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Abstract
Gaussian graphical models (GGM) have been
widely used in many high-dimensional applica-
tions ranging from biological and financial data
to recommender systems. Sparsity in GGM plays
a central role both statistically and computation-
ally. Unfortunately, real-world data often does
not fit well to sparse graphical models. In this
paper, we focus on a family of latent variable
Gaussian graphical models (LVGGM), where the
model is conditionally sparse given latent vari-
ables, but marginally non-sparse. In LVGGM,
the inverse covariance matrix has a low-rank plus
sparse structure, and can be learned in a reg-
ularized maximum likelihood framework. We
derive novel parameter estimation error bounds
for LVGGM under mild conditions in the high-
dimensional setting. These results complement
the existing theory on the structural learning, and
open up new possibilities of using LVGGM for
statistical inference.

1. Introduction
Critical to many statistical inference tasks in complex real-
world systems, such as prediction and detection, is the
ability to extract and estimate distributional characteris-
tics from the observations. Unfortunately, in the high-
dimensional regime such model estimation often leads to
ill-posed problems, particularly when the number of ob-
servations n (or sample size) is comparable to or fewer
than the ambient dimensionality p of the model (i.e., the
“large p, small n” problem). This challenge arises in
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many modern real-world applications ranging from recom-
mender systems, gene microarray data, and financial data,
to name a few. To perform accurate model parameter es-
timation and subsequent statistical inference, low dimen-
sional structure is often imposed for regularization (Negah-
ban et al., 2012).

For Gaussian-distributed data, the central problem is of-
ten to estimate the inverse covariance matrix (alternatively
known as the precision, concentration or information ma-
trix). Gaussian graphical models (GGM) provide an effi-
cient representation of the precision matrix through a graph
that represents non-zeros in the matrix (Lauritzen, 1996).
In high-dimensional regimes, this graph can be forced to
be sparse, imposing a low-dimensional structure on the
GGM. For sufficiently sparse GGM, statistically consistent
estimates of the model structure (i.e., sparsistency) can be
achieved (e.g., Ravikumar et al. (2011)). On the computa-
tional side, sparsity also leads to reduced complexity of the
estimator (Hsieh et al., 2013). However, when the true dis-
tribution can not be well-approximated by a sparse GGM,
the standard learning paradigm suffers from either large es-
timation bias due to enforcing a overly sparse model, or de-
graded computation time for a dense model. Both result in
suboptimal performance in the subsequent inference tasks.

In this paper, we consider a new class of high-dimensional
GGM for extending the standard sparse GGM. The pro-
posed model is motivated by many real-world applications,
where there exist certain exogenous and often latent fac-
tors affecting a large portion of the variables. Examples are
the price of oil on the airlines’ stock price variables (Choi
et al., 2010), and the genres on movie rating variables. Con-
ditioning on these global effects, the variables are assumed
to have highly localized interactions, which can be well-
fitted by a sparse GGM. However, due to the marginaliza-
tion over global effects, the observed (marginal) GGM, and
its corresponding precision matrix, is not sparse. Unfortu-
nately, in this regime, existing theoretical results and com-
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putational tools for sparse GGM are not applicable.

To address this problem, we propose to use latent variable
Gaussian graphical models (LVGGM) for modeling and
statistical inference. LVGGM introduce latent variables to
capture the correlations due to the global effects, and the
remaining effects are captured by a conditionally sparse
graphical model. The resulting marginal precision matrix
of the LVGGM has a sparse plus low-rank structure, there-
fore we consider a regularized maximum likelihood (ML)
approach for parameter estimation (previously considered
by Chandrasekaran et al. (2012)). By utilizing the almost
strong convexity (Kakade et al., 2010) of the log-likelihood,
we derive a non-asymptotic parameter error bound for the
regularized ML estimator. Our derived bounds apply to the
high-dimensional setting of p ≫ n due to restricted strong
convexity (Negahban et al., 2012) and certain structural in-
coherence between the sparse and low-rank components of
the precision matrix (Yang & Ravikumar, 2013).

We show that for sufficiently large n, the Frobenius norm
error of the precision matrix of LVGGM converges at the

rate O(
√

(s+reff·r) log p
n ), where s is the number of non-

zeros in the conditionally sparse precision matrix, reff is the
effective rank of the covariance matrix and r is the num-
ber of latent variables. This rate is in general significantly

faster than the standard convergence rate of O(
√

p2 log p
n )

for an unstructured dense GGM. This result offers a com-
pelling argument for using LVGGM over sparse GGM for
many inference problems.

The paper is structured as follows. In Section 2 we re-
view the relevant prior literature. In Section 3 we formu-
late the LVGGM estimation problem. In Section 4 the main
theoretical results are presented. Experimental results are
shown in Section 5 and we conclude in Section 6. We use
boldface letters to denote vectors and matrices. ∥ · ∥1, ∥·∥2,
∥ ·∥F , ∥ ·∥∗ denote the elementwise ℓ1, spectral, Frobenius,
and nuclear matrix norms, respectively.

2. Background and Related Work
The problem of learning GGM with sparse inverse co-
variance matrices using ℓ1-regularized maximum likeli-
hood estimation, often referred to as the graphical lasso
(Glasso) problem, has been studied in Friedman et al.
(2008); Ravikumar et al. (2011); Rothman et al. (2008).
In particular, the authors of Ravikumar et al. (2011) study
the model selection consistency (i.e., “sparsistency”) un-
der certain incoherence condition. Beyond sparse GGM,
Choi et al. (2010) propose a multi-resolution extension
of a GGM augmented with sparse inter-level correlations,
while in Choi et al. (2011) the authors consider latent tree-
structured graphical models. Both models lead to computa-

tionally efficient inference and learning algorithms but re-
strict the latent structure to trees. Recently, Liu & Willsky
(2013) consider a computationally efficient learning algo-
rithm for a class of conditionally tree-structured LVGGM.

The work that is most relevant to ours is by Chandrasekaran
et al. (2012), who study the LVGGM learning problem,
but focus on the simultaneous model selection consistency
of both the sparse and low-rank components. In con-
trast, in this paper we focus on the Frobenius norm error
bounds for estimating the precision matrix of LVGGM. Al-
though structural consistency can be useful for deriving
insights, parameter estimation error analysis is of equal
or greater importance in practice. Since it provides addi-
tional, and usually more direct, insights into factors influ-
encing the performance of the subsequent statistical infer-
ence tasks, such as prediction and detection. Also, com-
pared with Chandrasekaran et al. (2012), our Frobenius
norm error bounds are derived under mild condition on the
Fisher information of the distribution.

We note that there is a fundamentally different line of work
on estimating models with a similar structural composition,
known as robust PCA (Candès et al., 2011). In robust PCA,
the data matrix is modeled as “low-rank plus sparse”. This
model has been applied to extracting the salient foreground
from background in videos, and detecting malicious user
ratings in recommender system data (Xu et al., 2012). In
contrast, the equivalent covariance model of our LVGGM
can be decomposed into a low-rank plus a dense matrix
whose inverse is sparse. A similar covariance model has
recently been studied by Kalaitzis & Lawrence (2012), in
which an EM algorithm is proposed for estimation but no
theoretical error bounds are derived. In this paper, we in-
stead focus on the precision matrix parameterization, which
enables model estimation through a convex optimization.
This formulation is of both theoretical and computational
importance.

3. Problem Setup
In this section, we review Gaussian graphical models and
formulate the problem of latent variable Gaussian graphi-
cal model estimation via a regularized maximum likelihood
optimization.

3.1. Gaussian Graphical Models

Consider a p-dimensional random vector x associated with
an undirected graph G = (VG, EG), where VG is a set
of nodes corresponding to elements of x and EG is a set
of edges connecting nodes (including self-edges for each
node). Then x follows a graphical model distribution if it
satisfies the Markov property with respect to G: for any
pair of nonadjacent nodes in G, the corresponding pair of
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Figure 1. Illustrations of a sparse Gaussian graphical model (GGM) (left) and a latent variable Gaussian graphical model (LVGGM)
(right). (A) Example of a sparse GGM with only observed variables, (B) Sparsity pattern of example sparse GGM’s precision matrix,
(C) Example of a LVGGM with both observed and latent variables, (D) Sparsity pattern of example LVGGM’s precision matrix.

variables in x are conditionally independent given the re-
maining variables, i.e., xi ⊥ xj | x\i,j , for all (i, j) /∈ EG.

If x follows a multivariate Gaussian distribution, the cor-
responding graphical model is called a Gaussian graphical
model (GGM). We assume without loss of generality that
x has zero mean. The Markov property in GGM is mani-
fested in the sparsity pattern of the inverse covariance ma-
trix J: Ji,j = 0 for all i ̸= j, (i, j) /∈ E. An example
of this property for sparse GGM is shown in Figure 1(a)
and 1(b).

The precision matrix parameterization arises in many sta-
tistical inference problems for Gaussian distributions, in ar-
eas such as belief propagation, linear prediction, portfolio
selection in financial data, and anomaly detection. Estima-
tion of the precision matrix in GGM is the first step in these
inference problems.

3.2. Latent Variable Gaussian Graphical Models

Unfortunately, due to the presence of global factors that
destroy sparsity, real-world observations often do not con-
form exactly to a sparse GGM (Choi et al., 2010; 2011).
By introducing latent variables (denoted as a r-dimensional
random vector xL) to capture global factors, we can gen-
eralize the GGM. Specifically, we construct a model that is
conditionally a GGM, i.e., one that has a sparse precision
matrix given knowledge of latent variables, xL.

Defining the p observed variables as xO, we assume the
joint distribution of the (p + r)-dimensional concatenated
random vector x = (xO,xL) follows a Gaussian dis-
tribution with covariance matrix Ω and precision matrix
J = Ω−1. An example of this structure can be seen in Fig-
ure 1(c) and 1(d). Marginalizing over the latent variables
xL, the distribution of the observed variables xO remains
Gaussian with observed covariance matrix, Σ = ΩO,O.

The observed precision matrix Θ ∈ Rp×p satisfies:

Θ = Σ−1 = JO,O︸ ︷︷ ︸
S

−JO,LJ
−1
L,LJL,O

︸ ︷︷ ︸
L

, (1)

where we have defined S := JO,O and L :=
−JO,LJ

−1
L,LJL,O. Thus, the marginal precision matrix can

be written as Θ = S + L, the sum of a sparse and a low-
rank matrix. Similar to standard GGM, we parameterize
the marginal distribution through the precision matrix. We
refer to this model as the latent variable GGM, or LVGGM.

The LVGGM is a hierarchical model that generalizes the
(sparse) GGM. Note that S−1 = J−1

O,O = ΩO,O −
ΩO,LΩ

−1
L,LΩL,O is the covariance matrix of the conditional

distribution of the observed variables. The matrix is not
generally sparse, even though S is assumed to be sparse.
We will also assume that the number of latent variables is
much smaller than the number of observed variables, i.e.,
r ≪ p. We place no sparsity restrictions on the dependen-
cies between the observed and latent variables – the subma-
trices JO,L and JL,O could be dense. As a result, the p× p
matrix L = −JO,LJ

−1
L,LJL,O is low-rank and potentially

dense. The sparse plus low-rank structure of the marginal
precision matrix Θ is the key property of the precision ma-
trix that will be exploited for model estimation.

The structural assumptions on the precision matrix of the
LVGGM can be further motivated and validated on real-
world recommender system data and stock return data. Due
to the space limits, we defer these two motivating examples
to Section A in the Appendix.

3.3. Effective Rank of Covariance Matrix

We introduce the effective rank of a matrix, which will be
useful to derived high-dimensional error bounds. The ef-
fective rank of a matrix Σ is defined as (Vershynin, 2010):

reff(Σ) := tr(Σ)/∥Σ∥2. (2)
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The effective rank can be considered a measure of the con-
centration level of the spectrum of Σ. As we will show
in Section 5.1, in many situations the effective rank of
the covariance matrix corresponding to a LVGGM is much
smaller than p. Under this condition, our theoretical results
in the sequel provide a tight Frobenius norm estimation er-
ror bound, which is significantly improved upon the error
bound derived without the effective rank assumption.

3.4. Regularized ML Estimation of LVGGM

Available are n samples x1, x2, . . . , xn from a LVGGM
model xO, concatenated into a data matrix X ∈ Rp×n.
The negative log-likelihood function is

L(Θ;X) = ⟨Σ̂,Θ⟩ − log det(Θ), (3)

where Σ̂ := 1
nX

TX is the sample covariance matrix. The
regularized ML estimate minimizes the objective function
L(Θ;X) + λR(Θ), where the regularization parameter
λ > 0, and the regularization function R(Θ) is designed
to enforce the sparse plus low-rank structure on Θ.

Similar to Chandrasekaran et al. (2012), we consider the
following regularized ML estimation problem:

min
S,L

L(S+ L;X) + λ∥S∥1 + µ∥L∥∗

s.t. − L ≽ 0, S+ L ≽ 0,
(4)

where the corresponding regularization function is the sum
of two regularizers: R(Θ) = ∥S∥1+ µ

λ∥L∥∗, each of which
has been shown to promote sparse (low-rank) structure in S
(L, respectively) (Negahban et al., 2012). Constants λ, µ >
0 are regularization parameters corresponding to the two
functions, respectively. The LVGGM estimator is defined
as a solution to the above convex optimization problem (4).
Efficient convex solver, such as Ma et al. (2013), can be
used to solve.

4. Error Bounds on ML LVGGM Estimation
We analyze the regularized ML estimation problem (4) and
provide Frobenius norm error bounds for estimating the
precision matrix in high-dimensional setting. We adopt
the decomposable regularization framework of (Negahban
et al., 2012; Agarwal et al., 2012; Yang & Ravikumar,
2013) to derive these bounds. In contrast to this prior work,
here we focus on multiple decomposable regularizers inter-
acting with the non-quadratic log-likelihood loss function
encountered in the LVGGM. Two important ingredients in
the derivations are the restricted strong convexity of the loss
function, and an incoherence condition between the two
structured subspaces containing the sparse and low-rank
components (S and L). We show that under assumptions
on the Fisher information these two conditions are verified.

In the following subsections, first we define some necessary
notation, then we introduce the assumptions and place them
in the context of prior literature, and finally we state the
main results in Theorem 1 and Theorem 2.

4.1. Decomposable Regularizers and Subspace
Notation

In this subsection we introduce the notion of decomposable
regularizers and the corresponding subspace pairs. We re-
fer the reader to Negahban et al. (2012) for more details.

Consider a pair of subspaces (M,M⊥
), where M ⊂

M ⊂ Rp×p. R(·) is called a decomposable regulariza-
tion function with respect to the subspace pair if, for any
u ∈ M, v ∈ M⊥

, we have R(u+ v) = R(u) +R(v).

For the sparse and low-rank matrix-valued parameters, the
following two subspace pairs and their corresponding de-
composable regularizers are considered:

• Sparse matrices. Let E ⊆ {1, . . . , p} × {1, . . . , p} be a
subset of index pairs (edges). Define M(E) = M(E)
as the subspace of all sparse matrices in Rp×p that are
supported in subsets of E, i.e., PM(E)(A) = AE . A
decomposable regularizer is the ℓ1 norm, since ∥A∥1 =
∥AE∥1 + ∥AEC∥1.

• Low-rank PSD matrices. Consider a class of low-rank
and positive semi-definite matrices A ⊂ Sp×p

+ which
have rank r ≤ p. For any given matrix A ∈ A, let
col(A) denote its column space. Let U ⊂ Rn be a r-
dimensional subspace and define the subspace M(U)

and the perturbation subspace M⊥
(U) as

M(U) :={A ∈ Rn×p | col(A) ⊆ U},

M⊥
(U) :={A ∈ Rn×p | col(A) ⊆ U⊥}.

Then the nuclear norm RL(·) = ∥ ·∥∗ is a decomposable
regularization function with respect to the subspace pair
(M(U),M⊥

(U)).

For the true model parameter Θ∗, we define its associated
structural error set with respect to a subspace M as (Ne-
gahban et al., 2012):

C(M,M⊥
;Θ∗) := (5)

{
∆ ∈ Rn×p | R(∆M⊥) ≤ 3R(∆M) + 4R(Θ∗

M⊥)
}
.

By construction, if the norm of the projection of the true
parameter Θ∗ into M⊥

is small, then elements ∆ in this
structural error set also have limited projection onto the
perturbation subspace M⊥

.

Now let Θ∗ be the true (marginal) precision matrix of
the LVGGM, and let the sparse and low-rank components



Learning Latent Variable Gaussian Graphical Models

be S∗ and L∗, respectively. For the defined subspace
pairs (M(E),M(E)⊥) and (M(U),M(U)⊥), we use
C(E) and C(U) as the shorthand notations for the corre-
sponding structural error sets centered at S∗ and L∗, i.e.,
C(M(E),M(E)⊥;S∗) and C(M(U),M(U)⊥;L∗), re-
spectively. Later, we will consider the perturbation of Θ∗

along restricted directions in these two sets.

4.2. Assumptions on Fisher Information

We characterize the interaction between the elements in the
two subspaces through their inner products using the Hes-
sian of the loss function, also known as the Fisher infor-
mation of the distribution. Denoting the Fisher information
matrix of a Gaussian distribution as F∗ (evaluated at Θ∗),
we find that F∗ = Θ∗−1⊗Θ∗−1, where ⊗ is the Kronecker
product. We define the Fisher inner product between two
matrices ∆A and ∆B as

⟨∆A,∆B⟩F∗ := vec(∆A)
TF∗vec(∆B) (6)

= Tr(Θ∗−1∆AΘ
∗−1∆B), (7)

where vec(·) denotes the vectorization of a matrix.

Similar to prior work of (Kakade et al., 2010), we define
the induced Fisher norm of a matrix ∆ as

∥∆∥2F∗ := vec(∆)TF∗vec(∆) (8)

= Tr(Θ∗−1∆Θ∗−1∆). (9)

The first assumption we make is the following Restricted
Fisher Eigenvalue (RFE) condition on the true precision
model with respect to the sparse and low-rank structural
error sets.
Assumption 1 (Restricted Fisher Eigenvalue). There ex-
ists some constant κ∗min > 0, such that for all ∆ ∈
C(E) ∪ C(U), the following holds:

∥∆∥2F∗ ≥ κ∗min∥∆∥2F . (10)

This RFE condition generalizes the restricted eigenvalue
(RE) condition for sparsity-promoting linear regression
problems (Bickel et al., 2009). It assumes that the mini-
mum eigenvalue of the Fisher information is bounded away
from zero along the directions C(E) and C(U). Due to the
identity (8) and properties of the Kronecker product, a triv-
ial lower bound for κ∗min is λ2min(Θ

∗), where λmin(·) de-
notes the minimum eigenvalue. In the high-dimensional
setting, the RFE parameter κ∗min, which is defined only
with respect to the above restricted set of directions, can be
substantially larger than λ2min(Θ

∗). As a result, the derived
error bounds, which depend on κ∗min, are generally tighter
than the bounds depending on λ2min(Θ

∗) (cf. Theorem 1).

Due to the sparse plus low-rank superpositioned structure,
we impose a type of incoherence between the two structural

error sets to ensure consistent estimation of the combined
model. The incoherence condition will limit the interac-
tion between elements from the two sets. For our prob-
lem, such interaction occurs through their inner products
with the Fisher information, which motivates the follow-
ing Structural Fisher Incoherence (SFI) assumption (which
generalizes the C-Linear assumption proposed in Yang &
Ravikumar (2013)).

Let PE := PM(E) denote the projection operator corre-
sponding to the subspace M(E). Similarly define PU :=
PM(U), PE⊥ := PM(E)⊥ , and PU⊥ := PM(U)⊥ . We
assume the following condition on the Fisher information.
Assumption 2 (Structural Fisher Incoherence). Given
a constant M > 6, a set of regularization parame-
ters (λ, µ), and the subspace pairs (M(E),M(E)⊥)
and (M(U),M(U)⊥) as defined above, let Λ = 2 +

3max
{

λ
√
s

µ
√
r
, µ

√
r

λ
√
s

}
, where s = |E| and r = rank(U).

Then the Fisher information F∗ satisfies:

max {σ (PEF∗PU ) ,σ (PE⊥F∗PU ) ,

σ (PEF∗PU⊥) ,σ (PE⊥F∗PU⊥)} ≤ κ∗min

c1Λ2
,

where σ(·) denotes the maximum singular value, and con-
stant c1 is defined as c1 = 16M

M−6 .

The constant M is related to a “burn-in” period after which
the likelihood loss function has desirable properties in a
small neighborhood of the true parameter. In particular,
when M = 7, the constant c1 = 112 suffices for our the-
ory to hold. See the main theorem and its proof for more
discussion on this quantity.

It is interesting to compare our SFI assumption to other
similar assumptions in the literature of GGM estimation. In
Ravikumar et al. (2011), a form of irrepresentability condi-
tion is assumed, which limits the induced ℓ1 norm of a ma-
trix that is similar to the projected Fisher information onto
the sparse matrix subspace pair. In Chandrasekaran et al.
(2012), the notion of irrepresentability is extended to two
subspace pairs (i.e., sparse and low-rank), but detailed be-
haviors of the projected Fisher information are controlled
(see the main assumption on page 1949 of Chandrasekaran
et al. (2012)). For model selection consistency, a more gen-
eral form of irrepresentability has been shown to be neces-
sary for model selection consistency, see Lee et al. (2013)
for a recent discussion. In contrast to the above line of
work, the SFI assumption we make only controls the max-
imum singular values of the projected Fisher information.
This can be explained as we are interested in bounding a
weaker quantity, the Frobenius norm of the parameter es-
timation error, instead of establishing the stronger model
selection consistency of Ravikumar et al. (2011) or the al-
gebraic consistency as in Chandrasekaran et al. (2012).
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4.3. Error Bounds for LVGGM Estimation

We have the following bound on the parameter error of the
estimated precision matrix of LVVGGM, Θ̂ = Ŝ + L̂, ob-
tained by solving the regularized ML problem (4).
Theorem 1. Suppose Assumption 1 and 2 hold for the true
marginal precision matrix Θ∗, and the regularization pa-
rameters are chosen such that

λ ≥ 2∥Σ∗ − Σ̂∥∞ and µ ≥ 2∥Σ∗ − Σ̂∥2. (11)

Given a constant M > 6, if an optimal solution pair (Ŝ, L̂)
to the convex program (4) satisfies

max{∥Ŝ− S∗∥F∗ , ∥L̂− L∗∥F∗} ≤ 1

6M2
, (12)

then we have the following error bound for the estimated
precision matrix Θ̂ = Ŝ+ L̂:

∥Θ̂−Θ∗∥F ≤ 6

κL
max

{
λ
√
s, µ

√
r
}
+

√
8r∗⊥
κL

, (13)

where s = |E|, r = rank(U), and

κL :=
M − 2

2(M − 1)
κ∗min, (14)

r∗⊥ := λ
∑

(j,k)/∈E

|S∗
jk|+ µ

p∑

j=r+1

σj(L
∗). (15)

Proof sketch. The proof is inspired by Yang & Raviku-
mar (2013), in which a parameter estimation error bound
is proven for estimating a class of superposition-structured
parameters, such as sparse plus low-rank, through M-
estimation with decomposable regularizers. Critical to spe-
cializing this framework to our LVGGM estimation prob-
lem is to verify two conditions on the log-likelihood loss
function (3): the restricted strong convexity (RSC) and
structural incoherence (SI). The RSC condition (which
originally proposed in Negahban et al. (2012)) specifies the
loss function to be sufficiently curved (i.e. lower bounded
by a quadratic function) along a restricted set of directions
(defined by C(E) and C(U)). On the other hand, the SI
condition effectively limits certain interaction between el-
ements from the above two structural error sets. In Yang
& Ravikumar (2013), under certain C-linear assumptions,
the RSC and SI conditions are verified for several problems
with quadratic loss functions. For the LVGGM estimation
problem, however, the technical difficulty lies in the non-
quadratic log-likelihood loss (3), for which the previously
established RSC and SI conditions do not hold.

To deal with this difficulty, we leverage the almost strong
convexity properties (Kakade et al., 2010) to characterize
the convergence behavior of the sum of higher-order terms
in the Taylor series of the log-likelihood loss function. We

show that in the regime specified by condition (12), the
loss function can be well-approximated by the sum of a
quadratic function and a residual term. Under this condi-
tion, the RFE assumption (Assumption 1) guarantees the
RSC condition (cf. Lemma 2), and the SFI assumption (As-
sumption 2) leads to SI condition to hold (cf. Lemma 4).
Theorem 1 can then be proven by the general theorem
in Yang & Ravikumar (2013). A detailed proof of Theo-
rem 1 can be found in Appendix B.

We make the following remarks:

• The error bound (13) is a family of upper bounds defined
by different sets of subspace pairs (M(E),M(E)⊥)
and (M(U),M(U)⊥). The tightest bound can be
achieved by appropriately choosing E and U . The first
additive term in (13) captures effect of the estimation er-
ror, while the second term captures the approximation
error. In many cases it is reasonable to assume the ap-
proximation error is zero, then the error bound reduces
to the first additive term.

• We note that similar derivations also apply to ℓ1-
regularized estimation of sparse GGM. For the sparse
GGM, only Assumption 1 is required, and the deriva-
tions largely simplify. The final error bound also con-
tains estimation and approximation errors, depending
only on the sparse matrix subspace pair. However,
when the true precision matrix Θ∗ cannot be well-
approximated as a sparse matrix (such as the LVGGM
case), the approximation error would be much worse,
leading to an inefficient learning rate.

• We finally remark that the SFI assumption can be relaxed
to an even milder incoherence condition, ∥L∥∞ ≤ α, as
considered in Agarwal et al. (2012). Following similar
derivations as in the proof of Theorem 1, the correspond-
ing error bound can be obtained. However, as a result of
this incoherence assumption, the error bound would con-
tain an additional incoherence term which does not van-
ish to zero even with infinite samples. This disadvantage
is overcome under the structural incoherence condition.

The statement of Theorem 1 is deterministic in nature and
applies to any optimum of the convex program. However,
the condition on the regularization parameters (11) and the
error bound depend on the sampled data (in particular the
sample covariance matrix Σ̂), which is random. There-
fore the key to specifying the regularization parameters,
and hence obtaining error bounds independent of data, is
to derive tight deviation bounds of the sample covariance
matrix in terms of the ℓ∞ and ℓ2 norms, such that condi-
tion (11) holds with high probability. These bounds can be
obtained by using concentration inequalities for Gaussian
distributions, which leads to the following corollary.

Corollary 1. Let the same assumptions in Theorem 1 hold.
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Given constants C1 > 1 and C2 ≥ 1, assume that the
number of samples n satisfies n ≥ max

{
4C2

1 log p, C
2
2p

}
,

and that the regularization parameters satisfy

λ = 160C1σ
∗
√

log p

n
and µ = 16C2ρ

∗
√

p

n
, (16)

where σ∗ = maxi Σ∗
i,i and ρ∗ = ∥Σ∗∥2. Then with prob-

ability at least 1− 4p−2(C1−1) − 2 exp(−C2
2p
2 ), we have

∥Θ̂−Θ∗∥F ≤ c1

√
s log p

n
+ c2

√
rp

n
, (17)

where c1 = 960
κL
σ∗ and c2 = 96

κL
ρ∗.

Remark: The estimation error (17) consists of two terms
corresponding to the sparse and low-rank components, re-
spectively. Note its resemblance to the error bounds of
robust PCA (e.g., Agarwal et al. (2012); Yang & Raviku-
mar (2013)) and the derived bound in Chandrasekaran et al.
(2012). In particular, the first term in (17) was on the same
order as the estimation error of a sparse GGM (Ravikumar
et al., 2011). However, due to the presence of latent vari-
ables, both the sample requirement (i.e., n ! p) and the
combined error bound are worse than those for learning the
sparse conditional GGM.

Next we consider a scenario under which this additional
disadvantage is largely removed. Assume that the true
marginal covariance matrix Σ∗ has an effective rank reff :=
reff(Σ∗) (recall reff(Σ∗) := tr(Σ∗)/∥Σ∗∥2 ) that is
much smaller than p. Then, by using recent advances
on the asymptotic behavior of the sample covariance ma-
trix (Lounici, 2012), we can obtain a much tighter bound
which only depends on p logarithmically, as stated in the
following theorem.

Theorem 2. Let the same assumptions in Theorem 1 hold.
Given a constant C1 > 1, assume that the number of obser-
vations n satisfies n ≥ max

{
4C1 log p, C3reff log

2(2p)
}

,
and the regularization parameters satisfy

λ = 160C1σ
∗
√

log p

n
and µ = C4ρ

∗
√

reff log p

n
, (18)

where σ∗ = maxi Σ∗
i,i, ρ∗ = ∥Σ∗∥2, and C3, C4 > 0 are

sufficiently large constants. Then with probability at least
1− 2p−2(C1−1) − (2p)−1, we have

∥Θ̂−Θ∗∥F ≤ c̃1

√
s log p

n
+ c̃2

√
reff · r log(2p)

n
, (19)

where c̃1 = 960
κL
σ∗, c̃2 = 8C4

3κL
ρ∗.

Proof sketch. Same as Corollary 1, we need to verify that
the choices of regularization parameters (18) satisfy the

condition (11) with high probability. Since the choice of
λ has been verified in Corollary 1, it only remains to verify
the condition on µ. To this end, we make use of the fol-
lowing sharp bound on the spectral norm deviation of the
sample covariance matrix:

Lemma 1 (Lounici (2012)). Let Σ̂ be a sample covari-
ance matrix constructed from n i.i.d. samples from a p-
dimensional Gaussian distribution N (0,Σ∗). Then with
probability at least 1− (2p)−1,

∥Σ̂−Σ∗∥2 ≤ C∥Σ∗∥2·

max

{√
2reff log(2p)

n
,
2reff log(2p)(3/8 + log(2pn)

n

}
,

where C > 0 is an absolute constant.

Then as commented in Lounici (2012) (Prop. 3), when
the sample size n is sufficiently large such that n ≥
C3reff log

2 max{2p, n}, where C3 > 0 is a large constant,
the choice of regularization parameter µ as in (18) suffices
for the condition (11) to hold with high probability.

Notice that when reff ≪ p, the error bound (19) is signifi-
cantly tighter than the bound (17). Also the sample require-
ment n ! reff log(p) is much milder. This result implies the
efficiency of LVGGM learning when the true covariance
model has a low effective rank.

5. Experiments
We use a set of simulations on synthetic data to verify our
reduced effective rank assumption on the covariance matrix
of LVGGM, and the derived error bounds in Theorem 2.

5.1. Effective Rank of Covariance of LVGGM

To better understand the effective rank of the covariance
matrix of LVGGM, it is convenient to consider a hierar-
chical generating process for the observed variables: xO ∼
AxL+z, where xL ∼ N (0,ΩL,L) are the latent variables,
A := J−1

O,OJO,L ∈ Rp×r, and z ∼ N (0,S−1) captures the
conditional effects. The marginal covariance matrix of the
observed variables can be represented as

Σ = AΩL,LA
T

︸ ︷︷ ︸
G

+S−1, (20)

where G is a low-rank covariance matrix (global effects),
and S−1 is a non-sparse covariance matrix (conditionally
local effects) whose inverse is sparse. While the low-rank
global effects naturally result in a concentrated spectrum,
the sparse-inverse local effects generally contribute to a dif-
fuse spectrum. The effective rank, which is the sum of all
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Figure 2. Effective ranks of covariance matrices of LVGGM with
various global/local energy ratios.
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Figure 3. Simulations for chain graphical models with latent vari-
ables. Plots of Frobenius norm error ∥Θ̂ − Θ∗∥F versus the
rescaled sample size n/(s log(p) + r log(2p)).

eigenvalues divided by the magnitude of the largest one,
depends on the relative energy ratio between G and S−1.

Since an exact characterization of the effective rank in
terms of A, ΩL,L, and S tends to be difficult, we use Monte
Carlo simulations to investigate synthetic LVGGM that
conform to our assumptions. We generate LVGGM with
independent latent variables (i.e., diagonal JL,L), dense
latent-observed submatrix JL,O, and a sparse conditional
GGM JO,O for observed variable with a random sparsity
pattern (sparsity level ≈ 5%). We fix the number of latent
variables to be 10, and vary the number of observed vari-
ables p = {80, 120, 200, 500}. By scaling the magnitudes
of the elements in the latent variable submatrix, we sweep
through the relative energy ratio between the global and lo-
cal factors, i.e., Tr(G)/Tr(S−1) from 0.1 to 10. After 550
realizations for each value of p, we plot the empirical ef-
fective ranks of observed covariance matrices in Figure 2.

As seen in the figure, when the global factor dominates
(i.e., the ratio is large), the effective rank of the covariance
matrix is very small, as expected. On the other hand, when
the local effects become stronger (e.g., when the number of
observed variables p increases) the effective rank increases,
but at a very mild rate. In particular, when p increases from

80 to 500, the maximum empirical effective rank in our
simulation only increases from 4 to 26. For all of our sim-
ulated LVGGM, the empirical effective ranks are observed
as at least an order of magnitude smaller than p. This mild
growing rate of the effective rank (compared to p) will lead
to our improved error bound in Theorem 2 to hold.

5.2. Frobenius Norm Error of LVGGM Estimation

We simulate LVGGM data with number of observed vari-
ables p = {160, 200, 320, 400} and number of latent vari-
ables in the set r = {0.1, 0.15, 0.2, 0.3}p. The sparse
conditional GGM is a chain graph whose associated pre-
cision matrix is tridiagonal with off-diagonal elements
Si,i−1 = Si,i+1 = 0.4Si,i for i = {2, . . . , p − 1}. For
each configuration of p and r, we draw n samples from
the LVGGM, where n ranges from 200 to 1000. Using
these samples, the precision matrix Θ̂ is learned by solv-
ing the regularized ML estimation problem (4). As shown
in Section 5.1, the effective rank of the covariance matrix
grows mildly. Then Theorem 2 predicts that the Frobe-
nius error of the estimated precision matrix of LVGGM
should scale as ∥Θ̂−Θ∗∥F ≍

√
(s log(p) + r log(2p))/n,

when the regularization parameters are chosen such that

λ ≍ σ∗
√

log(p)
n and µ ≍ ρ∗

√
reff log(p)

n . Guided by this
theoretical result, we set the regularization parameters as

λ = Caσ
∗
√

log(p)
n and µ = Cbρ∗

√
reff log(p)

n , where con-
stants Ca and Cb are cross-validated and then fixed for
all test data sets with different configurations. We plot
the Frobenius estimation errors against the rescaled sample
size n/(s log(p)+r log(2p)) in Figure 3. With a wide range
of configurations, almost all the empirical error curves for
models align and have the form of f(t) ∝ t−1/2 when the
sample size is rescaled, as predicted by Theorem 2. In prac-
tice when the true model is unknown, one could set the reg-
ularization parameters according to the sample versions of
the quantities σ∗ and ρ∗, as discussed in Lounici (2012).

6. Conclusions
We consider a family of latent variable Gaussian graphical
model whose precision matrix has a sparse plus low-rank
structure. We derive parameter error bounds for regular-
ized maximum likelihood estimation. Future work includes
extending the framework to other distributions and the ap-
plication to tasks such as prediction and detection.
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