version (Maillard & Mannor,
2013), we show a slightly stronger result, though more difficult to
interpret.
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That is, in all cases the total number of pulls, for either the
current user bn or its class cn, of a chosen sub-optimal arm
is controlled.
In particular for small ε, α and η → 1, Proposition 1 shows
that under Ωn ∩ Eαn the regret of A-UCB is essentially in
between that of UCB on B and UCB on C: up to constants,
it is never worse than UCB on B, and can be significantly
better by competing occasionally with UCB on C. This is
highlighted on Figure 5. It now remains to show that Ωn ∩
Eαn happens with high probability in order to deduce a non-
trivial regret bound.
Illustration Ωn is the event that the true class cn is admis-
sible at round n,. Now the event Eαn essentially says that
N?cn ,Bcn

(n− 1) > O(log(n)), that is, since N?c,Bc(n) =∑
b∈Bc

N?c,b(n), it is enough that one N?cn ,b(n) be as
large to ensure that Eαn happens. For illustration, let us
turn to the case of Bernoulli distributions (R = 1/2) with
C = 4 equally probable classes of equal size B = 50. In-
dividual upper bound confidence bounds Ua,b(25000) are
non trivial (i.e. less than 1) if (a, b) is seen at least 15
times. Now if each pair (?c, b) for b ∈ Bc is visited at least
15 times (out of the ' 125 available time steps for each
b ∈ Bc) then G?c,Bc

(25000) < 0.27, and for 50 visits, the
bound reduces to 0.145. Similarly, for B = 250 we get
abound 0.12 with 15 visits of the optimal action, which is
enough to ensure that Eαn happens in non-trivial situations.
Of course these numbers can be significantly reduced by
using better confidence bounds (see (Abbasi-Yadkori et al.,
2011)). Let us now provide conditions under which both
Eαn and Ωn happen.

Adaptive enlargement The reason for having an adaptive
ε and not just a constant ε = 1 is that a constant ε does
not always ensure that Bcn is admissible (that is Ωn hap-
pens) with high probability, but only that a subset of Bcn
is admissible at round n. To better understand the number
of such points that are gathered in Sa,b(n; 1 + ε) we intro-
duce the following quantity, that only depends on the law
of arrivals Υ:
Definition 1 The γ-balance of B with respect to cluster c,
for point b ∈ Bc is defined by

Bc(b; γ) =

{
b′ ∈ Bc : Υ(b) 6 γΥ(b′)

}
.

Together with this quantity, it is natural to introduce the
distortion factor of group Bc, defined by

γc =
maxb∈Bc

Υ(b)

minb∈Bc Υ(b)
.

These quantities enable us to quantify the effective num-
ber of points that are grouped with b ∈ B, which directly
defines the speed-up the algorithm can achieve for this en-
vironment. Importantly, note that if γ > γc, then it holds
that Bc(b; γ) = Bc for all b ∈ Bc. A-UCB uses an adap-
tive ε that ensures that if γ is essentially greater than γc,

then Bc(b; γ) and thus Bc is admissible with high probabil-
ity (but one should choose a small γ since the regret scales
with γ); more precisely
Lemma 1 In A-UCB, if γ is chosen such that γ > γc +
O
(
n−1/2

)
, then it holds that

P(Ωn) > 1−O
(
n−2A

∑
b∈B

Υ(b)−2
)
− 2|B|n−2 .

Such a O(n−2) control is standard in regret proofs.
Ensuring the optimal arm is pulled enough We now turn
to Eαn . In full generality, there is no reason that A-UCB
makes Eαn happen. The following lemma however ensures
that under a mild condition on the structure of the problem,
this actually holds with high probability. A simple regret
bound follows trivially.
Lemma 2 Let us assume that Υ is the uniform distribution,
that all clusters have the same size B0, and that the cluster
distributions satisfy ∀c, c′ ∈ C ∀a ∈ A

either µ?c,c−µ?c,c′<∆a,c/2 or µ?c,c−µ?c,c′>
3

2
∆a,c .

(That is, a mismatch between two classes is either clear or
harmless.) In such a case, if A-UCB is run with γ ∼ γc =
1, then P(Eαn ) > 1−O(n−2) holds for α = 1/2.

Combining Proposition 1 together with Lemma 1 and
Lemma 2, we deduce that, in some specific situations we
are able to control with high probability the number of pulls
of a sub-optimal arm, and as a result, the regret of the con-
sidered strategy. We currently do not know how to extend
the analysis to handle the most general case.

4.2. Numerical experiments
In this section, we study the behavior of the algorithm
A-UCB on some experiments.
Algorithms We use the vanilla version of UCB (that ag-
gregates all contexts), UCB on B that is the naive appli-
cation of UCB separately on each context, and the pseudo-
oracle UCB on C. We implemented a simplified version of
A-UCB where we do not compute the maximally compat-
ible sets exactly (which is NP-hard in general), but aver-
age the means of the compatible sets instead. This slightly
worsen the numerical constants in our results, even though
characterizing entirely the effect of this relaxation in terms
of regret and numerical efficiency goes beyond the scope
of this paper.
Experiments We consider experiments with Bernoulli dis-
tributions: this is intuitively the hardest case, since one can
only rely on the means to separate distributions; it also
appears in several applications. For each experiment, we
show the number of actions |A|, of users |B|, of classes |C|,
and the parameters {µa,c}a∈A,c∈C when there are not too
many. We plot the regret of all algorithms on the same fig-
ure: A thick line is used for the mean regret and dashed
lines for quantiles at levels 0.25, 0.5, 0.75, 0.95 and 0.99.
In all experiments, the parameters {Υ(b)}b∈B are defined



Latent Bandits

by Υ(b) = wb/
∑
b∈B wb, where the weights wb are drawn

uniformly randomly in [0.1, 0.9]. Thus for each class, the
distortion factor γc is less than 9, and we set the parameter
γ of A-UCB to the value γ = 9. For one experiment with
given fixed parameters, the algorithms are run over several
trials (500) for a large time horizon N = 25000. We do
not report the values of {Υ(b)}b∈B since this is generally
uninformative.

Figure 2. Regret of several algorithms in the following scenario
with |A| = 3, |B| = 50, |C| = 4 and

µa,c 1 2 3 4
1 0.527 0.209 0.713 0.762
2 0.717 0.193 0.575 0.230
3 0.669 0.751 0.120 0.485

Figure 3. Regret of several algorithms in the following scenario
with |A| = 3, |B| = 50, |C| = 4 and

µa,c 1 2 3 4
1 0.370 0.750 0.609 0.207
2 0.150 0.290 0.475 0.464
3 0.671 0.897 0.781 0.9

Figure 2 presents an expected situation, where both the
naive UCB and UCB on B perform poorly with respect to the
pseudo-oracle, whereas A-UCB performs very well. Note
that here the best arm is different in the different classes,
with corresponding value that is always very high and well
separated from other arms.

Figure 3 presents a tricky situation: UCB on B performs
poorly, while both A-UCB compete with the pseudo-oracle,
and all are defeated by UCB, which is not surprising since
here one arm is the best in all contexts.

Figure 4 presents a variant when A is large. As expected
the performance of all algorithms degrade, but A-UCB
is still competitive with respect to the pseudo-oracle and
benchmark algorithms.

Figure 4. Regret of several algorithms in some randomly gener-
ated situation with |A| = 50, |B| = 50, |C| = 4.

Figure 5 presents a variant when B is large. Note that in
this experiment, one only gets to see each b about 50 times,
this setting is thus challenging. It can be seen that A-UCB
still works fairly decently in this case. In accordance with
Proposition 1, let us also remark that here A-UCB behaves
initially like UCB on B, and progressively behaves like UCB
on C(though with a shifted regret due to the initial phase).

Finally figure 6 presents a variant when C is large. A-UCB
still competes with the pseudo-oracle here.

In all these experiments, we see that A-UCB consistently
competes with UCB on C, while UCB and UCB on B some-
times obtain poor regret. This indicates that the proposed
strategy is essentially able to capture the right information
and does not under nor over-group the inputs b.
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Figure 5. Regret of several algorithms in the following scenario
with |A| = 3, |B| = 500, |C| = 4 and

µa,c 1 2 3 4
1 0.1 0.621 0.1 0.362
2 0.544 0.697 0.554 0.181
3 0.512 0.409 0.234 0.1

Figure 6. Regret of several algorithms in some randomly gener-
ated situation with |A| = 3, |B| = 100, |C| = 50.

5. Discussion
We introduced a novel setting for sequential decision mak-
ing problem where there are some latent variables, such
as recommender systems, cognitive radio networks and
others. We provided several contributions in a general
framework in order to precisely address the issues raised
by the latent structure. As a result, our contribution can
be straightforwardly applied for instance to the linear-
bandit setting (see Abbasi-Yadkori et al. (2011); Dani et al.
(2008)), where the number of actions is replaced with the
dimension of a feature space, and confidence intervals with
confidence ellipsoids, and potentially many others.

Let us remark that we assumed in this work that the reward
distributions are clustered, that is each νa,b is one of the
{νa,c}c. A natural extension is to consider the case when
each νa,b is a mixture of the {νa,c}c, with an underlying
low-rank structure. This is left for future research.

In the non-trivial setting of Section 2, we showed that
a simple procedure improves on (Salomon & Audibert,
2011) on the theoretical side and on (Agrawal et al., 1989)
on the computational side. We then introduced the more
challenging setting of Section 3, that has not been ad-
dressed previously, and extended our procedure to that set-
ting. We provided a lower-bound explaining why the set-
ting is challenging and then a non trivial regret bound that
makes appear explicitly the role of the distribution Υ of
arrivals.

We finally tackled the agnostic setting, when not even the
number of clusters is known. We introduced an algorithm
that demonstrates excellent performance on a number of
difficult situations, and provided a result enabling to derive
regret guarantees in some non-trivial situation. We leave
the intricate question of extending Lemma 1 and 2 to the
fully general case as an open problem.
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Improved algorithms for linear stochastic bandits. In
Shawe-Taylor, John, Zemel, Richard S., Bartlett, Pe-
ter L., Pereira, Fernando C. N., and Weinberger, Kil-
ian Q. (eds.), Advances in Neural Information Process-
ing Systems, pp. 2312–2320, 2011.

Adomavicius, Gediminas and Tuzhilin, Alexander. Toward
the next generation of recommender systems: A survey
of the state-of-the-art and possible extensions. IEEE
Trans. on Knowl. and Data Eng., 17(6):734–749, jun
2005. ISSN 1041-4347.

Agrawal, Rajeev, Teneketzis, Demosthenis, and Anan-
tharam, Venkatachalam. Asymptotically Efficient Adap-
tive Allocation Schemes for Controlled I.I.D. processes.
IEEE Transactions on Automatic Control, 34(3):258–
267, 1989.

Auer, Peter. Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning Re-
search, 3:397–422, mar 2003. ISSN 1532-4435.

Avner, Orly, Mannor, Shie, and Shamir, Ohad. Decoupling
exploration and exploitation in multi-armed bandits. In
Proceedings of the 29th International conference on Ma-
chine Learning. Omnipress, 2012.

Burnetas, Apostolos N. and Katehakis, Michael N. Opti-
mal adaptive policies for sequential allocation problems.
Adv. Appl. Math., 17(2):122–142, jun 1996. ISSN 0196-
8858.
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Moulines, Eric. A near optimal policy for channel al-
location in cognitive radio. In Girgin, Sertan, Loth,
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