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Abstract
We show how options, a class of control struc-
tures encompassing primitive and temporally ex-
tended actions, can play a valuable role in plan-
ning in MDPs with continuous state-spaces. An-
alyzing the convergence rate of Approximate
Value Iteration with options reveals that for pes-
simistic initial value function estimates, options
can speed up convergence compared to plan-
ning with only primitive actions even when the
temporally extended actions are suboptimal and
sparsely scattered throughout the state-space.
Our experimental results in an optimal replace-
ment task and a complex inventory manage-
ment task demonstrate the potential for options
to speed up convergence in practice. We show
that options induce faster convergence to the op-
timal value function, which implies deriving bet-
ter policies with fewer iterations.

1. Introduction
Under most analyses of approximate dynamic program-
ming, one iteration corresponds to planning one additional
timestep into the future. On the other hand, by imple-
menting Approximate Value Iteration (AVI) with tempo-
rally extended actions, one iteration could instead corre-
spond to planning several timesteps into the future. We
derive bounds that help us reason about when AVI with
temporally extended actions converges faster than AVI with
only primitive actions and also how much faster the conver-
gence may be.

Previous studies have considered planning with options or
temporally extended actions. Precup et al. (1998) demon-
strated that value iteration and policy iteration converge
when planning with options in Markov Decision Processes
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(MDPs, defined in section 2). Sutton et al. (1999) show
experimental results in a discrete state MDP where op-
tions speed up the convergence rate of planning, but the
theoretical results of Precup et al. (1998) do not specify
any clear advantages of planning with options compared
to planning with only primitive actions. Silver & Ciosek
(2012) demonstrate impressive results for planning while
simultaneously composing new options in multiple discrete
state MDPs. Silver & Ciosek further show that the options
generated by their proposed algorithm converge to opti-
mal, but their theoretical analysis does not compare conver-
gence rates. Hauskrecht et al. (1998) showed (for discrete
state MDPs) that when the initial value function estimate
V0 is pessimistic, then planning with additional options
converges faster than planning with only primitive actions.
However, the analysis of Hauskrecht does not characterize
how much faster planning with options may be compared
to planning with only primitive actions. In partially observ-
able MDPs, Theocharous & Kaelbling (2003) and He et al.
(2011) used sequences of actions, called macro-actions, to
speed up tree-based search for near-optimal actions. He
et al. (2011) found that planning with macro-actions could
help to ease (but not eliminate) the exponential dependence
on the horizon time inherent to tree-based search methods.
While we cannot make a direct comparison to our setting,
one advantage of our analysis is that the speed up achieved
by planning with options does not depend on explicitly
eliminating primitive actions from consideration. On the
other hand, Theocharous & Kaelbling (2003) and He et al.
(2011) achieve faster performance by explicitly eliminating
some primitive actions from consideration. This can have
the negative side affect of convergence toward suboptimal
policies.

The options framework is appealing for investigating plan-
ning with temporally extended actions. For one thing, the
class of options includes both primitive actions and a range
of temporally extended actions. Many of the well-known
properties of Markov decision processes generalize when
arbitrary options are added (e.g., Value Iteration and Policy
Iteration still converge (Precup et al., 1998; Sutton et al.,
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1999)). In addition, much effort has gone into algorithms
that learn “good” options for exploration (Stolle & Precup,
2002; Mannor et al., 2004). These algorithms may produce
options that are also useful for planning. Lastly, options en-
able greater flexibility to model real-world problems where
the time between decisions may vary. For example, in in-
ventory management problems, orders may be placed when
inventory is running low. This strategy makes the time be-
tween orders a random variable, which is more naturally
modeled by options than primitive actions. Thus, options
are an important candidate for investigating planning with
temporally extended actions.

The main technical contributions of this paper are ex-
tending the finite-sample/finite-iteration analysis of AVI to
planning with options. First, we introduce a generalization
of the Fitted Value Iteration (FVI) algorithm that incorpo-
rates samples generated by options. We show that when the
set of options contains the primitive actions, our general-
ized algorithm converges approximately as fast as FVI with
only primitive actions (Proposition 1). Then we develop
precise conditions under which our generalized FVI algo-
rithm converges faster with options than with only primi-
tive actions (Theorem 1). These conditions turn out to de-
pend critically on whether the iterates produced by FVI un-
derestimate the optimal value function. Finally, our exper-
imental results in two domains demonstrate that the con-
vergence rate of planning with options can be significantly
faster than planning with only primitive actions. However,
as predicted by our theoretical analysis, the improvement
in convergence only occurs when the iterates of our algo-
rithm underestimate the optimal value function, which can
be controlled in practice by setting the initial estimate of the
optimal value function pessimistically. Our analysis of FVI
suggests that options can play an important role in planning
by inducing fast convergence.

2. Background
A Markov Decision Process (MDP) is defined by a 5-tuple
〈X,A,P,R, γ〉 where X is a set of states, A is a set of
primitive actions, P maps from state-action pairs to a prob-
ability distribution over states, R is a mapping from state-
action pairs to reward distributions bound to the interval
[−RMAX, RMAX], and γ ∈ [0, 1) is a discount factor. Let
B(X;VMAX) denote the set of functions with domain X
and range bounded by [−VMAX, VMAX] and M(X) the set
of all probability measures on X . Throughout this paper
we will consider MDPs where X is a bounded subset of
a d-dimensional Euclidean space and A is a finite set of
primitive actions.

A deterministic, stationary policy π : X → A for an MDP
is a mapping from states to primitive actions. We denote the
set of deterministic, stationary policies by Π. The objective

of planning in an MDP is to derive a policy π that max-
imizes V π(x) = E [

∑∞
t=0 γ

tRt(xt, π(xt))|x0 = x, π] ,
where x is the long-term value of following π starting
in state x. The function V π is called the value func-
tion of the policy π and it is well known that it can
be written recursively as T πV π = E [R(x, π(x))] +
γ
∫
P (y|x, π(x))V π(y)dy, where T π is a backup opera-

tor with respect to π and V π is its unique fixed point.
Given V ∈ B(X;VMAX), the greedy policy π with re-
spect to V is defined by π(x) = arg maxa∈A E [R(x, a)]+
γ
∫
P (y|x)V (y)dy. We denote the optimal value function

by V ∗ = maxπ∈Π V
π . A policy π∗ is optimal if its corre-

sponding value function is V ∗ and a policy π is α-optimal
if V π(x) ≥ V ∗(x)− α for all x ∈ X . The Bellman opera-
tor T is defined by

(T V )(x) = max
a∈A

(
E [R(x, a)] + γ

∫
P (y|x, a)V (y)dy

)
,

(1)
where V ∈ B(X;VMAX), which is known to have fixed
point V ∗. Equation (1) defines the Value Iteration (VI) al-
gorithm. VI converges to V ∗, but it is computationally in-
tractable in MDPs with extremely large or continuous state-
spaces.

Primitive action Fitted Value Iteration (PFVI) is a gener-
alization of VI to handle large or continuous state-spaces.
PFVI runs iteratively producing a sequence of K ≥ 1 esti-
mates {Vk}Kk=1 of the optimal value function and returns a
policy πK that is greedy with respect to the final estimate
VK . During each iteration k, the algorithm computes a set
of empirical estimates V̂k of T Vk−1 for N states, and then
fits a function approximator to V̂k. To generate V̂k,N states
{xi}Ni=1 are sampled from a distribution µ ∈ M(X). For
each sampled state xi and each primitive action a ∈ A,
L next states {yai,j}Lj=1 and rewards {rai,j}Lj=1 are sampled
from the MDP simulator S. For the kth iteration, the esti-
mates of the Bellman backups are computed by

V̂k(xi) = max
a∈A

1

L

L∑
j=1

(
rai,j + γVk−1(yai,j)

)
, (2)

where V0 is the initial estimate of the optimal value func-
tion given as an argument to PFVI. The kth estimate of the
optimal value function is obtained by applying a supervised
learning algorithm, that produces

Vk = arg min
f∈F

N∑
i=1

∣∣∣f(xi)− V̂k(xi)
∣∣∣p , (3)

where p ≥ 1 and F ⊂ B(X;VMAX) is the hypothesis
space of the supervised learning algorithm.

Munos & Szepesvári (2008) presented a finite-sample,
finite-iteration analysis of PFVI with guarantees depen-
dent on the Lp-norm rather than the more conservative max
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norm. This enabled analysis of instances of PFVI that use
one of the many supervised learning algorithms minimizing
L1 or L2 norm. A key assumption needed for their analy-
sis is the notion of discounted-average concentrability of
future state distributions.

Assumption 1. [A1(ρ, µ)] (Munos, 2005) Given two dis-
tributions ρ, µ ∈ M(X) and m ≥ 1 arbitrary policies
π1, π2, . . . , πm, we assume that ρPπ1Pπ2 . . . Pπm is abso-
lutely continuous with respect to µ implying that

c(m)
def
= sup

π1,π2,...,πm

∥∥∥∥d(ρPπ1Pπ2 . . . Pπm)

dµ

∥∥∥∥
∞
< +∞ ,

and we assume that

Cρ,µ
def
= (1− γ)2

∑
m≥1

mγm−1c(m) < +∞

is the discounted average concentrability coefficient.

Assumption 1 prevents too much transition probability
mass from concentrating on a few states. The condition
that Cρ,µ is finite depends on c(m) growing at most subex-
ponentially. See Munos (2005) for a more complete dis-
cussion of Assumption 1.

Munos & Szepesvári (2008) showed that given an MDP, if
we select probability distributions ρ, µ ∈M(X), a positive
integer p, a supervised learning algorithm over a bounded
function space F satisfying (3), V0 ∈ F an initial estimate
of the optimal value function, and ε > 0 and δ ∈ (0, 1].
Then for any K ≥ 1, with probability at least 1 − δ, there
exists parametersN and L such that the policy πK returned
by PFVI satisfies

||V ∗ − V πK ||p,ρ ≤ 2γ
(1−γ)2C

1/p
ρ,µ bp,µ(T F ,F) + ε

+
(
γK+1

)1/p ( 2‖V ∗−V0‖∞
(1−γ)2

)
,

(4)
where ‖f‖p,ρ =

(∫
ρ(x)|f(x)|pdx

)1/p
and

bp,µ(T F ,F) = sup
f∈F

inf
g∈F
‖T f − g‖p,µ, the inherent

Bellman error, is a measure of how well F represents V̂k
at each iteration. The first term in (4) controls the approxi-
mation error due to the fact that F does not exactly capture
V̂k at each iteration. The second term, the estimation error,
is controlled by collecting more samples. This last term
characterizes the convergence rate of the algorithm. It
shrinks as K increases. The size of the discount factor
γ controls the rate of convergence. Convergence is faster
when γ is smaller. Unfortunately, γ is part of the problem
definition. However, because options execute for multiple
timesteps, an option can have an effective discount factor
smaller than γ.

3. Semi-Markov Decision Processes
Semi-Markov Decision Processes (SMDPs) are a general-
ization of Markov Decision Processes (MDPs) that incor-
porates temporally extended actions. A set of primitive and
temporally extended actions called options, denoted by O,
combined with an MDP forms an SMDP (Precup et al.,
1998). An option o is defined by a 3-tuple 〈Io, πo, βo〉
where Io is the set of states that o can be initialized from,
πo is the stationary policy defined over primitive actions
followed during the lifetime of o, and βo : X → [0, 1]
determines the probability that o will terminate while in a
given state (Sutton et al., 1999). For each state x ∈ X , we
denote the set of options that can be initialized from x by
Ox = {o ∈ O | x ∈ Io}. The duration of an option is a
random variable that depends on the state where the option
was initialized and where the option terminates. For a state
x ∈ X , an option o ∈ Ox, and a subset of the state-space
Y ⊆ X , Do

x,Y denotes the duration of executing option o
from state x given that the option terminates in Y .

For an option o = 〈Io, πo, βo〉, we denote the probability
that o is initialized from a state x and terminates in a subset
of states Y ⊆ X in exactly t timesteps by P ot (Y |x) and
the discounted termination state probability distribution of
o by P̃ o(Y |x) =

∑∞
t=1 γ

tP ot (Y |x). For a state-option pair
(x, o), the discounted cumulative reward distribution dur-
ing the option’s execution is denoted by R̃(x, o).

The objective of planning in SMDPs is to derive a policy
ϕ : X → O from states to options that maximizes

V ϕ(x) = E
[
R̃(x, ϕ(x))

]
+

∫
P̃ϕ(x)(y|x)V ϕ(y)dy .

(5)

The Bellman operator for an SMDP is defined by

(TV )(x) = max
o∈Ox

(
E
[
R̃(x, o)

]
+

∫
P̃ o(y|x)V (y)dy

)
,

(6)
where T is defined over the set of options O instead of
primitive actions A. The differences between (1) and (6)
could potentially lead to widely different results when em-
bedded in the FVI algorithm. However, in this paper, we
will consider the case where A ⊂ O, which ensures that T
and T have the same fixed point T V ∗ = TV ∗ = V ∗.

We introduce a generalization of FVI for the case where
samples are generated by options (with primitive actions as
a special case). The algorithm, Options Fitted Value Itera-
tion (OFVI), takes as arguments positive integers N,L,K,
µ ∈ M(X), an initial value function estimate V0 ∈ F ,
and a simulator S. At each iteration k, N states xi ∼ µ
for i = 1, 2, . . . , N are sampled, and for each option
o ∈ Oxi

, L next states, rewards, and option durations
〈yoi,j , roi,j , τoi,j〉 ∼ S(xi, o) are sampled for j = 1, 2, . . . , L.
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Then the update resulting from applying the Bellman oper-
ator to the previous iterate Vk−1 is estimated by

V̂k(xi)← max
o∈Oxi

1

L

L∑
j=1

[
roi,j + γτ

o
i,jVk−1(yoi,j)

]
, (7)

and we obtain the best fit according to (3). In addition to re-
turning a next state and reward, S also returns the number
of timesteps that the option executed before terminating.
This additional information is needed to compute (7). Oth-
erwise, the differences between PFVI and OFVI are minor
and it is natural to ask if OFVI has similar finite-sample
and convergence behavior compared to PFVI.

Proposition 1. For any ε, δ > 0 and K ≥ 1. Fix p ≥ 1.
Given a set of options O containing all primitive actions
A, an initial state distribution ρ ∈ M(X), a sampling dis-
tribution µ ∈ M(X), and V0 ∈ B(X,VMAX), if A1(ρ, µ)
holds, then there exist positive integers N and L such that
when OFVI is executed, the policy ϕK returned by OFVI
satisfies

||V ∗ − V ϕK ||p,ρ ≤ 2γ
(1−γ)2C

1/p
ρ,µ bp,µ(TF ,F) + ε

+
(
γK+1

)1/p ( 2‖V ∗−V0‖∞
(1−γ)

)
(8)

holds with probability at least 1− δ.

A proof of Proposition 1 as well as sufficient values for N
and L are given in the supplementary material. Inequal-
ity (8) bounds the suboptimality of the policy returned by
OFVI, similar to inequality (4) from Munos & Szepesvári
(2008). As long as the set of options O contains all prim-
itive actions A, OFVI has performance in the worst case
that is comparable to PFVI. The main differences between
the bound in Proposition 1 and Munos & Szepesvári (2008,
Theorem 2) is that the inherent Bellman error in Propo-
sition 1 may be larger than the inherent Bellman error
with only primitive actions, because backups computed
by OFVI may span multiple timesteps resulting in more
complex targets for the supervised learning algorithm to
fit. However, the last terms characterizing the convergence
rates of (4) and (8) are identical.

Proposition 1 implies that OFVI always converges approx-
imately as fast as PFVI. However, the two algorithms may
converge to different regions of the value function space
due to the larger inherent Bellman error of OFVI. In the fol-
lowing section, we will investigate conditions where OFVI
converges faster than PFVI.

4. Convergence Rate of OFVI
We are interested in analyzing the case where OFVI plans
with an option set consisting of the set of primitive actions
and a few additional temporally extended actions. In most

cases, a temporally extended action can only be initialized
from a subset of the state-space. The following defines the
set of states that have access to temporally extended ac-
tions that follow approximately optimal policies from those
states.

Definition 1. Let O be the given set of options, α ≥ 0,
and d ≥ 1. The (α, d)-omega set ωα,d contains the
states x ∈ X such that there exists an option o ∈ Ox
satisfying (1) the duration of executing o from x satisfies
infY⊆X E

[
Do
x,Y

]
≥ d; and (2) o is α-optimal with respect

to x (i.e. Q∗(x, o) ≥ V ∗(x)− α).

Temporally extended actions are only useful for planning if
they are frequently encountered. The following assumption
guarantees that, even if the temporally extended actions are
sparsely scattered throughout the state-space, then they are
not too difficult to reach from any state that we are likely to
encounter starting from x0 ∼ ρ.

Assumption 2. [A2(α, d, ψ, ρ, j)] Let α,ψ ≥ 0, d, j ≥
1, and ρ ∈ M(X). For any m primitive policies
π1, π2, . . . , πm, let ν = ρPπ1Pπ2 . . . Pπm . There exists an
α-optimal policy π̂ such that either (1) Prx∼ν [x ∈ ωα,d] ≥
1−ψ; or (2) ∃i∈{1,2,...,j} Pry∼ηi [y ∈ ωα,d] ≥ 1−ψ where

ηi = ν
(
P π̂
)i

for i = 1, 2, . . . , j.

A2(α, d, ψ, ρ, j) assumes that, starting from x ∼ ρ, at each
timestep every possible trajectory either encounters a state
in ωα,d with high probability (1 − ψ), meaning that the
agent almost always encounters states with temporally ex-
tended actions that are useful for planning, or from the
agent’s current state there exists a policy π̂ that transitions
to ωα,d with high probability in at most j timesteps. Under
A2, useful temporally extended actions do not need to be at
every state. They may be scattered sparsely throughout the
state space. This assumption is weak since it can be made
true for any MDP and set of options containing the primi-
tive actions by tuning the parameter values. Furthermore,
the agent does not need to know π̂. It is sufficient that π̂
exists.

Faster convergence depends critically on the optimism or
pessimism of the sequence of iterates produced by OFVI.
We say that an estimate V ∈ B(X;VMAX) of the opti-
mal value function is optimistic if V (x) > V ∗(x) for all
x ∈ X , and we say that V is pessimistic if V (x) ≤ V ∗(x)
for all x ∈ X . In fact, the SMDP Bellman operator T has a
slower convergence rate than the MDP Bellman operator T
when acting on entries of V ∈ B(X;VMAX) that are opti-
mistic (Hauskrecht et al., 1998). This means that OFVI can
only converge more quickly than PFVI when some of the
iterates {Vk}Kk=0 are pessimistic in at least part of the state-
space. For standard value iteration this is not a problem
because we can set the initial estimate V0 to be pessimistic
and the fact that T is monotonic and converges to V ∗ en-
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sures that every iterate is also pessimistic. The situation
for OFVI is more complicated because of the algorithm’s
fitting step. However, Theorem 1 (below) describes when
we can expect OFVI to converge faster than PFVI provided
that the first few iterates happen to be pessimistic with re-
spect to V ∗.

Theorem 1. Let ε, δ > 0, α,ψ, j ≥ 0, K, p, d ≥ 1, 0 ≤
Z ≤ K, and ρ, µ ∈ M(X). Suppose that A1(ρ, µ) and
A2(α, d, ψ, ρ, j) hold, then if the first Z iterates {Vk}Zk=0

produced by the algorithm are pessimistic (i.e., Vk(x) ≤
V ∗(x) for all x ∈ X), then there exist positive integers
N and L such that when OFVI is executed, the policy ϕK
returned by OFVI satisfies

||V ∗ − V ϕK ||p,ρ ≤ 2γ
(1−γ)2C

1/p
ρ,µ (bp,µ(TF ,F) + α) + ε

+
(
γK+1+(1−ψ)(d−1)bZ/j̄c

)1/p

·
(

2‖V ∗−V0‖∞
(1−γ)

)
(9)

holds with probability at least 1− δ, where j̄ = j + 1.

The proof of Theorem 1 is in the supplementary material.
The OFVI algorithm runs exactly as we assumed for Propo-
sition 1 using the same parameters and requires no spe-
cial prior knowledge or preparation besides setting V0 pes-
simisticly. For the results of the theorem to hold, at least
the first Z iterates produced by the algorithm must be pes-
simistic. This condition is difficult to control in general, but
it may be possible to control for specific applications and
function approximation architectures, as we show below.

As with Proposition 1, the bound in Theorem 1 has three
terms: (1) approximation error, (2) estimation error, and
(3) convergence error. The main advantage of Theorem 1
can be seen in the third term, which characterizes the con-
vergence rate of the algorithm. The algorithm converges at
a rate of γK+1+(1−ψ)(d−1)bZ/j̄c rather than γK+1 over K
iterations. As ψ → 0 and j decreases toward 0, OFVI can
better exploit temporally extended actions to decrease the
convergence error more quickly than PFVI. The stair-step
nature of the convergence rate caused by bZ/j̄c is due to
the possibility that all of the error in each iterate may con-
centrate on states outside of ωα,d. In that case, it can take
up to j iterations to propagate back the results of updates
where temporally extended actions are used.

The main limitation of Theorem 1 is due to the first term,
which controls the approximation error. This term is
slightly worse than the approximation error in (8) due to
our exploitation of α-optimal options and policy π̂. How-
ever, this does not imply that the algorithm converges to a
worse solution than (8). It reflects the fact that when the
temporally extended actions are suboptimal, convergence
will be rapid up to a point. Once the algorithm achieves
an accurate iterate, the convergence rate may slow because

the SMDP Bellman operator cannot improve the current es-
timate further with temporally extended actions.

5. Experiments & Results
We compared PFVI and OFVI in two different tasks: (1)
the optimal replacement problem considered in Munos &
Szepesvári (2008), and a cyclic eight-commodity inventory
management task. In both experiments, we see that options
can improve convergence rates of FVI, but only when V0 is
pessimistic with respect to V ∗.

5.1. Optimal Replacement Task

In the optimal replacement problem, the agent selects from
one of two actions K and R, whether to maintain a prod-
uct (action K) at a maintenance cost c(x) that depends on
the product’s condition x or replace (action R) the product
with a new one for a fixed cost C. This problem is easy
to visualize because it has only a single dimension, and the
optimal value function and optimal policy can be derived
in closed form (Munos & Szepesvári, 2008) so that we can
compare PFVI and OFVI directly with the optimal policy.
We used parameter values γ = 0.6, β = 0.5, C = 30 and
c(x) = 4x (identical to those used by Munos & Szepesvári
(2008)) where β is the inverse of the mean of an exponen-
tial distribution driving the transition dynamics of the task.
Similar to Munos & Szepesvári (2008), we used polynomi-
als to approximate the value function. All results presented
here used fourth degree polynomials. The optimal policy
keeps the product up to a point x̄ and replaces the product
once the state equals or exceeds x̄.

For the OFVI condition, we introduced a single option that
keeps the product up to a point x̃ = x̄ + ∆ and terminates
once the state equals or exceeds x̃. By modifying ∆, we
controlled the optimality of the given option. As predicted
by our analysis, adjusting ∆ away from 0 (i.e., increasing
the suboptimality of the option), resulted in slower conver-
gence when the initial value function was pessimistic. For
an optimistic initial value function, the behavior of PFVI
and OFVI was almost identical.

Figure 1a shows the average convergence rates of PFVI and
OFVI (with ∆ = 0) when the initial value function esti-
mate is optimistic for both max-norm and L1-norm error.
In both cases, the value functions converge at almost iden-
tical rates, as predicted by our analysis. Figure 1b shows
the average convergence rates of PFVI and OFVI when
the initial value function estimate is pessimistic. With a
pessimistic initial value function, OFVI converges signifi-
cantly faster than PFVI as predicted by our analysis.

Figure 2 compares the average iterates Vk of OFVI to PFVI
for k = 2, 5, and 10 with optimistic (Figure 2a) and pes-
simistic (Figure 2b) initial value function estimates. The
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Figure 1. Optimal Replacement Task: Convergence rates of PFVI and OFVI averaged over 100 trials (std. deviations are too small to
visualize). (a) When the initial value function estimate V0 is optimistic, there is no difference between the convergence rates of PFVI
and OFVI. (b) However, when V0 is pessimistic, OFVI converges faster than PFVI.
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Figure 2. Optimal Replacement Task: Average iterates Vk (k = 2, 5, and 10) for PFVI and OFVI. (a) Columns 1, 2, and 3 show that
the convergence rate of OFVI and PFVI are qualitatively similar when the initial value function is optimistic. (b) When the initial value
function is pessimistic, OFVI’s value function estimate after k = 2 iterations (column 1) is qualitatively similar to PFVI’s value function
estimate after k = 5 iterations (column 2).
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Figure 4. Inventory Management Task: Cumulative reward of
policies derived from PFVI and OFVI after each iteration com-
pared to uniform random (Rand) and 1-step greedy policies
(shaded regions denote ±1 std. deviation).

solid black line depicts the optimal value function V ∗.
With an optimistic initial value function the behavior of
PFVI and OFVI is qualitatively identical. However, with
a pessimistic initial value function, OFVI’s second iterate
is qualitatively similar to PFVI’s fifth iterate.

5.2. Cyclic Inventory Management Task

In a basic inventory management setting, an agent controls
the order policy for a single commodity (Scarf, 1959). Each
round, the demand for the commodity is revealed (sampled
from a distribution) and subtracted from the agent’s inven-
tory. The agent decides the quantity to order, and the order
is filled immediately. If the agent did not have sufficient
supply to meet the demand it receives a high penalty (i.e.,
large negative reward). On the other hand, ordering com-

modities and storing them are also penalized (i.e., given
negative rewards). The objective is to find the policy that
balances these penalties over time.

Cyclic inventory management problems are further compli-
cated because the demand distribution changes after each
round, but the distributions repeat after a finite number of
rounds (Sethi & Cheng, 1997).

We introduce an eight-commodity, cyclic inventory man-
agement problem with finite storage. The demand distribu-
tions cycle every 12 months and there are 24 rounds per
year. The agent must manage eight different commodi-
ties that are stored together in a finite warehouse. Ordering
too much of quantity i means that there is less room in the
warehouse for quantity j 6= i. Thus the agent must work
out complex trade-offs that depend on both the current in-
ventory levels and the time of year. The details of the task
and exact parameters used in our experiments are described
in the supplementary material.

The state-space was described by 〈τ, x〉 where τ ∈
{1, 2, . . . , 24} denotes the period in the cycle and x is a
vector determining the quantity of each commodity stored
in the warehouse. To approximate the value function, we
partitioned the state-space by the 24 periods in the cycle.
Thus, each iterate was constructed from 24 independent
function approximators. Because of the high dimensional-
ity of the inventory space, we needed a function approxima-
tion architecture with good generalization properties. Af-
ter experimenting with various architectures, we found that
linear approximations with a fixed grid of one-dimensional
radial basis functions generalized well with limited sam-
ples. Cross-validation was used to select grid density and
basis widths.

For the OFVI condition, we created options based on the
intuition that good inventory management policies order
commodities in large quantities and make zero orders on as
many rounds as possible to avoid the base ordering penalty.
We defined options that always place zero orders and termi-
nate once the inventory level of a specific commodity drops
below a threshold. Options were added for twenty different
threshold levels for each commodity.

This problem is difficult for two reasons. First, the agent
must manage eight different commodities with limited,
shared storage. Making a large order of one commodity re-
duces the space available for other commodities. Second,
the demand distributions are cyclic requiring adaptation to
the time of year. The agent must plan ahead stockpiling
commodities when demand is low. However, if the agent
fills its warehouse, it will not be able to adapt to unex-
pected situations that arise due to the problem’s stochastic
demands.

Figure 3 shows average (over 5,000 sampled states) pre-
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dicted values for PFVI and OFVI, when V0 is pessimistic.
The average predicted value increases more rapidly for
OFVI than PFVI. The curve marked with squares in Figure
3 depicts the fastest possible convergence rate with only
primitive actions when V0 is pessimistic. On most itera-
tions, this curve falls well below the convergence rate of
OFVI until OFVI seems to have approximately converged.

Figure 4 shows cumulative reward received by policies
derived from the iterates of PFVI and OFVI when V0 is
pessimistic. Cumulative rewards were recorded over 100
timesteps starting from a state with zero inventory. Poli-
cies derived from PFVI and OFVI outperform random and
1-step greedy policies after a single iteration. Policies de-
rived from OFVI converge to a good solution with fewer
iterations than PFVI. The decrease in performance in poli-
cies derived from PFVI and OFVI in later iterations is due
to approximation error (the fact that our function approx-
imation architecture does not exactly fit the points gener-
ated by Bellman backups explained by the first term on the
right hand side of (4),(8), and (9)). When V0 is optimistic,
policies derived from PFVI and OFVI achieve similar cu-
mulative reward at each iteration (not shown).

6. Discussion
We demonstrated two different tasks where augmenting the
primitive actions with temporally extended actions leads to
faster convergence. As our theoretical analysis predicted,
when V0 was pessimistic, the additional temporally ex-
tended actions helped OFVI to converge faster than PFVI.
However, adding additional options increases the compu-
tational and sample complexity of each iteration of OFVI.
Thus, randomly generating hundreds of options will prob-
ably not lead to overall improvement in the computational
complexity of AVI. However, adding a few options does
not significantly increase the cost of each iteration.

A natural extension of this work is to consider automati-
cally generating options that speed up planning. Many pre-
vious works have looked at generating options (McGovern
& Barto, 2001; Stolle & Precup, 2002; Mannor et al., 2004;
Silver & Ciosek, 2012). What is missing from the litera-
ture are theoretical analyses that enables us to evaluate and
compare different strategies for generating options.

Options may have other benefits for planning besides im-
proving the convergence rate. For example, options may
enable a planning algorithm to “skip over” regions of the
state-space with highly complex dynamics without impact-
ing the quality of the planned policy. In partially observable
environments, options may be exploited to decrease uncer-
tainty about the hidden state by “skipping over” regions of
the state-space where there is large observation variance,
or “testing” hypotheses about the hidden state (Mann et al.,

2013). Options may also play an important role in robust
optimization, where the dynamics of temporally extended
actions are known with greater certainty than the dynamics
of a sequence of primitive actions.
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