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1 Definitions and Notation

In contrast to the discounted termination state probability density P̃ , we denote the undiscounted probability
that an option o executed from a state x ∈ X will terminate in a subset of states Y ⊆ X by

P o(Y |x) =
∞∑
t=1

P ot (Y |x) . (1)

Notice that because (1) is undiscounted
∫
P̃ o(y|x)dy <

∫
P o(y|x)dy = 1. For an option policy ϕ : X → O,

we will denote by P̃ϕ discounted termination state probability distribution for executing ϕ once at each state
(executing each option until termination) and the undiscounted termination state probability distribution
Pϕ analogously. Notice that for an option policy, we also have

Pϕ(Y |x) =

∞∑
t=1

Pϕt (Y |x) (2)

for all Y ⊆ X and x ∈ X.
We would like to be able to express policies over primitive actions using the same sum over all timesteps

used in (2). For a policy π : X → A defined over primitive actions, we define Pπt (Y |x) =

{
Pπ(Y |x) if t = 1
0 otherwise

so that

Pπ(Y |x) =

∞∑
t=1

Pπt (Y |x) (3)

for all Y ⊆ X and x ∈ X.
Notice that if f is an option, an option policy, or a policy over primitive actions we can write the

discounted termination state probability density by

P̃ f (Y |x) =

∞∑
t=1

γtP ft (Y |x)

for all Y ⊆ X and x ∈ X. When we compose options o1, o2, . . . om, we write P̃ o1o2...om = P̃ o1 P̃ o2 . . . P̃ om ,
and we can write

P̃ o1o2...om(Y |x) =

∞∑
t=1

γm+t (P o1P o2 . . . P om)t (Y |x)

for all Y ⊆ X and x ∈ X.
We will assume throughout this supplementary material that when we refer to an optimal policy π∗, it

is a policy over primitive actions. Because we have assume that O contains the set of primitive actions A,
the fixed point of the SMDP Bellman operator T and the MDP Bellman operator T is the optimal value
function V ∗. Thus Tπ∗ is equivalent to T π∗ .
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2 Proof of Proposition 1

Proof. (of Proposition 1) This proposition follows from Theorem 1. To see why, consider any Z ≥ 0, there is
at least one optimal policy π∗ defined over primitive actions that satisfies Assumption 2 with values α = 0,
d = 1, ψ = 0, arbitrary ρ ∈M(X), and j = 0. In this case, Theorem 1 gives us the following high probability
(> 1− δ) bound with α = 0:

||V ∗ − V πK ||p,ρ ≤ 2γ
(1−γ)2C

1/p
ρ,µ (bp,µ(TF ,F) + α) + ε+

(
γK+1+(1−ψ)(d−1)bZ/j̄c

)1/p (
2‖V ∗−V0‖∞

(1−γ)

)
≤ 2γ

(1−γ)2C
1/p
ρ,µ bp,µ(TF ,F) + ε+

(
γK+1

)1/p ( 2‖V ∗−V0‖∞
(1−γ)

)
,

where (d− 1) = 0 and j̄ = j + 1 = 1.

3 Proof of Theorem 1 and Supporting Lemmas

The following lemma provides sufficient values for parameters N and L to ensure that the per iteration error
is less than some ε > 0 with probability at least 1− δ. We will reuse this lemma throughout our analysis.

Lemma 1. Let M be an SMDP such that the set of primitive actions A is contained by the given set of
options O, F ⊂ B(X;VMAX) be a bounded function space with

(
1
8

(
ε
4

)p
, p
)
-covering number bounded by N ,

V ∈ F , and p be a fixed positive integer. For any ε, δ > 0,

‖V ′ − TV ‖p,µ ≤ dp,µ (TV,F) + ε

holds with probability at least 1− δ provided that

N > 128

(
8VMAX

ε

)2p

(log(1/δ) + log(32N )) (4)

and

L >
8(RMAX + γVMAX)2

ε2
(log(1/δ) + log(8N |O|)) . (5)

The proof of Lemma 1 follows from the proof of Munos and Szepesvári [2008, Lemma 1] simply by
replacing the MDP Bellman operator with the SMDP Bellman operator T everywhere it occurs, and noting
that we must sample from |O| options rather than only |A| primitive actions. We omit the proof here for
brevity.

3.1 Bounding the Pointwise Propogation Error

We are intrested in bounding the loss due to following the policy derived by OFVI ϕK rather than following
the optimal policy π∗ and the optimal option policy Φ∗. However, OFVI is a value-based method. That is,
performing more iterations directly attempts to improve the estimate of the optimal value function. Thus,
we would like to relate the loss ‖V Φ∗(x) − V ϕK‖p,ρ to the quality of the final value function estimate VK
produced by the OFVI algorithm. Notice that π∗ ≡ Φ∗ in our case, because we have assumed that O contains
all primitive actions A. The following lemma develops a pointwise relationship between the V Φ∗ − V ϕK and
V Φ∗ − VK .

Lemma 2. Suppose OFVI is executed for K iterations with iterates Vk for k = 0, 1, 2, . . . ,K. Let Φ∗ be the
optimal policy with respect to the given options O and ϕK be the greedy option policy with respect to the Kth

and final iterate VK , then

V Φ∗ − V ϕK ≤ (I − P̃ϕK )−1
(
P̃Φ∗ − P̃ϕK

)(
V Φ∗ − VK

)
, (6)

where I is the identity matrix.
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Proof. Since TV Φ∗ = V Φ∗ and TϕKV ϕK = V ϕK , we get

V Φ∗ − V ϕK = TV Φ∗ − TϕKV ϕK

= TV Φ∗ − TΦ∗VK + TΦ∗VK − TϕKV ϕK

= P̃Φ∗
(
V Φ∗ − VK

)
+ TΦ∗VK − TϕKV ϕK

= P̃Φ∗
(
V Φ∗ − VK

)
+ TΦ∗VK − TVK + TVK − TϕKV ϕK

≤ P̃Φ∗
(
V Φ∗ − VK

)
+ TVK − TϕKV ϕK

= P̃Φ∗
(
V Φ∗ − VK

)
+ TϕKVK − TϕKV ϕK

= P̃Φ∗
(
V Φ∗ − VK

)
+ P̃ϕK (VK − V ϕK )

= P̃Φ∗
(
V Φ∗ − VK

)
+ P̃ϕK

(
VK − V Φ∗ + V Φ∗ − V ϕK

)
,

where the initial equality is based on the fact that V Φ∗ is the unique fixed point for T and V ϕK is the
unique fixed point for TϕK . The first step is obtained by inserting (−TΦ∗VK + TΦ∗VK) = 0. The second

step pulls out the discounted transition probability kernel P̃Φ∗ by subtracting TΦ∗VK from TV Φ∗ . Since
the backups are performed by the same policy Φ∗, the immediate reward terms are canceled, leaving only
P̃Φ∗

(
V Φ∗ − V ϕK

)
. The third step inserts (−TVK + TVK) = 0. Since TΦ∗VK ≤ TVK , we obtain the fourth

step by dropping the terms TΦ∗VK − TVK , which is a vector whose elements are less than zero. We obtain
the fifth step by noticing that since ϕK is the greedy policy with respect to VK , TVK = TϕKVK . The sixth
step pulls out P̃ϕK by subtracting TϕKV ϕK from TϕKVK . The seventh step inserts (−V Φ∗ + V Φ∗) = 0.

We can manipulate the above inequality

V Φ∗ − V ϕK ≤ P̃π
∗ (
V Φ∗ − VK

)
+ P̃ϕK

(
VK − V Φ∗ + V Φ∗ − V ϕK

)
V Φ∗ − V ϕK ≤

(
P̃Φ∗ − P̃ϕK

)
(V ∗ − VK) + P̃ϕK

(
V Φ∗ − V ϕK

)(
V Φ∗ − V ϕK

)
− P̃ϕK

(
V Φ∗ − V ϕK

)
≤

(
P̃Φ∗ − P̃ϕK

) (
V Φ∗ − VK

)(
I − P̃ϕK

) (
V Φ∗ − V ϕK

)
≤

(
P̃Φ∗ − P̃ϕK

) (
V Φ∗ − VK

)
,

where I is the identity matrix, so that the
(
V Φ∗ − V ϕK

)
terms are all on the left hand side. Since (I− P̃ϕK )

is invertible and its inverse is a monotonic operator, we get

V Φ∗ − V ϕK ≤ (I − P̃ϕK )−1
(
P̃Φ∗ − P̃ϕK

)(
V Φ∗ − VK

)
,

which relates (V Φ∗ − V ϕK ) to (V Φ∗ − VK).

Each iteration k = 1, 2, . . . ,K of OFVI results in some error

εk = TVk−1 − Vk , (7)

which is induced by the fitting process. One of the main issues in the proof of Theorem 1 is to determine
how these fitting errors propagate through the iterations.

The following lemma helps to bound the error between V ∗ and VK by developing pointwise upper and
lower bounds for V ∗ − VK that show how error propogates recursively with each iteration.

Lemma 3. Suppose Φ∗ is the optimal policy with respect to the options O, OFVI is executed for K iterations
with iterates Vk for k = 0, 1, 2, . . . ,K and iteration errors εk for k = 1, 2, . . . ,K as defined by (7), then we
have the following upper bound

V Φ∗ − VK ≤
K∑
k=1

(
P̃Φ∗

)K−k
εk +

(
P̃Φ∗

)K
(V ∗ − V0) , (8)

and the following lower bound

V Φ∗ − VK ≥ εK +

K−1∑
k=1

(
P̃ϕK−1 P̃ϕK−2 . . . P̃ϕk

)
εk +

(
P̃ϕK−1 P̃πK−2 . . . P̃ϕ0

)(
V Φ∗ − V0

)
. (9)
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Proof. First we derive an upper bound for V Φ∗ − VK . By equation (7), we have

V Φ∗ − Vk = TV Φ∗ − TVk−1 + εk
= TΦ∗V Φ∗ − Tπ∗Vk−1 + Tπ∗Vk−1 − TVk−1 + εk
≤ TV Φ∗ − TΦ∗Vk−1 + εk
= P̃Φ∗ (V ∗ − Vk−1) + εk .

By recursing on this inequality, we obtain an upper bound

V Φ∗ − VK ≤
K∑
k=1

(
P̃Φ∗

)K−k
εk +

(
P̃Φ∗

)K
(V ∗ − V0) .

Now we will derive a lower bound for V Φ∗ −VK . Let ϕk denote the greedy policy with respect to Vk. By
(7), we have

V Φ∗ − Vk = TV Φ∗ − TVk−1 + εk
= TV Φ∗ − Tϕk−1V Φ∗ + Tϕk−1V Φ∗ − TVk−1 + εk
≥ Tϕk−1V Φ∗ − TVk−1 + εk
= P̃ϕk−1

(
V Φ∗ − Vk−1

)
+ εk .

By recursing on this inequality, we obtain a lower bound

V Φ∗ − VK ≥ εK +

K−1∑
k=1

(
P̃ϕK−1 P̃ϕK−2 . . . P̃ϕk

)
εk +

(
P̃ϕK−1 P̃πK−2 . . . P̃ϕ0

)(
V Φ∗ − V0

)
.

We will make use of the following definition in defining the point-wise error bound. The lambda values
are used to simplify the notation, but we also use the fact that they are carefully designed so that they sum
to 1.

Definition 1. For t = 1, 2, . . . ,∞, let

λ0,t =
γK−1+t

1− γK+1
(10)

and let

λk,t =
γK−k−2+t

1− γK+1
(11)

for k = 1, . . . ,K.

Lemma 4. The λ·,· values defined by (10) and (11) satisfy
∑∞
t=1

∑K
k=0 λk,t = 1 .

Proof. ∑∞
t=1

∑K
k=0 λk,t =

∑∞
t=1

γK−1+t

1−γK+1 +
∑K
k=1

γK−k−2+t

1−γK+1

=
(

1
1−γK+1

)∑∞
t=1 γ

K+(t−1) +
∑K
k=1 γ

K−k−1+(t−1)

=
(

1
1−γK+1

)(
γK +

∑K
k=1 γ

K−k−1
)

(
∑∞
t=0 γ

t)

=
(

1
1−γK+1

)(
γK +

∑K−1
k=0 γK−k−1+1

)
(1− γ)

=
(

1
1−γK+1

)(∑K
k=0 γ

k
)

(1− γ)

=
(

1
1−γK+1

)(∑K
k=0 γ

k − γk+1
)

=
(

1
1−γK+1

)
(1− γK+1)

= 1 .
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Now we are ready to define and prove the point-wise error bound.

Lemma 5. Let Z ∈ {0, 1, 2, . . . ,K}, ϕk be the greedy policy with respect to the kth iterate Vk derived by OFVI,
and Φ be an option policy such that Q∗(x,Φ(x)) ≥ V ∗(x)−α for all x ∈ X. If A2(α, d, ψ, ρ, j) (Assumption
2) is true and the first Z iterates of OFVI are pessimistic (i.e., for all x ∈ X and k ∈ {0, 1, 2, . . . , Z},
V ∗(x) ≥ Vk(x)), then the difference between V ∗ and the value of the option policy ϕK returned by OFVI is
bounded by

V ∗ − V ϕK ≤
(

2γ(1− γK+1)

1− γ

){ ∞∑
t=1

K∑
k=0

λk,tPk,t|ξk|

}
,

where the λk,t’s are defined by (10) and (11),

Pk,t =

(
1− γ

2

)
(I − P̃ϕK )−1

 2
[(
Pπ
∗)K−Z (

PΦ
)Z−k]

t
0 ≤ k ≤ Z[(

Pπ
∗)K−k
t

+ (PϕK−1PϕK−2 . . . Pϕk)
]

Z < k < K

for t ≥ 1, and

ξk =

 V ∗ − V0 k = 0
εk + α 1 ≤ k ≤ Z
εk Z < k < K

.

Proof. We can place an upper bound (8) and a lower bound (9) on the relationship between VK and V ∗.
Then we can use this information to bound the difference between V ϕK and V ∗. However, in this lemma,
we will exploit the pessimism of the first Z iterates and the option policy Φ to achieve a more informative
bound.

Let us denote by Φπ∗ the policy that from the first encountered state selects an option according to Φ
and from then on always selects an action according to π∗. When an iterate Vk is pessimistic V ∗ − Vk is
lower bounded by 0. For an upper bound, we have

V ∗ − Vk = V ∗ − V Φπ∗ + V Φπ∗ − Vk
≤ α+ V Φπ∗ − Vk
= α+ TΦπ∗V Φπ∗ − TVk−1 + εk
= α+ TΦπ∗V Φπ∗ − TΦπ∗Vk−1 + TΦπ∗Vk−1 − TVk−1 + εk
≤ α+ TΦπ∗V Φπ∗ − TΦπ∗Vk−1 + εk
≤ P̃Φ (V ∗ − Vk−1) + (εk + α) ,

where the initial inequality inserts the term (−V Φπ∗ + V Φπ∗) = 0. The first step follows from the fact that
Φπ∗ is an α-optimal policy, so V ∗ − V Φπ∗ ≤ α. The second step is due to the definition of εk from (7). The
third step inserts (−TΦπ∗Vk−1 + TΦπ∗Vk−1) = 0. The fourth step removes TΦπ∗Vk−1 − TVk−1 because the
sum of those two terms is less than or equal to zero (since T updates using the max operator, while TΦπ∗

updates using the policy Φ). The fifth and final step pulls out the discounted transition probability kernel

P̃Φ.
By recursing on this inequality Z ≥ 0 times we obtain

V ∗ − VZ ≤

 V ∗ − V0 Z = 0(∑Z
j=1

(
P̃Φ
)Z−j

(εj + α)

)
+
(
P̃Φ
)Z

(V ∗ − V0) 1 ≤ Z ≤ K . (12)

By combining our upper bound recursion from (8) with (12), we obtain terms

ukξk =



[(
P̃π
∗
)K−Z (

P̃Φ
)Z]

(V ∗ − V0) k = 0[(
P̃π
∗
)K−Z (

P̃Φ
)Z−k]

(εk + α) k = 1, 2, . . . , Z[(
P̃π
∗
)K−k]

(εk) k = Z + 1, Z + 2, . . . ,K
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such that

V ∗ − VK ≤
K∑
k=0

ukξk

upper bounds the difference between V ∗ and the final iterate derived by OFVI, VK .
Now, since 0 lower bounds the difference between V ∗ and the first Z iterates of OFVI, we can use 0 as

our lower bound for the first Z iterations and fill in the rest of the iterates with (9). This gives us the terms

lkξk =

{
0 0 ≤ k ≤ Z[
P̃ϕK−1 P̃ϕK−2 . . . P̃ϕk

]
(εk) Z < k < K − 1

,

such that

V ∗ − VK ≥
K∑
k=0

lkξk

lower bounds the difference between V ∗ and the final iterate VK . This implies that |V ∗−VK | ≤
∑K
k=0(uk −

lk)ξk.
By Lemma 2, we have

V ∗ − V ϕK ≤ (I − P̃ϕK )−1
(
P̃π
∗ − P̃ϕK

)(∑K
k=0(uk − lk)ξk

)
≤ (I − P̃ϕK )−1

∣∣∣P̃π∗ − P̃ϕK

∣∣∣ (∑K
k=0(uk + lk)|ξk|

)
,

where we have taken the absolute value of both sides of the inequality.
For k = 0, we have

(I − P̃ϕK )−1
∣∣∣P̃π∗ − P̃ϕK

∣∣∣ ((u0 + l0)|ξ0|)

≤ γ
(

1−γ
1−γ

) (
2
2

)
(I − P̃ϕK )−1 (u0|ξ0|)

=
(

γ
1−γ

) (
1−γ

2

)
(I − P̃ϕK )−1

(
2

[(
P̃π
∗
)K−Z (

P̃Φ
)Z])

|ξ0|

=
(

γ
1−γ

) (
1−γ

2

)
(I − P̃ϕK )−1

(
2
∞∑
t=1

γK−1+t
[(
Pπ
∗)K−Z (

PΦ
)Z]

t

)
|ξ0|

=
(

γ
1−γ

) ∞∑
t=1

γK−1+t
((

1−γ
2

)
(I − P̃ϕK )−1

(
2
[(
Pπ
∗)K−Z (

PΦ
)Z]

t

))
|ξ0|

=
(

γ
1−γ

) ∞∑
t=1

γK−1+tP0,t|ξ0|

=
(

γ
1−γ

) ∞∑
t=1

γK−1+t
(

1−γK+1

1−γK+1

)
P0,t|ξ0|

=
(
γ(1−γK+1)

1−γ

) ∞∑
t=1

γK−1+t

1−γK+1P0,t|ξ0|

=
(
γ(1−γK+1)

1−γ

) ∞∑
t=1

λ0,tP0,t|ξ0|

≤
(

2γ(1−γK+1)
1−γ

) ∞∑
t=1

λ0,tP0,t|ξ0|

For k = 1, 2, . . . , Z, we have

(I − P̃ϕK )−1
∣∣∣P̃π∗ − P̃ϕK

∣∣∣ ((uk + lk)|ξk|)
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≤ γ
(

1−γ
1−γ

) (
2
2

)
(I − P̃ϕK )−1 (uk|ξk|)

=
(

γ
1−γ

) (
1−γ

2

)
(I − P̃ϕK )−1

(
2

[(
P̃π
∗
)K−Z (

P̃Φ
)Z−k])

|ξk|

=
(

γ
1−γ

) (
1−γ

2

)
(I − P̃ϕK )−1

(
2
∞∑
t=1

γK−k−2+t
[(
Pπ
∗)K−Z (

PΦ
)Z−k]

t

)
|ξk|

=
(

γ
1−γ

) ∞∑
t=1

γK−k−2+t
((

1−γ
2

)
(I − P̃ϕK )−1

(
2
[(
Pπ
∗)K−Z (

PΦ
)Z−k]

t

))
|ξk|

=
(

γ
1−γ

) ∞∑
t=1

γK−k−2+tPk,t|ξk|

=
(
γ(1−γK+1)

1−γ

) ∞∑
t=1

λk,tPk,t|ξk|

≤
(

2γ(1−γK+1)
1−γ

) ∞∑
t=1

λk,tPk,t|ξk|

For k = Z + 1, Z + 2, . . . ,K, we have

(I − P̃ϕK )−1
∣∣∣P̃π∗ − P̃ϕK

∣∣∣ ((uk + lk)|ξk|)

≤ γ
(

1−γ
1−γ

) (
2
2

)
(I − P̃ϕK )−1 (uk + lk) |ξk|

= γ
(

1−γ
1−γ

) (
2
2

)
(I − P̃ϕK )−1

((
P̃π
∗
)K−k

+
[
P̃ϕK−1 P̃ϕK−2 . . . P̃ϕk

])
|ξk|

=
(

2γ
1−γ

) (
1−γ

2

)
(I − P̃ϕK )−1

((
P̃π
∗
)K−k

+
[
P̃ϕK−1 P̃ϕK−2 . . . P̃ϕk

])
|ξk|

=
(

2γ
1−γ

) (
1−γ

2

)
(I − P̃ϕK )−1

∞∑
t=1

γK−k−2+t
((
Pπ
∗)K−k
t

+ [PϕK−1PϕK−2 . . . Pϕk ]t

)
|ξk|

=
(

2γ
1−γ

) ∞∑
t=1

γK−k−2+t
((

1−γ
2

)
(I − P̃ϕK )−1

((
Pπ
∗)K−k
t

+ [PϕK−1PϕK−2 . . . Pϕk ]t

))
|ξk|

=
(

2γ
1−γ

) ∞∑
t=1

γK−k−2+tPk,t|ξk|

=
(

2γ(1−γK+1)
1−γ

) ∞∑
t=1

λk,tPk,t|ξk|

3.2 From Pointwise to Lp-norm Propogation Error

To convert the point-wise error bound from Lemma 5 into a bound with respect to norms, we need to consider
how each iteration affects the next state probability distribution. This is where Assumption 1 is needed,
because it limits the difference between future state distributions starting from the initial state distribution
ρ and the sampling distribution µ.

Lemma 6. Suppose that A1(ρ, µ) (Assumption 1) holds, then

ρ

∞∑
t=1

Pk,t ≤ (1− γ)

∞∑
t=1

∞∑
j=0

γjc(j +K − k + t− 1)µ , (13)

where ρ, µ ∈M(X).

Proof. We have two cases to consider (case 1) 1 ≤ k ≤ Z and (case 2) Z < k ≤ K.
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For case 1, we have

ρ
∑∞
t=1 Pk,t = ρ

∑∞
t=K−k

(
1−γ

2

) (
I − P̃ϕK

)−1

2
[(
Pπ
∗)K−Z

(Pϕ)
Z−k

]
t

= ρ
∑∞
t=K−k

(
1−γ

2

)(∑∞
i=0

(
P̃ϕK

)i)
2
[(
Pπ
∗)K−Z

(Pϕ)
Z−k

]
t

= ρ
∑∞
t=K−k

(
1−γ

2

) (∑∞
i=0

∑∞
j=i γ

j (PϕK )
i
j

)
2
[(
Pπ
∗)K−Z

(Pϕ)
Z−k

]
t

=
∑∞
t=K−k

(
1−γ

2

)∑∞
i=0

∑∞
j=i γ

j2
[
ρ (PϕK )

i
j

(
Pπ
∗)K−Z

(Pϕ)
Z−k

]
t

≤
(

1−γ
2

)∑∞
t=K−k

∑∞
i=0

∑∞
j=i γ

j [2c(t+ j)µ]

For case 2, we have

ρ
∑∞
t=1 Pk,t = ρ

∑∞
t=K−k

(
1−γ

2

) (
I − P̃ϕK

)−1 [(
Pπ
∗)K−k
t

+ (PϕK−1PϕK−2 . . . Pϕk)t

]
=

∑∞
t=K−k ρ

(
1−γ

2

)(∑∞
i=0

(
P̃ϕK

)i)[(
Pπ
∗)K−k
t

+ (PϕK−1PϕK−2 . . . Pϕk)t

]
=

∑∞
t=K−k ρ

(
1−γ

2

) (∑∞
i=0

∑∞
j=i γ

j (PϕK )
i
j

) [(
Pπ
∗)K−k
t

+ (PϕK−1PϕK−2 . . . Pϕk)t

]
=

(
1−γ

2

)∑∞
t=K−k

∑∞
i=0

∑∞
j=0 γ

i+j
[
ρ (PϕK )

i
j

(
Pπ
∗)K−k
t

+ ρ (PϕK )
i
j (PϕK−1PϕK−2 . . . Pϕk)t

]
≤

(
1−γ

2

)∑∞
t=K−k

∑∞
i=0

∑∞
j=i γ

j [2c(t+ j)µ]

Both cases are bounded by(
1−γ

2

) ∞∑
t=K−k

∞∑
i=0

∞∑
j=i

γj [2c(t+ j)µ] ≤ (1− γ)
∞∑

t=K−k

∞∑
j=0

γjc(t+ j)µ

= (1− γ)
∞∑
t=1

∞∑
j=0

γjc(j +K − k + t− 1)µ ,

which concludes our proof.

Now the core idea behind our analysis is to find a policy defined over the option set O that selects
temporally extended actions and we know converges quickly. Then we use Lemma 5 to obtain point-wise
bounds and Lemma 6 to obtain bounds with respect to norms. The following defines the policy that we will
use in our analysis.

Definition 2. Let d ≥ 1, x ∈ X be a state, and O be a set of options. The set Ox,d denotes the subset of
options o ∈ O that can be initialized from the state x, such that infY⊆X E

[
Do
x,Y

]
≥ d.

Suppose that A2(α, d, ψ, ρ, j) holds for some α ≥ 0, d ≥ 1, j ≥ 0, ψ ≥ 0, and ρ ∈ M(X). We define the
policy

Φ(x) =

{
arg maxo∈Ox,d

Q∗(x, o) if x ∈ ωα,d
π̂ otherwise

(14)

where π̂ is the α-optimal “bridge” policy defined in A2(α, d, ψ, ρ, j).
Now we are ready to transform the point-wise bound from Lemma 5 to a bound with respect to p-norms.

Lemma 7. Let K, p ≥ 1, ε > 0, α,ψ, j ≥ 0, ρ, µ ∈M(X) and Z ∈ {1, 2, . . . ,K}. Suppose that A1(ρ, µ) and
A2(α, d, ψ, ρ, j) hold, and the first Z iterates of OFVI are pessimistic, then

‖V ∗ − V ϕK‖ ≤ 2γ

(1− γ)2
C1/p
ρ,µ (ε+ α) +

(
γK+1+(1−ψ)(d−1)bZ/jc

)1/p
(

2‖V ∗ − V0‖∞
1− γ

)
(15)

holds, provided that the approximation errors εk satisfy ‖εk‖p,µ ≤ ε for all k = 1, 2, . . . ,K.
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Proof. First note that

Φ(x) =

{
arg maxo∈Ox,d

Q∗(x, o) if x ∈ ωα,d
π∗(x) otherwise

.

is a policy such that Q∗(x,Φ(x)) ≥ V ∗(x)− α for all x ∈ X. Therefore, by Lemma 5, we have

V ∗ − V ϕK ≤ 2γ(1− γK+1)

(1− γ)

[ ∞∑
t=1

K∑
k=0

λk,tPk,t|ξk|

]
.

Now, we have

‖V ∗ − V ϕK‖pp,ρ =
∫
ρ(x) |V ∗(x)− V πK (x)|p dx

≤
∫
ρ(x)

(
2γ(1−γK+1)

1−γ

[∑∞
t=1

∑K
k=1 λk,tPk,t|εk + α|+ λ0,tP0,t|V ∗ − V0|

]
(x)
)p
dx

≤
(

2γ(1−γK+1)
1−γ

)p ∫
ρ(x)

([∑∞
t=1

∑K
k=1 λk,tPk,t|εk + α|+ λ0,tP0,t|V ∗ − V0|

]
(x)
)p
dx .

Recall by Lemma 4 that
∑∞
t=1

∑K
k=0 λk,t = 1. By applying Jensen’s inequality where | · |p is the convex

function, λt,k for k = 0, 1, . . . ,K and t ≥ 0 are the parameters, and noticing that
∑∞
t=1 Pk,t are stochastic

operators, we obtain

‖V ∗ − V ϕK‖pp,ρ ≤
(

2γ(1− γK+1)

1− γ

)p ∫
ρ

[ ∞∑
t=1

K∑
k=1

λk,tPk,t|εk + α|p + λ0,tP0,t|V ∗ − V0|p
]

(x)dx .

Noticing that |V ∗ − V0| is bounded by ‖V ∗ − V0‖∞, we obtain

‖V ∗ − V ϕK‖pp,ρ ≤
(

2γ(1−γK+1)
(1−γ)

)p [∑∞
t=1

∑K
k=1 λk,tPk,t|εk + α|p+∫

ρ(x)λ0,tP0,t‖V ∗ − V0‖p∞dx
]
.

By Assumption 1 and Lemma 6, we have that

ρ

∞∑
t=1

Pk,t ≤ (1− γ)

∞∑
t=1

∞∑
j=0

γjc(j +K − k + t− 1)µ .

Thus we have

K∑
k=1

∞∑
t=1

λk,tρPk,t|εk + α|p ≤
K∑
k=1

∞∑
t=1

λk,t(1− γ)
∞∑
j=0

γj ·

c(j +K − k + t− 1)‖εk + α‖pp,µ
≤

K∑
k=1

∞∑
t=1

γK−k−2+t

1−γK+1 (1− γ)
∞∑
j=0

γj ·

c(j +K − k + t− 1)‖εk + α‖pp,µ
≤ 1

1−γK+1 (1− γ)
∞∑
j=0

K∑
k=1

∞∑
t=1

γj+K−k−2+t·

c(j +K − k + t− 1)‖εk + α‖pp,µ
≤ 1

1−γK+1 (1− γ)
∞∑
j=0

K−1∑
k=0

∞∑
t=1

γj+K−k+t−1·

c(j +K − k + t)‖εk + α‖pp,µ
≤ 1

(1−γ)(1−γK+1)
(1− γ)2

∞∑
t=1

tγt−1c(t)‖εk + α‖pp,µ
≤ 1

(1−γ)(1−γK+1)
Cρ,µ (ε+ α)

p
,
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where Cρ,µ is the discounted average concentrability coefficient from Assumption 1. By replacing
∑∞
t=1

∑K−1
k=0 λk,tPk,t|εk+

α|p, we get

‖V ∗ − V ϕK‖pp,ρ ≤
(

2γ(1−γK+1)
(1−γ)

)p [
1

(1−γ)(1−γK+1)
Cρ,µ (ε+ α)

p
+∑∞

t=1

∫
ρ(x)λ0,tP0,t‖V ∗ − V0‖p∞dx

]
.

(16)

Consider the second term in the last step of the previous inequality. By replacing P0,t with its definition,
we get ∫

ρ(x)
∞∑
t=1

λ0,tP0,tdx =
∫
ρ(x)

∞∑
t=1

γK+t

1−γK+1
1−γ

2 (I − P̃ϕk)−1
[
2
(

(Pπ
∗
)K−Z

(
PΦ
)Z)

t

]
dx

≤ 1
1−γK+1

∫
ρ(x)

[
(P̃π

∗
)K−Z

(
P̃Φ
)Z]

dx .

By A2(α, d, ψ, ρ, j), the policy Φ reaches a state in ωα,d at least once every j timesteps with probability
at least 1− ψ. Thus during the first Z iterations, we have∫

ρ(x)
∞∑
t=1

λ0,tP0,tdx ≤ 1
1−γK+1 γ

K−ZγZ+(1−ψ)(d−1)bZ/jc .

By replacing the second term from the inequality above, we get

‖V ∗ − V ϕK‖pp,ρ ≤
(

2γ(1−γK+1)
(1−γ)

)p [
1

(1−γ)(1−γK+1)
Cρ,µ (ε+ α)

p
+

1
1−γK+1 γ

K−ZγZ+(1−ψ)(d−1)bZ/jc‖V ∗ − V0‖p∞
]
.

Since
(
1− γK+1

)p ( 1
1−γK+1

)
≤ 1, then

‖V ∗ − V ϕK‖pp,ρ ≤
(

2γ
(1−γ)

)p [
1

1−γCρ,µ (ε+ α)
p

+ γK−ZγZ+(1−ψ)(d−1)bZ/jc‖V ∗ − V0‖p∞
]
.

Thus, we have

‖V ∗ − V ϕK‖p,ρ ≤ 2γ
(1−γ)2C

1/p
ρ,µ (ε+ α) +

(
γ(K+1−Z)γZ+(1−ψ)(d−1)bZ/jc)1/p ( 2‖V ∗−V0‖∞

(1−γ)

)
.

3.3 Proof of Theorem 1

Proof. (of Theorem 1)

We use Lemma 1 to select appropriate values for N and L, such that ε′ = ε(1−γ)2/(2γC
1/p
ρ,µ ) and δ′ ← δ

K .
Since the iterates V1, V2, . . . , VK are random objects, we cannot directly apply Lemma 1 to bound the

error at each iteration. However, this problem was resolved in the proof of Munos and Szepesvári [2008,
Theorem 2] by using the fact that the algorithm collects independent samples at each iteration.

The iterate Vk+1 depends on the random variable Vk and the random samples Sk containing theN×L×|O|
next states, rewards, and trajectory lengths. Let the function

f(Sk, Vk) = I {‖Vk+1(Vk, Sk)− TVk‖p,µ ≤ bp,µ(TVk,F) + ε′} − (1− δ′) ,

where we have written Vk+1(Vk, Sk) to emphasize Vk+1’s dependence on both random variables Vk and
Sk. Notice that Vk and Sk are independent because Sk was not used to generate Vk and the simula-
tor S generates independent samples. Because Vk and Sk are independent random variables, we can ap-
ply [Munos and Szepesvári, 2008, Lemma 5]. This lemma tells us that E [f(Sk, Vk) | Vk] ≥ 0 provided
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that E [f(Sk, v)] ≥ 0 for all v ∈ F . For any v ∈ F , by Lemma 1, and by our choice of N and L,

we have that P
(
‖Vk+1(v, Sk)− Tv‖p,µ ≤ bp,µ(Tv,F) + ε′

)
≥ 1 − δ′. This implies that E [f(Sk, v)] ≥

0. By Munos and Szepesvári [2008, Lemma 5], we have that E [f(Sk, Vk) | Vk] ≥ 0. Thus we have

P
(
‖Vk+1(Vk, Sk)− TVk‖p,µ ≤ bp,µ(Tv,F) + ε′

)
≥ 1− δ′. By the union bound, this ensures that ‖ε‖p,µ ≤ ε

for all K iterations with probability at least 1−Kδ′ = 1−K(δ/K) = 1− δ.
The result follows by applying Lemma 7 with ‖εk‖p,µ ≤ bp,µ(TVk,F) + ε′.

‖V ∗ − V ϕK‖p,ρ ≤ 2γ
(1−γ)2C

1/p
ρ,µ (bp,µ(TF ,F) + α+ ε′) +

(
γK+1+(1−ψ)(d−1)bZ/j̄c

)1/p (
2‖V ∗−V0‖∞

(1−γ)

)
= 2γ

(1−γ)2C
1/p
ρ,µ

(
bp,µ(TF ,F) + α+ ε(1− γ)2/(2γC

1/p
ρ,µ )

)
+
(
γK+1+(1−ψ)(d−1)bZ/j̄c

)1/p (
2‖V ∗−V0‖∞

(1−γ)

)
= 2γ

(1−γ)2C
1/p
ρ,µ (bp,µ(TF ,F) + α) + ε+

(
γK+1+(1−ψ)(d−1)bZ/j̄c

)1/p (
2‖V ∗−V0‖∞

(1−γ)

)
.

4 Experiment Details

In this section, we specify additional details and parameters from our experiments.

4.1 Optimal Replacement Task

In the optimal replacement problem introduced by Munos and Szepesvári [2008] there are two primitive
action A = {K,R} and the state is a 1-dimensional value in the interval X = [0, 10]. The dynamics of the
system while executing the action K, representing maintaining the current product, are defined by

Pr(y|x,K) =

{
βe−β(y−x) if y ≥ x
0 if y < x

,

while the dynamics of the system while executing the action R, representing replacing the current product,
are defined by

Pr(y|x,R) =

{
βe−βy if y ≥ 0
0 if y < 0

,

where β = 0.5 in our experiments. The reward function was defined by

r(x, a) =

{
−c(x) = −4x if a = K
−c(x)− C = −4x− 30 if a = R

,

where the choice of our parameters β = 0.5, C = 30, c(x) = 4x, and discount factor γ = 0.6 were chosen
to match the experiments from Munos and Szepesvári [2008]. This allowed us to directly compare our
experimental results to the experimental results from Munos and Szepesvári [2008].

The optimal value function for this problem can be computed in closed form by

V ∗(x) =

{
−10x+ 30

(
e0.2(x−x̄) − 1

)
if x ≤ x̄

−10x̄ if x > x̄

where x̄ ≈ 4.8665, as derived in Munos and Szepesvári [2008].
The features used by are function approximation architecture were fourth order polynomials. For state

x, we used features (1, x, x2, x3, x4). This choice in features was selected so that our results could be directly
compared with the results from Munos and Szepesvári [2008].
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For the OFVI condition, we augmented the primitive action set A = {K,R} by a single option o =

〈Io, πo, βo〉 where the initial state set Io = {x ∈ X|x < x̃}, ∀x∈Xπo(x) = K, and βo(x) =

{
0 if x < x̃
1 if x ≥ x̃ .

Here x̃ = x̄ + ∆. For the experiments shown in this paper, we set ∆ = 0. However, in further experiments
we found that increasing ∆ decreased the convergence rate gained from including the option o.

We repeated all experiments 100 times for each condition.

4.2 Inventory Management Task

In a basic inventory management task, the objective is to maintain stock of one or more commodities to meet
customer demand while at the same time minimizing ordering costs and storage costs [Scarf, 1959, Sethi and
Cheng, 1997]. At each time period, the agent is given the opportunity to order shipments of commodities to
resupply its warehouse.

We created an inventory management problem where the agent resupplies a warehouse with n = 8
different commodities. The warehouse has limited storage (500 units in our experiments). Demand for each
commodity is stochastic and depends on the time of year. Figure 1 shows the expected demand ± one
standard deviation over the course of twelve months. The agent is given the opportunity to place an order
twice each month for a total of 24 order periods per demand cycle.

The state {τ, x} of the inventory management problem was a vector specifying the time of year τ and
the number of each commodity stored in the warehouse x. We will denote the quantity of each commodity
by xi for i = 1, 2, . . . , n. During each timestep, a demand vector ξ was drawn by sampling the demand for
each commodity independently according to

ξi ∼ [N (µi(τ), σi)]+

where N is the normal distribution with mean µi(τ) and standard deviation σi. The mean

µi(τ) =
gi
2

(
cos

(
(2τ + 4ζi)π

24

)
+ 1

)
,

where π refers to the mathematical constant and the values of gi, ζi, and σi can be found in Table 1. The
demand vector was then subtracted from the number of each commodity stored in the warehouse. If any of
the commodities were negative after subtracting the demand vector, the agent received an unmet demand
penalty

pud(x− ξ) =

{
ub + us

∑n
i=1 [xi − ξi]− if

∑n
i=1 [xi − ξi]− < 0

0 otherwise
(17)

where ub = 2, us = 10, and [x]− =

{
x if x < 0
0 otherwise

.

Then the agent was given the opportunity to either resupply it’s warehouse or order nothing. The
primitive actions available to the agent were the ability to order nothing or to order any single commodity in
quantities of 25 up to the maximum size of the warehouse. An action a = 〈i, q〉 was defined by a commodity
index i and a quantity q. The cost of an order was defined by

poc(i, q) =

{
0 if q = 0
ob + os,iq otherwise

(18)

where ob = 8 is the base ordering cost and os,i (see Table 1) is the commodity dependent unit cost. The new
state steps forward half a month into the future and the quantities in the inventory are updated to remove
the purchased commodities and add the ordered commodities (if any). If the agent orders more than will fit
in the inventory, then only the portion of the order the fits in the warehouse will be kept (but the agent will
be charged for the complete order). At the end of each decision step, the agent receives a cost which is the
sum of the unmet demands and the order cost.

We repeated all experiments 8 times for each condition.
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Figure 1: Expected demand (± standard deviation) for eight commodities.
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Table 1: Commodity Properties
Commodity Index 1 2 3 4 5 6 7 8

Unit Cost (os,i) 1 3 1 2 0.5 1 1 1
Demand Peak (Month, ζi) 1 3 7 10 8.5 12 1 5.5
Demand Std. Deviation (σi) 2 1 2 3 2 2 1 2
Max. Expected Demand (gi) 16 10 20 4 10 9 20 16
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