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A. Related Work
de Farias and Van Roy (2003a) study the discounted version of the primal form (1). Let c ∈ RX be a vector with
positive components and γ ∈ (0, 1) be a discount factor. Let L : RX → RX be the Bellman operator defined by
(LJ)(x) = mina∈A(`(x, a) + γ

∑
x′∈X P(x,a),x′J(x′)) for x ∈ X . Let Ψ ∈ RX×d be a feature matrix. The exact and

approximate LP problems are as follows:

max
J∈RX

c>J , max
w∈Rd

c>Ψw ,

s.t. LJ ≥ J , s.t. LΨw ≥ Ψw .

which can also be written as

max
J∈RX

c>J , max
w∈Rd

c>Ψw , (18)

s.t. ∀(x, a), `(x, a) + γP(x,a),:J ≥ J(x) , s.t. ∀(x, a), `(x, a) + γP(x,a),:Ψw ≥ (Ψw)(x) .

The optimization problem on the RHS is an approximate LP with the choice of J = Ψw. Let Jπ(x) =
E [
∑∞
t=0 γ

t`(xt, π(xt))|x0 = x] be value of policy π, J∗ be the solution of LHS, and πJ(x) = argmina∈A(`(x, a) +
γP(x,a),:J) be the greedy policy with respect to J . Let ν ∈ ∆X be a probability distribution and define µπ,ν =

(1 − γ)ν>(I − γPπ)−1. de Farias and Van Roy (2003a) prove that for any J satisfying the constraints of the LHS
of (18),

‖JπJ − J∗‖1,ν ≤
1

1− γ
‖J − J∗‖1,µπJ ,ν . (19)

Define βu = γmaxx,a
∑
x′ P(x,a),x′u(x′)/u(x). Let U = {u ∈ RX : u ≥ 1, u ∈ span(Ψ), βu < 1}. Let w∗ be the

solution of ALP. de Farias and Van Roy (2003a) show that for any u ∈ U ,

‖J∗ −Ψw∗‖1,c ≤
2c>u

1− βu
min
w
‖J∗ −Ψw‖∞,1/u . (20)

This result has a number of limitations. First, solving ALP can be computationally expensive as the number of constraints
is large. Second, it assumes that the feasible set of ALP is non-empty. Finally, Inequality (19) implies that c = µπΨw∗ ,ν

is
an appropriate choice to obtain performance bounds. However, w∗ itself is function of c and is not known before solving
ALP.

de Farias and Van Roy (2004) propose a computationally efficient algorithm that is based on a constraint sampling
technique. The idea is to sample a relatively small number of constraints and solve the resulting LP. Let N ⊂ Rd
be a known set that contains w∗ (solution of ALP). Let µVπ,c(x) = µπ,c(x)V (x)/(µ>π,cV ) and define the distribution
ρVπ,c(x, a) = µVπ,c(x)/A. Let δ ∈ (0, 1) and ε ∈ (0, 1). Let βu = γmaxx

∑
x′ P(x,π∗(x)),x′u(x′)/u(x) and

D =
(1 + βV )µ>π∗,cV

2c>J∗
sup
w∈N

‖J∗ −Ψw‖∞,1/V , m ≥ 16AD

(1− γ)ε

(
d log

48AD

(1− γ)ε
+ log

2

δ

)
.

Let S be a set of m random state-action pairs sampled under ρVπ∗,c. Let ŵ be a solution of the following sampled LP:

max
w∈Rd

c>Ψw ,

s.t. w ∈ N , ∀(x, a) ∈ S, `(x, a) + γP(x,a),:Ψw ≥ (Ψw)(x) .

de Farias and Van Roy (2004) prove that with probability at least 1− δ, we have

‖J∗ −Ψŵ‖1,c ≤ ‖J∗ −Ψw∗‖1,c + ε ‖J∗‖1,c .

This result has a number of limitations. First, vector µπ∗,c (that is used in the definition of D) depends on the optimal
policy, but an optimal policy is what we want to compute in the first place. Second, we can no longer use Inequality (19)
to obtain a performance bound (a bound on ‖JπΨŵ

− J∗‖1,c), as Ψŵ does not necessarily satisfy all constraints of ALP.
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Desai et al. (2012) study a smoothed version of ALP, in which slack variables are introduced that allow for some violation
of the constraints. Let D′ be a violation budget. The smoothed ALP (SALP) has the form of

max
w,s

c>Ψw , max
w,s

c>Ψw −
2µ>π∗,cs

1− γ
,

s.t. Ψw ≤ LΨw + s, µ>π∗,cs ≤ D
′, s ≥ 0, s.t. Ψw ≤ LΨw + s, s ≥ 0 .

The ALP on RHS is equivalent to LHS with a specific choice of D′. Let U = {u ∈ RX : u ≥ 1} be a set of weight
vectors. Desai et al. (2012) prove that if w∗ is a solution to above problem, then

‖J∗ −Ψw∗‖1,c ≤ inf
w,u∈U

‖J∗ −Ψw‖∞,1/u

(
c>u+

2(µ>π∗,cu)(1 + βu)

1− γ

)
.

The above bound improves (20) as U is larger than U and RHS in the above bound is smaller than RHS of (20). Further,
they prove that if η is a distribution and we choose c = (1− γ)η>(I − γPπΨw∗ ), then

∥∥JµΨw∗
− J∗

∥∥
1,η
≤ 1

1− γ

(
inf

w,u∈U
‖J∗ −Ψw‖∞,1/u

(
c>u+

2(µ>π∗,νu)(1 + βu)

1− γ

))
.

Similar methods are also proposed by Petrik and Zilberstein (2009). One problem with this result is that c is defined in
terms of w∗, which itself depends on c. Also, the smoothed ALP formulation uses π∗ which is not known. Desai et al.
(2012) also propose a computationally efficient algorithm. Let S be a set of S random states drawn under distribution
µπ∗,c. Let N ′ ⊂ Rd be a known set that contains the solution of SALP. The algorithm solves the following LP:

max
w,s

c>Ψw − 2

(1− γ)S

∑
x∈S

s(x) ,

s.t. ∀x ∈ S, (Ψw)(x) ≤ (LΨw)(x) + s(x), s ≥ 0, w ∈ N ′ .

Let ŵ be the solution of this problem. Desai et al. (2012) prove high probability bounds on the approximation error
‖J∗ −Ψŵ‖1,c. However, it is no longer clear if a performance bound on ‖J∗ − JπΨŵ

‖1,c can be obtained from this
approximation bound.

Next, we turn our attention to average cost ALP, which is a more challenging problem and is also the focus of this paper. Let
ν be a distribution over states, u : X → [1,∞), η > 0, γ ∈ [0, 1], Pπγ = γPπ+(1−γ)1ν>, and Lγh = minπ(`π+Pπγ h).
de Farias and Van Roy (2006) propose the following optimization problem:

min
w,s1,s2

s1 + ηs2 , (21)

s.t. LγΨw −Ψw + s11 + s2u ≥ 0, s2 ≥ 0 .

Let (w∗, s1,∗, s2,∗) be the solution of this problem. Define the mixing time of policy π by

τπ = inf

{
τ :

∣∣∣∣∣1t
t−1∑
t′=0

ν>(Pπ)t
′
`π − λπ

∣∣∣∣∣ ≤ τ

t
, ∀t

}
.

Let τ∗ = lim infδ→0{τπ : λπ ≤ λ∗ + δ}. Let π∗γ be the optimal policy when discount factor is γ. Let πγ,w be the greedy
policy with respect to Ψw when discount factor is γ, µ>γ,π = (1− γ)

∑∞
t=0 γ

tν>(Pπ)t and µγ,w = µγ,πγ,w . de Farias and
Van Roy (2006) prove that if η ≥ (2− γ)µ>γ,π∗γu,

λw∗ − λ∗ ≤
(1 + β)ηmax(D′′, 1)

1− γ
min
w

∥∥h∗γ −Ψw
∥∥
∞,1/u + (1− γ)(τ∗ + τπw∗ ) ,

where β = maxπ ‖I − γPπ‖∞,1/u, D′′ = µ>γ,w∗V/(ν
>V ) and V = LγΨw∗ −Ψw∗ + s1,∗1 + s2,∗u. Similar results are

obtained more recently by Veatch (2013).
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An appropriate choice for vector ν is ν = µγ,w∗ . Unfortunately, w∗ depends on ν. We should also note that solving
(21) can be computationally expensive. de Farias and Van Roy (2006) propose constraint sampling techniques similar to
(de Farias and Van Roy, 2004), but no performance bounds are provided.

Wang et al. (2008) study ALP (3) and show that there is a dual form for standard value function based algorithms, including
on-policy and off-policy updating and policy improvement. They also study the convergence of these methods, but no
performance bounds are shown.

B. Proofs of Section 2
Proof of Theorem 3. Let z∗ = argminz∈Z

∑T
t=1 ft(z) and ηt = f ′t −∇ft(zt). Define function ht : Z → R by ht(z) =

ft(z) + zηt. Notice that∇ht(zt) = ∇ft(zt) + ηt = f ′t . By Theorem 1 of Zinkevich (2003), we get that

T∑
t=1

ht(zt)−
T∑
t=1

ht(z∗) ≤
T∑
t=1

ht(zt)−min
z∈Z

T∑
t=1

ht(z) ≤ ZF
√
T .

Thus,
T∑
t=1

ft(zt)−
T∑
t=1

ft(z∗) ≤ ZF
√
T +

T∑
t=1

(z∗ − zt)ηt .

Let St =
∑t−1
s=1(z∗ − zs)ηs, which is a self-normalized sum (de la Peña et al., 2009). By Corollary 3.8 and Lemma E.3 of

Abbasi-Yadkori (2012), we get that for any δ ∈ (0, 1), with probability at least 1− δ,

|St| ≤

√√√√(1 +

t−1∑
s=1

(zt − z∗)2

)(
2 log

1

δ
+ d log

(
1 +

Z2t

d

))

≤

√
(1 + 4Z2t)

(
2 log

1

δ
+ d log

(
1 +

Z2t

d

))
.

Thus,
T∑
t=1

ft(zt)−min
z∈Z

T∑
t=1

ft(z) ≤ ZF
√
T +

√
(1 + 4Z2T )

(
2 log

1

δ
+ d log

(
1 +

Z2T

d

))
.

Proof of Lemma 5. We prove the lemma by showing that conditions of Theorem 3 are satisfied. We begin by calculat-
ing the subgradient and bounding its norm independently of the number of states. If µ0(x, a) + Φ(x,a),:θ ≥ 0, then
∇θ
∣∣[µ0(x, a) + Φ(x,a),:θ]−

∣∣ = 0. Otherwise,∇θ
∣∣[µ0(x, a) + Φ(x,a),:θ]−

∣∣ = −Φ(x,a),:. Calculating,

∇θc(θ) = `>Φ +H
∑
(x,a)

∇θ
∣∣[µ0(x, a) + Φ(x,a),:θ]−

∣∣+H
∑
x′

∇θ
∣∣(P −B)>:,x′Φθ

∣∣
= `>Φ−H

∑
(x,a)

Φ(x,a),:I{µ0(x,a)+Φ(x,a),:θ<0} +H
∑
x′

(P −B)>:,x′Φs((P −B)>:,x′Φθ) ,
(22)

where s(z) = I{z>0} − I{z<0} is the sign function. Let ± denote the plus or minus sign (the exact sign does not matter
here). Let G = ‖∇θc(θ)‖. We have that

G ≤ H

√√√√√ d∑
i=1

∑
x′

±∑
(x,a)

(P −B)(x,a),x′Φ(x,a),i

2

+
∥∥`>Φ

∥∥+H

√√√√√ d∑
i=1

∑
(x,a)

∣∣Φ(x,a),i

∣∣2

.
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Thus,

G ≤

√√√√ d∑
i=1

(`>Φ:,i)2 +H
√
d+H

√√√√√ d∑
i=1

∑
(x,a)

(
±
∑
x′

(P −B)(x,a),x′

)
Φ(x,a),i

2

≤
√
d+H

√
d+H

√√√√√ d∑
i=1

2
∑
(x,a)

∣∣Φ(x,a),i

∣∣2

=
√
d(1 + 3H) ,

where we used
∣∣`>Φ:,i

∣∣ ≤ ‖`‖∞ ‖Φ:,i‖1 ≤ 1.

Next, we show that norm of the subgradient estimate is bounded by G′:

‖gt‖ ≤
∥∥`>Φ

∥∥+H

∥∥Φ(xt,at),:

∥∥
q1(xt, at)

+H

∥∥∥(P −B)>:,x′t
Φ
∥∥∥

q2(x′t)
≤
√
d+H(C1 + C2) .

Finally, we show that the subgradient estimate is unbiased:

E [gt(θ)] = `>Φ−H
∑
(x,a)

q1(x, a)
Φ(x,a),:

q1(x, a)
I{µ0(x,a)+Φ(x,a),:θ<0}

+H
∑
x′

q2(x′)
(P −B)>:,x′Φ

q2(x′)
s((P −B)>:,x′Φθ)

= `>Φ−H
∑
(x,a)

Φ(x,a),:I{µ0(x,a)+Φ(x,a),:θ<0} +H
∑
x′

(P −B)>:,x′Φs((P −B)>:,x′Φθ)

= ∇θc(θ) .

The result then follows from Theorem 3 and Remark 4.

C. Sampling Constraints
In this section we describe our second algorithm for average cost MDP problems. The main idea is to use the results on
polytope constraint sampling (de Farias and Van Roy, 2004; Calafiore and Campi, 2005; Campi and Garatti, 2008) to reduce
the dual LP to a size we can solve exactly. Using classical uniform convergence results (Vapnik and Chervonenkis, 1971),
de Farias and Van Roy (2004) show that if we sample k = O(d/ε) affine constraints in Rd, then with high probability, any
point that satisfies all k sampled constraints also satisfies most of the original set of constraints: a proportion at least 1− ε
under the sampling distribution.

Let L be a family of affine constraints indexed by i: constraint i is satisfied at point w ∈ Rd if a>i w+ bi ≥ 0. Let I be the
family of constraints by selecting k random constraints in L with respect to measure q.
Theorem 7 (de Farias and Van Roy (2004)). Assume there exists a vector that satisfies all constraints in L. For any δ and
ε, if we take m ≥ 4

ε

(
d log 12

ε + log 2
δ

)
, then, with probability 1 − δ, a set I of m i.i.d. random variables drawn from L

with respect to distribution q satisfies

sup
{w:∀i∈I,a>i w+bi≥0}

q({j : a>j w + bj < 0}) ≤ ε .

Our algorithm takes the following inputs: a positive constant S, a stationary distribution µ0, a set Θ = {θ : θ>Φ>1 =
1 − µ>0 1, ‖θ‖ ≤ S}, a distribution q1 over the state-action space, a distribution q2 over the state space, and constraint
violation functions v1 : X ×A → [−1, 0] and v2 : X → [0, 1]. We will consider two families of constraints:

L1 = {µ0(x, a) + Φ(x,a),:θ ≥ v1(x, a) | (x, a) ∈ X ×A} ,

L2 =
{

(P −B)>:,x(µ0 + Φθ) ≤ v2(x) | x ∈ X
}⋃{

(P −B)>:,x(µ0 + Φθ) ≥ −v2(x) | x ∈ X
}
.
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Input: Constant S > 0, stationary distribution µ0, distributions q1 and q2, con-
straint violation functions v1 and v2, number of samples k1 and k2.
For i = 1, 2, let Ii be ki constraints sampled from Li under distribution qi.
Let I be the set of vectors that satisfy all constraints in I1 and I2.
Let θ̃ be the solution to LP:

min
θ∈Θ

`>(µ0 + Φθ) , (24)

s.t. θ ∈ I, θ ∈ Θ .

Return policy µθ̃.

Figure 4. The Constraint Sampling Method for Markov Decision Processes

Let θ∗ be the solution of

min
θ∈Θ

`>(µ0 + Φθ) , (23)

s.t. θ ∈ L1, θ ∈ L2, θ ∈ Θ .

The constraint sampling algorithm is shown in Figure 4. We refer to (24) as the sampled ALP, while we refer to (3) as the
full ALP.

C.1. Analysis

We require Assumption A1 as well as:

Assumption A2 (Feasibility) There exists a vector that satisfies all constraints L1 and L2.

Validity of this assumption depends on the choice of functions v1 and v2. Larger functions ensure that this assumption is
satisfied, but as we show, this leads to larger error.

The next two lemmas apply theorem 7 to constraints L1 and L2, respectively.

Lemma 8. Let δ1 ∈ (0, 1) and ε1 ∈ (0, 1). If we choose k1 = 4
ε1

(
d log 12

ε1
+ log 2

δ1

)
, then with probability at least 1−δ1,∑

(x,a)

∣∣∣[µ0(x, a) + Φ(x,a),:θ̃]−

∣∣∣ ≤ SC1ε1 + ‖v1‖1.

Proof. Applying theorem 7, we have that w.p. 1− δ1, q1(µ0(x, a) + Φ(x,a),:θ̃ ≥ v1(x, a)) ≥ 1− ε1, and thus

∑
(x,a)

q1(x, a)I{µ0(x,a)+Φ(x,a),:θ̃<v1(x,a)} ≤ ε1 .
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Let L =
∑

(x,a)

∣∣∣[µ0(x, a) + Φ(x,a),:θ̃]−

∣∣∣. With probability 1− δ1,

L =
∑
(x,a)

∣∣∣[µ0(x, a) + Φ(x,a),:θ̃]−

∣∣∣ I{µ0(x,a)+Φ(x,a),:θ̃≤v1(x,a)}

+
∑
(x,a)

∣∣∣[µ0(x, a) + Φ(x,a),:θ̃]−

∣∣∣ I{µ0(x,a)+Φ(x,a),:θ̃>v1(x,a)}

≤
∑
(x,a)

∣∣∣Φ(x,a),:θ̃
∣∣∣ I{µ0(x,a)+Φ(x,a),:θ̃≤v1(x,a)} + ‖v1‖1

≤
∑
(x,a)

∥∥Φ(x,a),:

∥∥∥∥∥θ̃∥∥∥ I{µ0(x,a)+Φ(x,a),:θ̃≤v1(x,a)} + ‖v1‖1

≤
∑
(x,a)

SC1q1(x, a)I{µ0(x,a)+Φ(x,a),:θ̃≤v1(x,a)} + ‖v1‖1

≤ SC1ε1 + ‖v1‖1 .

Lemma 9. Let δ2 ∈ (0, 1) and ε2 ∈ (0, 1). If we choose k2 = 4
ε2

(
d log 12

ε2
+ log 2

δ2

)
, then with probability at least 1−δ2,∥∥∥(P −B)>Φθ̃

∥∥∥
1
≤ SC2ε2 + ‖v2‖1.

Proof. Applying theorem 7, we have that q2

(∣∣∣(P −B)>:,xΦθ̃
∣∣∣ ≤ v2(x)

)
≥ 1− ε2. This yields

∑
x

q2(x)I{|(P−B)>:,xΦθ̃|≥v2(x)} ≤ ε2 . (25)

Let L′ =
∑
x

∣∣∣(P −B)>:,xΦθ̃
∣∣∣. Thus, with probability 1− δ2,

L′ =
∑
x

∣∣∣(P −B)>:,xΦθ̃
∣∣∣ I{|(P−B)>:,xΦθ̃|>v2(x)}

+
∑
x

∣∣∣(P −B)>:,xΦθ̃
∣∣∣ I{|(P−B)>:,xΦθ̃|≤v2(x)}

≤
∑
x

∥∥(P −B)>:,xΦ
∥∥∥∥∥θ̃∥∥∥ I{|(P−B)>:,xΦθ̃|>v2(x)} + ‖v2‖1

≤
∑
x

SC2q2(x)I{|(P−B)>:,xΦθ̃|>v2(x)} + ‖v2‖1

≤ SC2ε2 + ‖v2‖1 ,

where the last step follows from (25).

We are ready to prove the main result of this section. Let θ̃ denote the solution of the sampled ALP, θ∗ denote the solution
of the full ALP (23), and µθ̃ be the stationary distribution of the solution policy. Our goal is to compare `>µθ̃ and `>µθ∗ .

Theorem 10. Let ε ∈ (0, 1) and δ ∈ (0, 1). Let ε′ = SC1ε + ‖v1‖1 and ε′′ = SC2ε + ‖v2‖1. If we sample constraints
with k1 = 4

ε

(
d log 12

ε + log 4
δ

)
and k2 = 4

ε

(
d log 12

ε + log 4
δ

)
, then, with probability 1− δ,

`>µθ̃ ≤ `
>µθ∗ + τ(µθ̃) log(1/ε′)(2ε′ + ε′′) + 3ε′

+ τ(µ∗) log(1/ ‖v1‖)(2 ‖v1‖+ ‖v2‖) + 3 ‖v1‖ .
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Proof. Let δ1 = δ2 = δ/2. By Lemmas 8 and 9, w.p. 1 − δ,
∑

(x,a)

∣∣∣[µ0(x, a) + Φ(x,a),:θ̃]−

∣∣∣ ≤ ε′ and∥∥∥(P −B)>(µ0 + Φθ̃)
∥∥∥

1
≤ ε′′. Then by Lemma 2,∣∣∣`>µθ̃ − `>(µ0 + Φθ̃)

∣∣∣ ≤ τ(µθ̃) log(1/ε′)(2ε′ + ε′′) + 3ε′ .

We also have that `>(µ0 + Φθ̃) ≤ `>(µ0 + Φθ∗). Thus,

`>µθ̃ ≤ `
>(µ0 + Φθ∗) + τ(µθ̃) log(1/ε′)(2ε′ + ε′′) + 3ε′

≤ `>µθ∗ + τ(µθ̃) log(1/ε′)(2ε′ + ε′′) + 3ε′

+ τ(µθ∗) log(1/ ‖v1‖)(2 ‖v1‖+ ‖v2‖) + 3 ‖v1‖ ,

where the last step follows from Lemma 2.


