
Time-Regularized Interrupting Options

Daniel J. Mankowitz DANIELM@TX.TECHNION.AC.IL
Timothy A. Mann MANN@EE.TECHNION.AC.IL
Shie Mannor SHIE@EE.TECHNION.AC.IL

Electrical Engineering Department, The Technion - Israel Institute of Technology, Haifa 32000, Israel

Abstract

High-level skills relieve planning algorithms
from low-level details. But when the skills are
poorly designed for the domain, the resulting
plan may be severely suboptimal. Sutton et al.
(1999) made an important step towards resolv-
ing this problem by introducing a rule that auto-
matically improves a set of skills called options.
This rule terminates an option early whenever
switching to another option gives a higher value
than continuing with the current option. How-
ever, they only analyzed the case where the im-
provement rule is applied once. We show condi-
tions where this rule converges to the optimal set
of options. A new interrupting Bellman operator
that simultaneously improves the set of options
is at the core of our analysis. One problem with
the update rule is that it tends to favor lower-level
skills. We introduce a regularization term that fa-
vors longer duration skills. Experimental results
demonstrate that this approach can derive a good
set of high-level skills even when the original set
of skills cannot solve the problem.

1. Introduction
Options are control structures that can implement both
high-level skills that accomplish a subgoal as well as primi-
tive actions that execute for a single timestep (Sutton et al.,
1999). Because of their flexibility options are often bet-
ter suited for modeling complex problems than primitive
actions (Stone et al., 2005; Konidaris et al., 2012). In ad-
dition, options have been shown experimentally (Precup &
Sutton, 1997; Sutton et al., 1999; Silver & Ciosek, 2012)
and theoretically (Mann & Mannor, 2014) to speed up the
convergence rates of planning algorithms.
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In planning problems, high-level skills are given as a set
of options, and a planner determines how these options can
be put together to form a solution. One disadvantage of
options is that they are opaque and indivisible. If a badly
designed set of options are provided to a planner for solving
a task, the planner may not be able to compose the options
to solve the task. Thus, for a fixed set of options, the best
solution may be unsatisfactory.

A Semi-Markov Decision Process (SMDP) model is
defined with respect to a fixed set of options. Modifying
an option results in a new option and therefore a new
SMDP model. The only way to get a better solution
is to change the options themselves and solve the new
SMDP model instead. This is termed model improvement.
Performing model improvement multiple times is termed
model iteration. Each subsequent SMDP model can solve
a task with greater efficiency until convergence.

Consider a city transit planner who has to design bus
stops such that passengers can reach popular or important
destinations in a city. It may be the case that a bus line
(modeled as an option) has been previously constructed
whose end terminal bypasses newly developed destinations
of interest, as shown in Figure 1a. In this case, it is
desirable to construct a new bus stop (modify the option)
such that the end terminal is in a more desirable location
in the city. A passenger may need to take more than one
bus line (multiple options) to reach a popular destination
as seen in Figure 1b. However, since none of the bus
terminals are located at this destination, the city planner
needs to modify the location of each of these terminals.
Here, at least two iterations of model iteration are required
to find the optimal locations of the new terminals.

There are two approaches to find new options: (1) discover
new options from scratch, or (2) try to improve on the ex-
isting options. Option discovery is the process of learning
and solving a set of sub-goals for a domain. A solution to a
subgoal produces an option. This approach has been exten-
sively studied (da Silva et al., 2012; Menache et al., 2002;
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Figure 1. A city transit planner. (a) A bus line whereby the des-
tination of interest is not found at the bus terminal. A new termi-
nal is placed at the desired location. (b) A city transit planner in
which option interruption is necessary for more than one iteration
to address the model misspecification at iteration i = 0.

McGovern & Barto, 2001), but these techniques are often
computationally expensive and lack formal guarantees.

Alternatively, we can try to improve an existing set of op-
tions. In many real-world problems, options may already
be given by a domain expert. It makes sense to improve
upon these options rather than discover new options from
scratch. Sutton et al. (1999) introduced option interruption
as a mechanism for improving a set of options by tuning
their termination rules. Option interruption opportunisti-
cally looks for situations where switching to another op-
tion early produces a better solution (Figure 1b). Sutton
et al. (1999) showed that their rule can improve a set of op-
tions (model improvement). However, they only consider
improving the set of options for a single step of model im-
provement. Comanici & Precup (2010) developed an al-
gorithm that learns locally-optimal termination conditions
for options using a gradient-based algorithm. However, this
method converges to a locally optimal solution and requires
augmentation of the state space. Our proposed method ex-
tends the mechanism introduced by Sutton et al. (1999) by
proving conditions where iteratively improving the options
converges to the globally optimal set of options.

However, modifying the termination conditions of options
tend to make options’ durations shorter and shorter. This
amounts to breaking the original high-level skills down into
lower and lower-level skills. Technically, this is the optimal
strategy because low-level skills can exactly represent the
optimal solution. However, planning with temporally ex-

tended options can lead to significantly faster convergence
(Mann & Mannor, 2014; Precup & Sutton, 1997; Sutton
et al., 1999; Silver & Ciosek, 2012).

The main technical contributions of this paper are three-
fold. First, we develop the Interrupting Option Value Iter-
ation (IOVI) algorithm that simultaneously plans and im-
proves the original option set. IOVI is the first known al-
gorithm that incorporates model iteration with Value Itera-
tion. Second, we prove that by applying option interruption
iteratively to an initial set of options, using a new inter-
rupting Bellman operator, IOVI algorithm converges to a
global optimum ((Sutton et al., 1999) only analyzes a sin-
gle iteration of option interruption). Furthermore, we add
a time-based regularization to IOVI to form the Time Reg-
ularized IOVI (TRIOVI) algorithm. Time-based regular-
ization has been incorporated to help prevent breaking the
original high-level skills down to options with short dura-
tions. We show that the option set produced by TRIOVI
converges to a local optimum with respect to the selected
regularization function. Adding a regularization term has
not been considered by (Sutton et al., 1999) or (Comanici
& Precup, 2010).

A lack of domain knowledge can result in incorrectly mod-
eling a problem domain. This is termed model misspec-
ification (Joseph et al., 2013). In complex problems, it
is not always clear whether good options have been pro-
vided by an expert to solve a task (Stolle & Precup, 2002).
Planning with poorly designed options may produce a sub-
optimal solution or no solution at all. As we demonstrate in
our experiments, our proposed algorithm can derive a high-
quality solution to a problem even when the original set of
options cannot solve the task.

2. Background
An option is a temporally extended control structure de-
fined by a triple 〈I, π, β〉 where I is the set of states where
the option can be initiated, π is the option’s policy, which
determines how the option behaves in encountered states,
and β is the set of termination probabilities determining
when an option will stop executing. β is typically either a
function of state s or time t. In this paper, we treat β as
a function of both state and time; that is β(s, t). Through-
out this paper, we assume that we are given an initial set of
m ≥ 1 options O0 where each option oj = 〈Ij , πj , βj〉
for j = 1, 2, . . . ,m. For convenience we will denote
{1, 2, . . . ,m} by [m]. Model iteration corresponds to mod-
ifying the termination probabilities βj for j ∈ [m], but
leaves Ij and πj unchanged. Since the options are indexed,
it will often be convenient to abuse notation and use options
interchangeably with their indices.

A Semi-Markov Decision Process (SMDP) can be defined
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by a five-tuple 〈S,O, P,R, γ〉 where S is a set of states, O
is a set of options, and P is the transition probability ker-
nel. We assume rewards received at each timestep are in
[0, RMAX] so that R is a mapping from S×O to [0, RMAX

1−γ ]
representing the expected discounted sum of rewards re-
ceived during the execution of an option o initialized from
a state s, and γ ∈ [0, 1) is the discount factor that causes an
agent to place lower value on reward that takes more time
to acquire. Model iteration constructs new SMDPs each
time the option set is updated. To keep the notation consis-
tent, we define Pπj (s′|s, t) to be the probability of reach-
ing state s′ t-timesteps after initializing the option oj from
state s and Rπj

s,s′,t to be the expected discounted reward for
encountering state s′ exactly t timesteps after initializing
option oj in state s. Both of these definitions remain the
same regardless of how we change the termination proba-
bilities. Therefore, they are not affected by model iteration.

An option policy µ : S → [m] is a mapping from states
to indices over the space of options O. The action-value
function Qµ : S× [m]→ R represents the long-term value
of taking an option oj ∈ O from a state s ∈ S and there-
after always selecting options according to policy µ and is
defined by Qµ(s, o) = E [

∑∞
t=0 γ

tRt|(s, o), µ] where Rt
is a random variable with support [0, Rmax] representing
reward received at timestep t. It is well known that Qµ can
be written recursively as

Qµ(s, oj) =

∞∑
t=1

∑
s′∈S

Φ
oj
s,s′,t(Q

µ(s′, µ(s′)), Qµ(s′, oj)) ,

(1)where

Φ
oj
s,s′,t(vterm, vcont) = Pπj (s′|s, t)

(
R
πj

s,s′,t

+ γt
[
βoj (s′, t)vterm + (1− βoj (s′, t))vcont

])
. (2)

The first argument vterm represents the expected cumu-
lative reward received if oj terminates in s′ exactly t
timesteps after being initiated in s, while the second argu-
ment vcont represents the expected cumulative reward re-
ceived if the agent continues following oj from s′. Let ΠO
be the set of all option policies defined over the option set
O. The optimal action-value functionQ∗ = maxµ∈ΠO Q

µ.
Likewise the state-value function (or simply value func-
tion) V µ(s) = Qµ(s, µ(s)) and the optimal value function
V ∗(s) = maxo∈O Q

∗(s, o).

The Bellman optimality operator TO for an option set O,
and operating on an arbitrary Q ∈ R|S×[m]| is defined as

(TOQ)(s, oj) =

∞∑
t=1

∑
s′∈S

Φ
oj
s,s′,t(V (s), Q(s, oj)) , (3)

where V (s) = max
k∈[m]

Q(s, ok). The operator TO is mono-

tone, a max-norm contraction with coefficient γ, and has a

unique fixed point Q∗ (Szepesvári, 2010). TO also defines
the Value Iteration (VI) algorithm for planning in SMDPs.

3. The Algorithm: IOVI
Interruption Options Value Iteration (IOVI, Algorithm 1)
interlaces model iteration with VI. In other words, it plans
and improves the option set simultaneously. This algo-
rithm takes an arbitrary (nonempty) initial set of options
O0 as well as θ, a threshold determining when the algo-
rithm has converged. This algorithm iteratively improves
the options during Value Iteration until the value function
has converged. This improvement step will be referred to as
the option update step. The option update parameter l de-
notes the number of iterations of VI to be performed before
performing an option update step. The option update step is
always performed on the original set of options O0 where
β0,j(s, t) denotes the termination probability of the jth op-
tion in O0. This step produces a new set of options Oi
where i refers to the iteration. The options are improved by
adjusting the respective termination probabilities β0,j(s, t)
of the original set of options O0 at each iteration i. The
termination probabilities of the options Oi, where i is the
iteration, are calculated based on the rule

βi,j(s, t) = max

(
β0,j(s, t),

I
{
Qi(s, oj) < max

k∈[m]
Qi(s, ok)

})
, (4)

where I{·} is the indicator function assigning 1 when its ar-
gument evaluates to true and 0 otherwise. Here, βj,i+1(s, t)
is the termination probability of the jth option at iteration
i + 1, βj,0(s, t) is the termination probability of the jth

option in the original option set and Qi(s, o) is the action-
value estimate at the ith iteration. Thus, given the original
set of options O0 and Qi ∈ R|S×[m]|, an updated set of
options is given by

U(O0, Qi) = {oj ∈ O0 | 〈Ij , πj , βi,j〉} (5)

where βi,j is defined by (4). We update based on the orig-
inal options O0 instead of the previous option set Oi−1,
which prevents model iteration from getting stuck in local
optimum.

It is important to note that Algorithm 1 turns out to be
equivalent to iteratively operating the Interrupting Bellman
(IB) operator G on the action-value function Q. The IB
operator is introduced in Section 4.2. The main additional
computational cost over traditional VI is in line 3 which
involves simulating the options whilst executing the inter-
ruption rule.

In the sections to follow, we present convergence guaran-
tees for this algorithm in both the IO framework (Section
4) and the TRI framework (Section 5).
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Algorithm 1 Interrupting Option Value Iteration
Require:

• O0 : an initial set of options

• θ > 0 : error threshold

• l : frequency of option updates

1: Q0 ← 0; i← 0
2: repeat
3: Qi+1 ← (TOi)

l
Qi {l iterations of VI}

4: Oi+1 ← U(O0, Qi) according to (5)
5: i← i+ 1
6: until θ ≥ ‖Qi −Qi−1‖∞
7: return: (Qi,Oi) { Action-values & options}

4. Interrupting Options (IO) Framework
Given an initial set of options O0 it is often possible to
improve uponO0 by terminating some or all of the options
prematurely, as mentioned in Section 1.

4.1. The IO Rule

Sutton et al. (1999) introduced a simple but effective
method for option interruption that terminates an option o
prematurely, if during the course of o’s execution it encoun-
ters a state such that

Q(s, o) < V (s) . (6)

where V (s) = max
o∈O

Q(s, o). An interrupting option ô =

〈I, πo, β′〉 (Sutton et al., 1999), is the same as the stan-
dard option except that its termination condition β′(s) = 1
whenever Q(s, o) < V (s). The state s where the option
terminated is referred to as the interrupting state. Inter-
rupting options create a new set of options and define a
new SMDP. The new option set still has [m] options. For
a given policy over options µ : S → [m], the interruption
rule can be written asQµ(s, o) < V µ(s). Since the number
of options do not change after applying the IO rule, µ can
still refer to options by their indices. However, the behavior
of µ can change due to calling options from the new option
set.

Sutton et al. (1999) showed that by interrupting an initial
set of options O0, following an option policy µ, according
to (6), V µ1 ≥ V µ0 where V µ0 is the value function corre-
sponding to the initial option set O0, and V µ1 is the value
function corresponding to the interrupted option set O1. In
addition, strict improvement, V µ1 (s) > V µ0 (s), is possible
if there is a non-zero probability of encountering an inter-
rupting state s′ from state s, after initiating an option ac-
cording to a policy µ. However, this is limiting as it has
only been shown to improve options for a single update.

We have extended this to model iteration by modifying the
option set iteratively in IOVI, using (4), and guaranteeing
convergence of the algorithm.

4.2. The Interrupting Bellman Operator

To prove properties such as convergence for IOVI, we in-
troduce a new operator called the Interrupting Bellman (IB)
operator. The IB operator G is given in Definition 1.

Definition 1. For any estimate of the value function Q ∈
R|S×[m]|, the IB operator G is defined by

(GQ) (s, oj) =
∑
s′∈S

∞∑
t=1

Φ
oj
s,s′,t(V (s), z(s′, o,Q)) , (7)

where

z(s′, oj , Q) =

{
V (s′) if Q(s′, oj) < V (s′)
Q(s′, oj) otherwise ,

(8)

and V (s) = maxj∈[m]Q(s, oj).

It turns out that G has a unique fixed point Q∗. The IB op-
erator for the value function V is defined similarly. Start-
ing with an arbitrary Q ∈ R|S×[m]| and option set O0, ap-
plying G to Q and its iterates i ≥ 1 times explicitly pro-
duces new action-value function estimates Q1, Q2, . . . , Qi
and implicitly produces a sequence of option sets O1 =
U(O0, Q1),O2 = U(O0, Q2), . . . ,Oi = U(O0, Qi) ac-
cording to (5). The importance of the operator G is that it
always operates explicitly on the original option setO0, but
GQi is equivalent to TOiQi for the ith iteration. Because of
this G can be seen as simultaneously performing planning
and model iteration.

4.3. Convergence of IOVI using the IO rule

By performing model iteration in an algorithm such as
IOVI, we dynamically and iteratively interrupt and mod-
ify the current set of options to efficiently solve the task
at hand. This technique improves the overall solution and
IOVI converges to a unique fixed point Q∗ as is stated in
the theorem to follow. This fixed point corresponds to the
optimal value function given the best possible set of options
that can be derived by modifying the original option set’s
termination conditions according to (4).

Theorem 1. Let O0 be an initial set of options. The IB
operator G has a unique fixed point Q∗ and the following
relationship is satisfied,

‖Q∗ − GQ‖∞ ≤ γ‖Q∗ −Q‖∞ . (9)
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Proof.

‖Q∗ − GQ‖∞

= max
s,oj∈S×O

∣∣∣∣∑
s′

∑
t

Pπj (s′|s, t)Rπj

ss′,t

+
∑
s′

∑
t

γtPπj (s′|s, t)
[
βo(s

′, t)V ∗(s′)

+(1− βo(s′, t))z(s′, o,Q∗)
]

−
(∑

s′

∑
t

Pπj (s′|s, t)Rπj

ss′,t +
∑
s′

∑
t

γtPπj (s′|s, t)[
βo(s

′, t)V (s′) + (1− βo(s′, t))z(s′, o,Q)

])∣∣∣∣
= max

s,oj∈S×O

∣∣∣∣∑
s′

∑
t

γtPπj (s′|s, t)
[
βo(s

′, t)

(V ∗(s′)− V (s′)) +
∑
s′

∑
t

γt(1− βo(s′, t))

(z(s′, o,Q∗)− z(s′, o,Q))

]∣∣∣∣

As define previously, πj denotes the intra-option policy of
option oj . The values of z(s′, o,Q∗) and z(s′, o,Q) depend
on the termination rule which is defined in (6). This means
that there are four possible cases that can occur:

1. Q∗(s, o) ≥ V ∗(s) and Q(s, o) ≥ V (s). Here
z(s′, o,Q∗) = Q∗(s, o) and z(s′, o,Q) = Q(s, o).
This produces the following contraction mapping:

‖Q∗ − GQ‖∞

= max
s,oj∈S×O

∣∣∣∣∑
s’

∑
t

γtPπj (s′|s, t)
[
βo(s

′, t)

(V ∗(s′)− V (s′)) + (1− βo(s′, t))

(Q∗(s, o)−Q(s, o))

]∣∣∣∣
≤ max

s,oj∈S×O

∣∣∣∣∑
s’

∑
t

γtPπj (s′|s, t)
[
βo(s

′)‖V ∗ − V ‖∞

+ (1− βo(s′, t)) (Q∗(s, o)−Q(s, o))

]∣∣∣∣
≤ max

s,oj∈S×O

∣∣∣∣∑
s’

∑
t

γtPπj (s′|s, t)
[
βo(s

′, t)‖Q∗ −Q‖∞

+ (1− βo(s′)) (Q∗(s, o)−Q(s, o))

]∣∣∣∣
≤ max

s,oj∈S×O

∣∣∣∣∑
s’

∑
t

γtPπj (s′|s, t)
[
βo(s

′, t)‖Q∗ −Q‖∞

+ (1− βo(s′, t))‖Q∗ −Q‖∞
]∣∣∣∣

= max
s,oj∈S×O

∣∣∣∣∣∑
s’

∑
t

γtPπj (s′|s, t)‖Q∗ −Q‖∞
∣∣∣∣∣

≤ γ‖Q∗ −Q‖∞

The first inequality is obtained as V ∗(s′) − V (s′) ≤
‖V ∗ − V ‖∞. The next inequality results as it is
well known that ‖V ∗ − V ‖∞ ≤ ‖Q∗ − Q‖∞. The
property that results in the third inequality is another
well known inequality, Q∗(s, o) − Q(s, o) ≤ ‖Q∗ −
Q‖∞. Finally, maxs,oj∈S×O

∣∣∣∣∑s’
∑
t γ

tPπj (s′|s, t)
∣∣∣∣

is bounded by 1 resulting in the contraction mapping.

2. Q∗(s, o) ≥ V ∗(s) and Q(s, o) < V (s). Here
z(s′, o,Q∗) = Q∗(s, o) and z(s′, o,Q) = V (s). This
produces the following equation:

‖Q∗ − GQ‖∞

= max
s,o∈S×O

∣∣∣∣∑
s’

∑
t

γtPπj (s′|s, t)[
βo(s

′, t) (V ∗(s′)− V (s′))

+ (1− βo(s′, t)) (Q∗(s, o)− V (s))

]∣∣∣∣
Here , we need to prove that we have a contraction
if Q∗(s, o) − V (s) > 0 as well as when V (s) −
Q∗(s, o) > 0.
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(a) Q∗(s, o)− V (s) > 0:

‖Q∗ − GQ‖∞

= max
s,oj∈S×O

∣∣∣∣∑
s’

∑
t

γtPπj (s′|s, t)
[
βo(s

′, t)

(V ∗(s′)− V (s′))

+ (1− βo(s′, t)) (Q∗(s, o)− V (s))

]∣∣∣∣
≤ max

s,oj∈S×O

∣∣∣∣∑
s’

∑
t

γtPπj (s′|s, t)
[
βo(s

′, t)

(V ∗(s′)− V (s′))

+ (1− βo(s′, t)) (Q∗(s, o)−Q(s, o))

]∣∣∣∣
≤ γ‖Q∗ −Q‖∞

As has been shown in the previous case.

(b) V (s)−Q∗(s, o) > 0:

‖Q∗ − GQ‖∞

= max
s,oj∈S×O

∣∣∣∣∑
s’

∑
t

γtPπj (s′|s, t)[
βo(s

′, t) (V ∗(s′)− V (s′))

+ (1− βo(s′, t)) (Q∗(s, o)− V (s))

]∣∣∣∣
= max

s,oj∈S×O

∑
s’

∑
t

γtPπj (s′|s, t)[
βo(s

′, t)

(
V ∗(s′)− V (s′)

)
+ (1− βo(s′, t))

(
V ∗(s)− V (s)

)]
≤ max

s,oj∈S×O

∑
s’

∑
t

γtPπj (s′|s, t)[
βo(s

′, t)

∣∣∣∣V ∗(s′)− V (s′)

∣∣∣∣
+ (1− βo(s′, t))

∣∣∣∣V ∗(s)− V (s)

∣∣∣∣]
≤ max

s,oj∈S×O

∣∣∣∣∑
s’

∑
t

γtPπj (s′|s, t)[
βo(s

′, t)‖V ∗ − V ‖∞

+ (1− βo(s′, t))‖V ∗ − V ‖∞
]∣∣∣∣

≤ max
s,oj∈S×O

∣∣∣∣∑
s’

∑
t

γtPπj (s′|s, t)[
βo(s

′, t)‖Q∗ −Q‖∞

+ (1− βo(s′, t))‖Q∗ −Q‖∞
]∣∣∣∣

≤ γ‖Q∗ −Q‖∞
The second equality is correct by noting that
Q∗(s, o) ≥ V ∗(s). By definition, Q∗(s, o) ≤
V ∗(s). Therefore it can be concluded that
Q∗(s, o) = V ∗(s). The first inequality is ob-
tained by taking the triangular inequality. The
analysis is then completed using similar reason-
ings from the previous cases.

3. Q∗(s, o) < V ∗(s) and Q(s, o) > V (s)

4. Q∗(s, o) < V ∗(s) and Q(s, o) ≤ V (s)

In situations 3 and 4, z(s′, o,Q∗) = Q∗(s, o)
and will never get interrupted since it is already fol-
lowing the optimal policy. This implies that equations
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3 and 4 can be ignored. Therefore all of the cases
have been taken care of and therefore the interruption
options framework converges to the optimal value
function over options.

Due to space limitations, we provide only a sketch of the
proof here (the complete proof is in the supplementary
material). Expanding the expression ‖Q∗ − GQ‖∞ in-
troduces the term Zq , [z(s′, o,Q∗)− z(s′, o,Q)] which
contains the interruption function from (8). The proof
hinges on showing that Zq ≤ ||Q∗ −Q||∞. The definition
of the z(.) function naturally breaks down into two cases
(see (8)). Since the expression Zq contains two instances
of the z(.) function, we end up with four distinct cases.
Zq ≤ ‖Q∗−Q‖∞ in each of the four possible cases which
proves that the algorithm converges. Two of the four dis-
tinct cases are not possible and therefore only two cases are
considered. The cases include (i) z(s′, o,Q∗) = Q∗(s, o)
and z(s′, o,Q) = Q(s, o), (ii) z(s′, o,Q∗) = Q∗(s, o)
and z(s′, o,Q) = V (s). Case (ii) has two distinct sub-
cases, namely: (ii.1) Q∗(s, o) − V (s) > 0 and (ii.2)
V (s)−Q∗(s, o) > 0.

Here γ, the discount factor, is the contraction coefficient
determining the convergence rate. The above theorem
states that for an arbitrary initial action-value function Q,
convergence to the optimal interrupting action-value func-
tion Q∗, the unique fixed point of G, is guaranteed. Its con-
vergence, in the worst-case is approximately at the same
rate as VI. Convergence of IOVI is also ensured.

Corollary 1. Let l ≥ 1 and O0 be an initial set of options.
If IOVI is executed with parameters O0, θ = 0 and l, then
it converges (in the limit) to Q∗.

This result confirms convergence of IOVI which iteratively
modifies options using (6). The algorithm converges to a
globally optimal solution Q∗. This framework does not
however, preserve the duration of the options. As men-
tioned by (Mann & Mannor, 2014), preserving the duration
of options is a desirable property as it increases the rate
of convergence of approximate dynamic programming al-
gorithms. Therefore, we extended the IO rule to include
a time-based regularization term, which encourages solu-
tions that preserve the duration of options. Adding a reg-
ularization term adds significant complexity to preserving
the theoretical convergence guarantees presented in this pa-
per. We will show that convergence to a locally optimal
solution for a regularization term can be guaranteed.

5. Time-Regularized Interruption (TRI)
Framework

The Time-Regularized Interruption (TRI) framework is an
extension of the IO framework that introduces time-based
regularization functions to preserve option duration while
performing model iteration. The addition of regularization
creates a variation of the IOVI algorithm, which will be
referred to as Time Regularized IOVI or TRIOVI.

5.1. The TRI Rule

Unlike in the IO framework, in the TRI framework, we as-
sume that each time TRIOVI constructs a new set of op-
tions, it solves for the fixed point of the optimum Bellman
operator TOi

given the new set of options Oi. The TRI
rule behaves differently depending on the selected regular-
ization function, and we define a flexible set of regulariza-
tion functions that penalize models containing options with
short durations.

Definition 2. For all t, t′ ∈ N such that t < t′ an ad-
missible regularization function ρ : N → [0,∞) satisfies
ρ(t) ≥ ρ(t′), and we denote the set of all admissible regu-
larization functions by Θ.

Although many time dependent regularization functions
are possible, one interesting example is the following:

ρ(t, λ) = λt
(
RMAX

1− γ

)
, (10)

where λ ∈ [0, 1] is the parameter controlling regularization
and t ≥ 1 denotes the number of timesteps that the current
option has been executing. As λ is set closer to 0, less
regularization occurs meaning that options may terminate
earlier. On the other hand, as λ is set closer to 1, more
regularization occurs preventing options from terminating
quickly. It should be noted that time t is only incorporated
into each option’s termination condition and therefore does
not increase the size of the state space.

Given a regularization function ρ ∈ Θ, we can describe
TRIOVI as a process Pρ starting from an initial set of
options O0 and an arbitrary initial action-value function
Q0 ∈ R|S×[m]|. On the first round, TRIOVI uses VI to
acquire the fixed point of TO0

, denoted by Q∗0 = Q1, and
updates the option set by O1 = Uρ(O0,O0, Q1) where

Uρ(O0,Oi, Qi) = {j ∈ [m] | 〈Ij , πj , βi,j〉} (11)

and βi,j(s, t)

= max

(
β0,j(s, t), I {Qi(s, oj) < Vi(s)− αiρ(t)}

)
(12)

for αi =

{
1 if i = 1 or βi−1,j(s, t) 6= 1
0 otherwise . Then a new

round begins. At the ith round, TRIOVI uses VI to acquire
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the fixed point of TOi−1
, denoted by Q∗i−1 = Qi, and the

option set Oi = Uρ(O0,Oi−1, Qi) is obtained.

Notice that with ρ(t) = 0 for t ≥ 0 the option update rule
(11) reduces to the rule used in the IO framework. How-
ever, in this new rule, the termination probabilities (12) for
Oi (and therefore the option update rule (11)) are defined
based on termination probabilities of the previous option
setOi−1. The intuition behind αi is that it turns the penalty
on and off based on the previous option set Oi−1. Option
interruption can be thought of as making an option’s dura-
tion shorter. If the previous oj ∈ Oi−1 does not interrupt
in state s′ at time t (αi = 1), then interrupting at (s′, t) is
penalized because we only want options to become shorter
if the gain in value is significant. On the other hand, if
oj ∈ Oi−1 interrupts at (s′, t) (αi = 0), deciding not to
interrupt at (s′, t) corresponds to lengthening the option’s
duration. In this case, the regularization would encourage
switching to longer options even though they are subopti-
mal. Without the αi function, model iteration with a regu-
larization function can chatter back and forth between two
different option models and never converge. Thus, the de-
pendence on the previous option set’s termination probabil-
ities seems necessary.

5.2. Convergence of TRIOVI using the TRI rule

We show that the TRIOVI algorithm converges to a locally
optimal value function Q∗ρ for a regularization function ρ.
That is, in the limit, Qρ ceases to change.

Lemma 1. Let ρ ∈ Θ and Pρ be the process induced by
TRIOVI with initial option setO0 and Q0 ∈ R|S×[m]|, then
for all i ≥ 1, Qi ≤ Qi+1.

Proof. For i ≥ 1, consider Qi = Q∗i−1, which is the op-
timal action-value function given the option set Oi−1. For
an option oj ∈ Oi−1 the termination probability function
is denoted by βi−1,j(s, t) for state s ∈ S and t ≥ 1. When
TRIOVI performs model iteration it obtains a new set of op-
tions Oi = Uρ(O0,Oi−1, Qi) and the termination proba-
bility function for an option o′j ∈ Oi is denoted by βi,j(s, t)
for a state s ∈ S and t ≥ 1.

For an arbitrary state-option pair (s, oj), TOi−1
Qi = Qi

and we have

(TOi−1
Qi)(s, oj) = E

[
R
πj

s,s′,t + γt
(
βi−1,j(s

′, t)Vi(s
′)

+ (1− βi−1,j(s
′, t))Qi(s

′, oj)
)]

where the expectation is taken with respect to the state s′

encountered t timesteps after initializing oj from s and
Vi(s

′) = max
k∈[m]

Qi(s
′, ok). Notice that we can divide the

events in this expectation into three different categories:

1. The termination probabilities of the old and new op-
tion set agree (βi−1,j(s

′, t) = βi,j(s
′, t)).

2. The old option set decides to terminate
(βi−1,j(s

′, t) = 1), but the new option set does
not (βi,j(s

′, t) = 0).

3. The old option set decides not to terminate
(βi−1,j(s

′, t) = 0), but the new option set does ter-
minate (βi,j(s

′, t) = 1).

This partitioning of the event space allows us to write:

(TOi−1
Qi)(s, oj) = E

[
R
πj

s,s′,t + γt
(
βi−1,j(s

′, t)Vi(s
′)

+ (1− βi−1,j(s
′, t))Qi(s

′, oj)
)∣∣∣∣

βi−1,j(s
′, t) = βi,j(s

′, t)

]
+ E

[
R
πj

s,s′,t + γtVi(s
′)

∣∣∣∣
βi−1,j(s

′, t) = 1, βi,j(s
′, t) = 0

]
+ E

[
R
πj

s,s′,t + γtQi(s
′, oj)

∣∣∣∣
βi−1,j(s

′, t) = 0, βi,j(s
′, t) = 1

]
,

(13)
where the three terms on the right hand side represent the
three cases considered above.

Notice that in order for both βi−1,j(s
′, t) = 1 and

βi,j(s
′, t) = 0, by (12) we have that

Qi(s
′, oj) ≥ Vi(s

′)− I {βi−1,j(s
′, t) 6= 1} ρ(t)

= Vi(s
′) .

Thus,

E
[
R
πj

s,s′,t + γtVi(s
′)

∣∣∣∣
βi−1,j(s

′, t) = 1, βi,j(s
′, t) = 0

]
≤

E
[
R
πj

s,s′,t + γtQi(s
′, oj)

∣∣∣∣
βi−1,j(s

′, t) = 1, βi,j(s
′, t) = 0

]
.

(14)

When βi−1,j(s
′, t) = 0 and βi,j(s′, t) = 1, by (12), we

have that

Qi(s
′, oj) < Vi(s

′)− I {βi−1,j(s
′, t) 6= 1} ρ(t)

= Vi(s
′)− ρ(t)

≤ Vi(s
′) .
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Thus,

E
[
R
πj

s,s′,t + γtQi(s
′, oj)

∣∣∣∣
βi−1,j(s

′, t) = 0, βi,j(s
′, t) = 1

]
≤

E
[
R
πj

s,s′,t + γtVi(s
′)

∣∣∣∣
βi−1,j(s

′, t) = 0, βi,j(s
′, t) = 1

]
.

(15)

By replacing the second term on the right hand side of (13)
with the right hand side of (14) and the third term on the
right hand side of (13) with the right hand side of (15), we
obtain

Qi(s, oj) = (TOi−1
Qi)(s, oj)

≤ E
[
R
πj

s,s′,t + γt
(
βi,j(s

′, t)Vi(s
′)

+ (1− βi,j(s′, t))Qi(s′, oj)
)∣∣∣∣

βi−1,j(s
′, t) = βi,j(s

′, t)

]
+ E

[
R
πj

s,s′,t + γtQi(s
′, oj)

∣∣∣∣
βi−1,j(s

′, t) = 1, βi,j(s
′, t) = 0

]
+ E

[
R
πj

s,s′,t + γtVi(s
′)

∣∣∣∣
βi−1,j(s

′, t) = 0, βi,j(s
′, t) = 1

]
= E

[
R
πj

s,s′,t + γt
(
βi−1,j(s

′, t)Vi(s
′)

+ (1− βi−1,j(s
′, t))Qi(s

′, oj)
)]

= (TOi
Qi) (s, oj) .

(16)

Since (s, oj) is arbitrary, (TOi
Qi) (s, oj) ≥ Qi(s, oj)

holds for all (s, oj). Furthermore, the fixed point of TOi
,

denoted by Q∗i = Qi+1 ≥ Qi.

Lemma 1 says that the next model produced by TRIOVI is
at least as good as the previous model. We use the previous
lemma to prove that TRIOVI with regularization converges
to a local optimum.
Theorem 2. Let ρ ∈ Θ. The sequence of value functions
Q0, Q1, . . . , Qi produced by the process Pρ (the TRIOVI
algorithm) with initial option set O0 and Q0 ∈ R|S×[m]|

converges to a local optimum with probability 1.

Proof. First notice, that because the discount factor γ ∈
[0, 1), the maximum value of any option policy is bounded
above by

(
RMAX

1−γ

)
.
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Figure 2. A transit planning system with (a) misspecified options
so that there is no way to reach the goal state (shopping mall) from
the start state (house) and (b) interrupted options that enable the
agent(s) to successfully transition to the goal state from the start
state. The interruption states are denoted T ∗ and are analogous to
new bus terminals.

By Lemma 1, for all i ≥ 1, Qi ≤ Qi+1. The process
must converge because it is non-decreasing and bounded
above.

Theorem 2 says that TRIOVI converges to a local optimum
with any admissible regularization function ρ ∈ Θ pro-
vided that it solves for the optimal action-value function
between option updates. The fact that TRIOVI does not
necessarily converge to the global optimum is due to using
a non-zero regularization function and cannot be avoided.
However, as we will see in our experiments, TRIOVI often
converges to solutions that are close to optimal.

6. Experiments and Results
The following experiments in a transit planning domain
and an inventory management domain demonstrate IOVI’s
and TRIOVI’s ability to iteratively improve on an initial
set of options. IOVI and TRIOVI are able to derive a so-
lution even when the initial options cannot solve the task.
For TRIOVI, we used (10) as the regularization function
in all of our experiments. The resulting algorithm has
two tunable parameters l and λ, where l controls the fre-
quency at which the options are updated and λ ∈ [0, 1] con-
trols the time-based regularization. We experimented with
l = {1, 10, 20, 30, 40} and λ = {0, 0.1, 0.3, 0.5}, unless
noted otherwise. Notice that when λ = 0, this is equivalent
to ρ(t) = 0 for all t ≥ 1, which corresponds to IOVI.

6.1. Misspecified Options in a Transit Planning System

We implemented a transit planning task as a gridworld
(Sutton & Barto, 1998), where each cell represents a city
block. The original option set contained four options tran-
sitioning (with zero probability of terminating) in the four
directions: north, south, east, and west. Here options rep-
resent bus routes. The objective is to determine appropriate
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locations for bus stops (represented by option termination)
so that residents can efficiently travel to popular destina-
tions in the city. For example, suppose that residents want
to take the bus to a new shopping center (Figure 2a). The
existing bus routes may need to be modified. Both IOVI
and TRIOVI can discover where to place new bus stops
that allow residents to efficiently reach the new shopping
center (Figure 2b). IOVI’s solution may involve frequently
interrupting options which results in adding a large num-
ber of bus stops. Real transit planning problems have bud-
get constraints that prohibit adding an excessive number of
bus stops, even if doing so is optimal. This highlights the
need for TRIOVI as adding regularization causes TRIOVI
to converge to options that terminate less frequently imply-
ing solutions with fewer bus stops. By tuning the regular-
ization parameter λ, we can find a solution that provides
efficient transportation within budget constraints.

Figure 3a shows that IOVI converges regardless of the fre-
quency that we perform option updates (i.e., l). IOVI con-
verges with the fewest iterations when l = 1, implying that
the options are updated at every iteration. This is expected
as the options are modified more frequently, resulting in a
faster convergence rate to the optimal model.

For TRIOVI we fix l = 40 so that VI has time to con-
verge between model improvements. We can analyze the
convergence rate of TRIOVI for different values of the reg-
ularization parameter λ as seen in Figure 3b. Here, we can
see that the algorithm converges regardless of the value of
λ. The larger λ values result in convergence in fewer it-
erations, because more regularization (i.e., larger values of
λ) preserves option duration as seen in Figure 3c. This re-
sults in faster convergence to the optimal solution (Mann &
Mannor, 2014; Precup & Sutton, 1997; Sutton et al., 1999;
Silver & Ciosek, 2012).

Another interesting finding is displayed in Figure 5. Here,
a sub-optimal option duration would have resulted if the
options were only interrupted on a single occasion. This is
indicated by the plateaus shown in the figure between 0−80
iterations. This motivates the need to iteratively interrupt
options by performing model iteration, see Section 1, such
that the optimal option duration can be generated resulting
in an optimal policy.

To emphasize the importance of regularization, we com-
pared the bus stop locations derived by IOVI (Figure 6a) to
the bus stop locations derived by TRIOVI with a constant
penalty function ρ(t) = 0.05 for t ≥ 0 (Figure 6b). Al-
though both algorithms derive optimal solutions to travel
from the initial state to the goal state, TRIOVI generates
fewer bus stops (fewer option interruptions). This suggests
that time-based regularization can play an important role in
deriving simpler policies.

Option
Update

Figure 5. The transit planning system whereby a single option up-
date is insufficient to converge to the optimal option durations
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Figure 6. A transit planning system with (a) Option interruption
using no regularization. This does not preserve option duration
and therefore results in premature terminations. (b) Option inter-
ruption using regularization which preserves option duration and
results in a more direct and efficient planning solution.

6.2. Discovering when to Restock

An interesting application of IOVI and TRIOVI is deter-
mining when to restock inventory (Scarf, 1959). In this
task, the agent manages stock for a single commodity in
a finite warehouse. The options are simple: (a) resupply
(fill the warehouse’s remaining space) or (b) order nothing
until another resupply is needed. The problem arises from
the fact that it is often not clear how long to wait between
resupply actions. When the agent makes an order it pays
a cost for each ordered unit (−0.2 in our experiments) and
a base ordering cost (−20 in our experiments). Thus large
orders are effectively discounted, and the agent should only
resupply when it can place a large order. On the other hand,
not having enough stock to meet stochastic demands results
in a high penalty (−100 base cost and −10 unmet demand
cost per unit). Resupplying too early results in paying more
for each unit, but waiting too long to resupply can result in
high penalties for unmet demands (Figure 7). Given a re-
supply option and an option that orders nothing, both IOVI
and TRIOVI can learn the optimal resupply times. In the
initial option set O0, both options never terminate. These
options are intentionally designed such that deriving a sat-
isfactory policy in this domain is impossible.

Initially, we fixed λ = 0 and varied l. Figure 4a shows that
IOVI converges regardless of our choice for l. As in the
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Figure 3. The transit planning system: (a) The cumulative reward for l = {1, 10, 20, 30} when the regularization term λ = 0 which
corresponds to IOVI. (b) The cumulative reward for a fixed option update l = 40 iterations. (c) The average option duration for
λ = {0.0, 0.1, 0.3, 0.5} when the option update step is performed every l = 40 iterations.
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Figure 4. The inventory domain: (a) The cumulative reward for l = {1, 10, 20, 30} when the regularization term λ = 0. (b) The
cumulative reward for a fixed option update l = 40 iterations. (c) The average option duration for λ = {0.0, 0.1, 0.3, 0.5} when the
option update step is performed every l = 40 iterations.
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Figure 7. Learning to optimally resupply inventory is a matter of
discovering the optimal times to resupply. If we resupply after
the stock level is too low (a), we may suffer high costs for unmet
demand. On the other hand, if we resupply when the stock level
is too high (b), then we will pay a high price per unit ordered.

transit planning system, decreasing l, which improves the
options more frequently, results in faster convergence. We
then fixed l = 40 and varied the regularization parameter
λ. As can be seen in Figure 4b, IOVI (λ = 0) converges
to the optimal solution. TRIOVI converges for all λ val-
ues but increasing the regularization results in less optimal
solutions. This is the price paid for using regularization
to keep high-level skills from being broken down. Larger
penalty terms reduce the optimality of the solution to pre-
serve option duration. Figure 4c shows that IOVI converges
to options with short durations as is expected whereas in-
creasing λ causes TRIOVI to converge to option sets with
longer durations. A trade-off is evident whereby IOVI con-
verges to an optimal solution at the expense of shorter dura-
tion options and slower convergence rates. TRIOVI on the
other hand converges to longer duration options and there-
fore obtains faster convergence rates, but at the expense of
a less optimal solution.

7. Discussion
We have defined a dynamic Interrupting Bellman (IB) oper-
ator G which iteratively and implicitly modifies an option’s
termination conditions using the IO rule and explicitly up-
dates the value function. It is equivalent to the Bellman op-
erator TOi

for a single iteration i and ensures convergence
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to a globally optimum solution. We have demonstrated the
interlacing of model iteration and VI in the IOVI algorithm
for two different tasks. As our theoretical results predicted,
this algorithm does indeed converge for the IO framework.
When incorporating the time-based regularization, TRIOVI
converges to a locally optimal fixed point Q∗ρ for the opti-
mal set of options derived from O0 with respect to ρ. This
results in improved convergence rates (Mann & Mannor,
2014; Precup & Sutton, 1997; Sutton et al., 1999; Silver &
Ciosek, 2012).

Based on the experimental results, it may be possible to
prove that TRIOVI converges to a globally optimal fixed
point Q∗ρ. This fixed point would be for the optimal set of
options derived from O0 with respect to ρ. An additional
natural extension to this theory is extending it to function
approximation. An addition to this work may include mod-
ifying an option’s intra-option policy (Sutton et al., 1999).
This may provide a more flexible and efficient solution to
modifying and planning with misspecified options. This
would result in simultaneously modifying the termination
conditions as well as the intra-option policies whilst per-
forming planning. Due to the dynamic and flexible nature
of IOVI and TRIOVI, it may also be possible to extend this
work to transfer planning. That is, utilizing the same set of
options in a different domain that has not been previously
seen to perform planning. Finally, it would be useful to de-
velop a theoretical analysis for the convergence rate of the
TRIOVI framework.
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