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A. Proofs for learning guarantees
A.1. Revenue formula
The simple expression of the expected revenue (2) can be
obtained as follows:

E
b

[Revenue(r,b)]

= E
b(2)

[b(2)1r<b(2) ] + r P[b(2) ≤ r ≤ b(1)]

=
∫ +∞

0

P[b(2)1r<b(2) > t] dt+ r P[b(2) ≤ r ≤ b(1)]

=
∫ r

0

P[r < b(2)] dt+
∫ ∞
r

P[b(2) > t]dt]

+ r P[b(2) ≤ r ≤ b(1)]

=
∫ ∞
r

P[b(2) > t] dt]

+ r(P[b(2) > r] + 1− P[b(2) > r]− P[b(1) < r])

=
∫ ∞
r

P[b(2) > t] dt+ r P[b(1) ≥ r].

A.2. Contraction lemma
The following is a version of Talagrand’s contraction
lemma (Ledoux & Talagrand, 2011). Since our definition
of Rademacher complexity does not use absolute values,
we give an explicit proof below.

Lemma 8. Let H be a hypothesis set of functions mapping
X to R and Ψ1, . . . ,Ψm, µ-Lipschitz functions for some
µ > 0. Then, for any sample S of m points x1, . . . , xm ∈
X , the following inequality holds

1
m

E
σ

[
sup
h∈H

m∑
i=1

σi(Ψi ◦ h)(xi)

]
≤ µ

m
E
σ

[
sup
h∈H

m∑
i=1

σih(xi)

]
= µ R̂S(H).

Proof. The proof is similar to the case where the functions
Ψi are all equal. Fix a sample S = (x1, . . . , xm). Then, we
can rewrite the empirical Rademacher complexity as fol-
lows:
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E
σ

[
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h∈H
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σi(Ψi ◦ h)(xi)
]

=

1
m

E
σ1,...,σm−1

[
E
σm

[
sup
h∈H

um−1(h)+σm(Ψm◦h)(xm)
]]
,

where um−1(h) =
∑m−1
i=1 σi(Ψi ◦ h)(xi). Assume that

the suprema can be attained and let h1, h2 ∈ H be the
hypotheses satisfying

um−1(h1) + Ψm(h1(xm)) = sup
h∈H

um−1(h) + Ψm(h(xm))

um−1(h2)−Ψm(h2(xm)) = sup
h∈H

um−1(h)−Ψm(h(xm)).

When the suprema are not reached, a similar argument to
what follows can be given by considering instead hypothe-
ses that are ε-close to the suprema for any ε > 0.
By definition of expectation, since σm uniform distributed
over {−1,+1}, we can write

E
σm

[
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h∈H
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]

=
[1

2
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h∈H
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1
2

sup
h∈H

um−1(h)− (Ψm ◦ h)(xm)
]

=
1
2

[um−1(h1) + (Ψm ◦ h1)(xm)]

+
1
2

[um−1(h2)− (Ψm ◦ h2)(xm)].

Let s = sgn(h1(xm)−h2(xm)). Then, the previous equal-
ity implies
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]

=
1
2
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=
1
2

[um−1(h1) + sµh1(xm)]

+
1
2

[um−1(h2)− sµh2(xm)]

≤ 1
2

sup
h∈H

[um−1(h) + sµh(xm)]

+
1
2

sup
h∈H

[um−1(h)− sµh(xm)]

= E
σm

[
sup
h∈H

um−1(h) + σmµh(xm)
]
,

where we used the µ−Lipschitzness of Ψm in the first
equality and the definition of expectation over σm for the
last equality. Proceeding in the same way for all other σi’s
(i 6= m) proves the lemma.

A.3. Bounds on Rademacher complexity
Proposition 9. For any hypothesis set H and any sample
S = ((x1,b1), . . . , (xm,bm)), the empirical Rademacher
complexity of l1H can be bounded as follows:

R̂S(l1H) ≤ R̂S(H).

Proof. By definition of the empirical Rademacher com-
plexity, we can write

R̂S(l1H) =
1
m

E
σ

[
sup
h∈H

m∑
i=1

σil1(h(xi),bi)

]

=
1
m

E
σ

[
sup
h∈H

m∑
i=1

σi(ψi ◦ h)(xi)

]
,
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where, for all i ∈ [1,m], ψi is the function defined
by ψi : r 7→ l1(r,bi). For any i ∈ [1,m], ψi is 1-
Lipschitz, thus, by the contraction lemma 8, we have the
inequality R̂S(l1H) ≤ 1

m Eσ[suph∈H
∑m
i=1 σih(xi)] =

R̂S(H).

Proposition 10. Let M = supb∈B b
(1). Then, for any hy-

pothesis set H with pseudo-dimension d = Pdim(H) and
any sample S = ((x1,b1), . . . , (xm,bm)), the empirical
Rademacher complexity of l2H can be bounded as follows:

R̂S(l2H) ≤
√

2d log em
d

m
.

Proof. By definition of the empirical Rademacher com-
plexity, we can write

R̂S(l2H) =
1
m

E
σ

[
sup
h∈H

m∑
i=1

σib
(1)
i 1

h(xi)>b
(1)
i

]
=

1
m

E
σ

[
sup
h∈H
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σiΨi(1h(xi)>b
(1)
i

)
]
,

where for all i ∈ [1,m], Ψi is the M -Lipschitz function
x 7→ b

(1)
i x. Thus, by Lemma 8 combined with Massart’s

lemma (see for example (Mohri et al., 2012)), we can write

R̂S(l2H) ≤ M

m
E
σ

[
sup
h∈H

m∑
i=1

σi1h(xi)>b
(1)
i

]
≤M

√
2d′ log em

d′

m
,

where d′ = VCdim({(x,b) 7→ 1h(x)−b(1)>0 : (x,b) ∈
X×B}). Since the second bid component b(2) plays no role
in this definition, d′ coincides with VCdim({(x, b(1)) 7→
1h(x)−b(1)>0 : (x, b(1)) ∈ X × B1}), where B1 is the
projection of B ⊆ R2 onto its first component, and is
upper-bounded by VCdim({(x, t) 7→ 1h(x)−t>0 : (x, t) ∈
X × R}), that is the pseudo-dimension of H .

A.4. Calibration
Theorem 2 (convex surrogates). There exists no non-
constant function Lc : R×R+ → R convex with respect to
its first argument and satisfying the following conditions:

• for any b0 ∈ R+, limb→b−0
Lc(b0, b) = Lc(b0, b0).

• for any distribution D on R+, there exists a non-
negative minimizer r∗ ∈ argminr Eb∼D[L̃(r, b)] such
that minr Eb∼D Lc(r, b) = Eb∼D Lc(r∗, b).

Proof. For any loss Lc satisfying the assumptions, we can
define a loss L′c by L′c(r, b) = Lc(r, b) − Lc(b, b). L′c
then also satisfies the assumptions. Thus, without loss

of generality, we can assume that Lc(b, b) = 0. Fur-
thermore, since L̃(·, b) is minimized at b we must have
Lc(r, b) ≥ Lc(b, b) = 0.
Notice that for any b1 ∈ R+, b1 < b2 ∈ R+ and µ ∈ [0, 1],
the minimizer of Eµ(L̃(r, b)) = µL̃(r, b1)+(1−µ)L̃(r, b2)
is either b1 or b2. In fact, by definition of L̃, the solution is
b1 as long as −b1 ≤ −(1− µ)b2, that is, when µ ≥ b2−b1

b2
.

Since the minimizing property of Lc should hold for every
distribution we must have

µLc(b1, b1) + (1− µ)Lc(b1, b2)
≤ µLc(b2, b1) + (1− µ)Lc(b2, b2) (11)

when µ ≥ b2−b1
b2

and the reverse inequality otherwise. This
implies that (11) must hold as an equality when µ = b2−b1

b2
.

This, combined with the equality Lc(b, b) = 0 valid for all
b, yields

b1Lc(b1, b2) = (b2 − b1)Lc(b2, b1). (12)

Dividing by b2 − b1 and taking the limit b1 → b2 result in

lim
b1→b−2

b1
Lc(b1, b2)
b2 − b1 = lim

b1→b−2
Lc(b2, b1). (13)

By convexity of Lc with respect to the first argument, we
know that the left-hand side is well-defined and is equal to
−b1D−r Lc(b2, b2), where D−r Lc denotes the left derivative
of Lc with respect to the first coordinate. By assumption,
the right-hand side is equal to Lc(b2, b2) = 0. Since b1 >
0, this implies that D−r Lc(b2, b2) = 0.
Let µ < b2−b1

b2
. For this choice of µ, Eµ(Lc(r, b)) is mini-

mized at b2. This implies:

µD−r Lc(b2, b1) + (1− µ)D−r Lc(b2, b2) ≤ 0. (14)

However, convexity implies that D−r Lc(b2, b1) ≥
D−r Lc(b1, b1) = 0 for b2 ≥ b1. Thus, inequality (14) can
only be satisfied if D−r Lc(b2, b1) = 0.
Let D+

r Lc denote the right derivative of Lc with respect
to the first coordinate. The convexity of Lc implies that
D−r Lc(b1, b1) ≤ D+

r Lc(b1, b1) ≤ D−r Lc(b2, b1) for b2 >
b1. Hence, D+

r Lc(b1, b1) = 0. If we let µ > b2−b1
b2

then b1
is a minimizer for Eµ(Lc(r, b)) and

µD+
r (b1, b1) + (1− µ)D+

r Lc(b1, b2) ≥ 0.

As before, since b1 < b2, D+
r (b1, b2) ≤ D+

r (b2, b2) = 0
and we must have D+

r Lc(b1, b2) = 0 for this inequality to
hold.
We have therefore proven that for every b, if r ≥ b, then
D−r Lc(r, b) = 0, whereas if r ≤ b then D+

r Lc(r, b) =
0. It is not hard to see that this implies DrLc(r, b) = 0
for all (r, b) and thus that Lc(·, b) must be a constant. In
particular, since Lc(b, b) = 0, we have Lc ≡ 0.
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Lemma 4. Let H be a closed, convex subset of a linear
space of functions containing 0 . Denote by h∗γ the solution
of minh∈H Lγ(h). If supb∈B b

(1) = M <∞, then

E
x,b

[
h∗γ(x)1I2(x)

]
≥ 1
γ

E
x,b

[
h∗γ(x)1I3(x)

]
Proof. Let 0 < λ < 1, because λh∗γ ∈ H by convexity and
h∗γ is a minimizer we must have:

E
x,b

[
Lγ(h∗γ(x),b)

]
≤ E

x,b

[
Lγ(λh∗γ(x),b)

]
. (15)

If h∗γ(x) < 0, then Lγ(h∗γ(x),b) = Lγ(λh∗γ(x)) = −b(2)

by definition. If on the other hand h∗γ(x) > 0, be-
cause λh∗γ(x) < h∗γ(x) we must have that for (x,b) ∈
I1 Lγ(h∗γ(x),b) = Lγ(λh∗γ(x),b) = −b(2) too. More-
over, because Lγ ≤ 0 and Lγ(h∗γ(x),b) = 0 for (x,b) ∈
I4 it is immediate that Lγ(h∗γ(x),b) ≥ Lγ(λh∗γ(x),b) for
(x,b) ∈ I4. The following inequality holds trivially:

E
x,b

[
Lγ(h∗γ(x),b)(1I1(x) + 1I4(x))

]
≥ E

x,b

[
Lγ(λh∗γ(x),b)(1I1(x) + 1I4(x))

]
. (16)

Subtracting (16) from (15) we obtain

E
x,b

[
Lγ(h∗γ(x),b)(1I2(x) + 1I3(x))

]
≤ E

x,b

[
Lγ(λh∗γ(x),b)(1I2(x) + 1I3(x))

]
.

By rearranging terms we can see this inequality is equiva-
lent to

E
x,b

[
(Lγ(λh∗γ(x),b)− Lγ(h∗γ(x),b))1I2(x)

]
≥ E

x,b

[
(Lγ(h∗γ(x),b)− Lγ(λh∗γ(x),b))1I3(x)

]
(17)

Notice that if (x,b) ∈ I2, then Lγ(h∗γ(x),b) = −h∗γ(x).
If λh∗γ(x) > b(2) too then Lγ(λh∗γ(x),b) = −λh∗γ(x).
On the other hand if λh∗γ(x) ≤ b(2) then Lγ(λh∗γ(x),b) =
−b(2) ≤ −λh∗γ(x). Thus

E(Lγ(λh∗γ(x),b)− Lγ(h∗γ(x),b))1I2(x))

≤ (1− λ) E(h∗γ(x)1I2(x)) (18)

This gives an upper bound for the left-hand side of inequal-
ity (17). We now seek to derive a lower bound on the right-
hand side. To do that, we analyze two different cases:

1. λh∗γ(x) ≤ b(1);

2. λh∗γ(x) > b(1).

In the first case, we know that Lγ(h∗γ(x),b) = 1
γ (h∗γ(x)−

(1 + γ)b(1)) > −b(1) (since h∗γ(x) > b(1) for (x,b) ∈
I3). Furthermore, if λh∗γ(x) ≤ b(1), then, by definition
Lγ(λh∗γ(x),b) = min(−b(2),−λh∗γ(x)) ≤ −λh∗γ(x).
Thus, we must have:

Lγ(h∗γ(x),b)− Lγ(λh∗γ(x),b)

> λh∗γ(x)− b(1) > (λ− 1)b(1) ≥ (λ− 1)M, (19)

where we used the fact that h∗γ(x) > b(1) for the second
inequality.
We analyze the second case now. If λh∗γ(x) > b(1), then
for (x,b) ∈ I3 we have Lγ(h∗γ(x),b)−Lγ(λh∗γ(x),b) =
1
γ (1 − λ)h∗γ(x). Thus, letting ∆(x,b) = Lγ(h∗γ(x),b) −
Lγ(λh∗γ(x),b), we can lower bound the right-hand side of
(17) as:

E
x,b

[
∆(x,b)1I3(x)

]
=

E
x,b

[
∆(x,b)1I3(x)1{λh∗γ(x)>b(1)}

]
+ E

x,b

[
∆(x,b)1I3(x)1{λh∗γ(x)≤b(1)}

]
≥ 1− λ

γ
E
x,b

[
h∗γ(x)1I3(x)1{λh∗γ(x)>b(1)}

]
+ (λ− 1)M P

[
h∗γ(x) > b(1) ≥ λh∗γ(x)

]
, (20)

where we have used (19) to bound the second summand.
Combining inequalities (17), (18) and (20) and dividing by
(1− λ) we obtain the bound

E
x,b

[
h∗γ(x)1I2(x)

]
≥ 1
γ

E
x,b

[
h∗γ(x)1I3(x)1{λh∗γ(x)>b(1)}

]
−M P

[
h∗γ(x) > b(1) ≥ λh∗γ(x)

]
.

Finally, taking the limit λ→ 1, we obtain

E
x,b

[
h∗γ(x)1I2(x)

]
≥ 1
γ

E
x,b

[
h∗γ(x)1I3(x)

]
.

Taking the limit inside the expectation is justified by the
bounded convergence theorem and P[h∗γ(x) > b(1) ≥
λh∗γ(x)] → 0 holds by the continuity of probability mea-
sures.

A.5. Margin bounds
Theorem 5. Fix γ ∈ (0, 1] and let S denotes a sample
of size m. Then, for any δ > 0, with probability at least
1 − δ over the choice of the sample S, for all h ∈ H , the
following holds:

Lγ(h) ≤ L̂γ(h) +
2
γ

Rm(H) +M

√
log 1

δ

2m
. (21)
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Proof. Let Lγ,H denote the family of functions {(x,b)→
Lγ(h(x), b) : h ∈ H}. The loss function Lγ is 1

γ -Lipschitz
since the slope of the lines defining it is at most 1

γ . Thus,
using the contraction lemma (Lemma 8) as in the proof of
Proposition 9 gives Rm(Lγ,H) ≤ 1

γRm(H). The appli-
cation of a standard Rademacher complexity bound to the
family of functions Lγ,H then shows that for any δ > 0,
with probability at least 1 − δ, for any h ∈ H , the follow-
ing holds:

Lγ(h) ≤ L̂γ(h) +
2
γ

Rm(H) +M

√
log 1

δ

2m
.

We conclude this section by presenting a stronger form
of consistency result. We will show that we can lower
bound the generalization error of the best hypothesis in
class L∗ := L(h∗) in terms of that of the empirical min-
imizer of Lγ , ĥγ := argminh∈H L̂γ(h).
Theorem 11. Let M = supb∈B b(1) and let H be a hy-
pothesis set with pseudo-dimension d = Pdim(H). Then
for any δ > 0 and a fixed value of γ > 0, with probability
at least 1 − δ over the choice of a sample S of size m, the
following inequality holds:

L(ĥγ) ≤ L∗ +
2γ + 2
γ

Rm(H) + γM

2M

√
2d log εm

d

m
+ 2M

√
log 2

δ

2m
.

Proof. By Theorem 1, with probability at least 1−δ/2, the
following holds:

L(ĥγ) ≤ L̂S(ĥγ) + 2Rm(H)+

2M

√
2d log εm

d

m
+M

√
log 2

δ

2m
. (22)

Furthermore, applying Lemma 4 with the empirical distri-
bution induced by the sample, we can bound L̂S(ĥγ) by
L̂γ(ĥγ) + γM . The first term of the previous expression
is less than L̂γ(h∗γ) by definition of ĥγ . Finally, the same
analysis as the one used in the proof of Theorem 5 shows
that with probability 1− δ/2,

L̂γ(h∗γ) ≤ Lγ(h∗γ) +
2
γ

Rm(H) +M

√
log 2

δ

2m
.

Again, by definition of h∗γ and using the fact that L is an
upper bound on Lγ , we can write Lγ(h∗γ) ≤ Lγ(h∗) ≤
L(h∗). Thus,

L̂S(ĥγ) ≤ L(h∗) +
1
γ

Rm(H) +M

√
log 2

δ

2m
+ γM.
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Figure 8. Illustration of the region Ω(r). The functions Vi are
monotonic and concave when restricted to this region.

Combining this with (22) and applying the union bound
yields the result.

This bound can be extended to hold uniformly over all γ at

the price of a term in O
(q

log log2
1
γ√

m

)
. Thus, for appropri-

ate choices of γ andm (for instance γ � 1/m1/4) it would
guarantee the convergence of L(ĥγ) to L∗, a stronger form
of consistency.

B. Combinatorial algorithm
B.1. Property of the solution

We will show that problem (8) admits a solution r∗ = b
(1)
i

for some i. We will need the following definition.

Definition 12. For any r ∈ R, define the following subset
of R:

Ω(r) = {ε|r < b
(1)
i ↔ r + ε ≤ b(1)

i ∀i}

We will drop the dependency on r when it is understood
what value of r we are referring to.

Lemma 13. Let r 6= b
(1)
i for all i. If ε > 0 is such that

[−ε, ε] ⊂ Ω(r) then F (r+ ε) < F (r) or F (r− ε) ≤ F (r).

The condition that r 6= b
(1)
i for all i implies that there exists

ε small enough that satisfies ε ∈ Ω(r).

Proof. Let vi = Vi(r,bi) and vi(ε) = Vi(r + ε,bi). For
ε ∈ Ω(r) define the sets D(ε) = {i | vi(ε) ≤ vi} and
I(ε) = {i | vi(ε) > vi}. If∑

i∈D(ε)

vi +
∑
i∈I(ε)

vi >
∑
i∈D(ε)

vi(ε) +
∑
i∈I(ε)

vi(ε),
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then, by definition, we have F (r) > F (r + ε) and the re-
sult is proven. If this inequality is not satisfied, then, by
grouping indices in D(ε) and I(ε) we must have∑

i∈D(ε)

vi − vi(ε) ≤
∑
i∈I(ε)

vi(ε)− vi (23)

Notice that vi(ε) ≤ vi if and only if vi(−ε) ≥ vi. In-
deed, the function Vi(r+η,bi) is monotone for η ∈ [−ε, ε]
as long as [−ε, ε] ⊂ Ω which is true by the choice of ε.
This fact can easily be seen in Figure 8. Hence D(ε) =
I(−ε), similarly I(ε) = D(−ε) Furthermore, because
Vi(r + η,bi) is also concave for η ∈ [−ε, ε]. We must
have

1
2

(vi(−ε) + vi(ε)) ≤ vi. (24)

Using (24), we can obtain the following inequalities:

vi(−ε)− vi ≤ vi − vi(ε) for i ∈ D(ε) (25)
vi(ε)− vi ≤ vi − vi(−ε) for i ∈ I(ε). (26)

Combining inequalities (25), (23) and (26) we obtain∑
i∈D(ε)

vi(−ε)− vi ≤
∑
i∈I(ε)

vi − vi(−ε)

⇒
∑

i∈I(−ε)

vi(−ε)− vi ≤
∑

i∈D(−ε)

vi − vi(−ε).

By rearranging back the terms in the inequality we can eas-
ily see that F (r − ε) ≤ F (r).

Lemma 14. Under the conditions of Lemma 13, if F (r +
ε) ≤ F (r) then F (r+λε) ≤ F (r) for every λ that satisfies
λε ∈ Ω if and only if ε ∈ Ω.

Proof. The proof follows the same ideas as those used in
the previous lemma. By assumption, we can write∑

D(ε)

vi − vi(ε) ≥
∑
i∈I(ε)

vi(ε)− vi. (27)

It is also clear that I(ε) = I(λε) and D(ε) = D(λε). Fur-
thermore, the same concavity argument of Lemma 13 also
yields:

vi(ε) ≥ λ− 1
λ

vi +
1
λ
vi(λε),

which can be rewritten as
1
λ

(vi − vi(λε)) ≥ vi − vi(ε). (28)

Applying inequality (28) in (27) we obtain

1
λ

∑
D(λε)

vi − vi(λε) ≥ 1
λ

∑
I(λε)

vi(λε)− vi.

Since λ > 0, we can multiply the inequality by λ to derive
an inequality similar to (27) which implies that F (r+λε) ≤
F (r).

Proposition 7. Problem (8) admits a solution r∗ that sat-
isfies r∗ = b

(1)
i for some i ∈ [1,m].

Proof. Let r 6= b
(1)
i for every i. By Lemma 13, we can

choose ε 6= 0 small enough with F (r+ε) ≤ F (r). Further-

more if λ = mini
|b(1)i −r|
|ε| then λ satisfies the hypotheses of

Lemma 14. Hence, F (r) ≥ F (r+ λε) = F (bi∗), where i∗

is the minimizer of |b
(1)
i −r|
|ε| .

B.2. Algorithm
We now present a combinatorial algorithm to solve the
optimization problem (8) in O(m logm). Let N =⋃
i{b(1)

i , b
(2)
i , (1 + η)b(1)

i } denote the set of all boundary
points associated with the functions V (·,bi). The algo-
rithm proceeds as follows: first, sort the setN to obtain the
ordered sequence (n1, . . . , n3m), which can be achieved in
O(m logm) using a comparison-based sorting algorithm.
Next, evaluate F (n1) and compute F (nk+1) from F (nk)
for all k.
The main idea of the algorithm is the following: since the
definition of V (·, bi) can only change at boundary points
(see also Figure 4(b)), computing F (nk+1) from F (nk)
can be achieved in constant time. Since between nk and
nk+1 there are only two boundary points, we can compute
V (nk+1,bi) from V (nk,bi) by calculating V for only two
values of bi, which can be done in constant time. We now
give a more detailed description and proof of correctness
for the algorithm.

Proposition 15. There exists an algorithm to solve the op-
timization problem (8) in O(m logm).

Proof. The pseudocode for the desired algorithm is pre-
sented in Algorithm 1. Where a(1)

i , ..., a
(4)
i denote the pa-

rameters defining the functions Vi(r,bi).
We will prove that after running Algorithm 1 we can com-
pute F (nj) in constant time using:

F (nj) = c
(1)
j + c

(2)
j nj + c

(3)
j nj + c

(4)
j . (29)

This holds trivially for n1 since by construction n1 ≤ b
(2)
i

for all i and by definition then F (n1) = −∑m
i=1 a

(1)
i .

Now, assume that (29) holds for j, we prove that then it
must also hold for j + 1. Suppose nj = b2i for some i (the
cases nj = b

(1)
i and nj = (1 +η)b(1)

i can be handled in the
same way). Then Vi(nj ,bi) = −a(1)

i and we can write∑
k 6=i

Vk(nj ,bk) = F (nj)− V (nj ,bi)

= (c(1)
j + c

(2)
j nj + c

(3)
j nj + c

(4)
j ) + a

(1)
i .
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Algorithm 1 Sorting

N :=
⋃m
i=1{b(1)

i , b
(2)
i , (1 + η)b(1)

i };
(n1, ..., n3m) = Sort(N );
Set ci := (c(1)

i , c
(2)
i , c

(3)
i , c

(4)
i ) = 0 for i = 1, ..., 3m;

Set c(1)
1 = −∑m

i=1 a
(1)
i ;

for j = 2, ..., 3m do
Set cj = cj−1;
if nj−1 = b

(2)
i for some i then

c
(1)
j = c

(1)
j + a

(1)
i ;

c
(2)
j = c

(2)
j − a(2)

i ;

else if nj−1 = b
(1)
i for some i then

c
(2)
j = c

(1)
j + a

(2)
i ;

c
(3)
j = c

(3)
j + a

(3)
i ;

c
(4)
j = c

(1)
j − a(4)

i ;
else
c
(3)
j = c

(3)
j − a(3)

i ;

c
(4)
j = c

(1)
j + a

(4)
i ;

end if
end for

Thus, by construction we would have:

c
(1)
j+1 + c

(2)
j+1nj+1 + c

(3)
j+1nj+1 + c

(4)
j+1

= c
(1)
j + a

(1)
i + (c(2)

j − a(2)
i )nj+1 + c

(3)
j nj+1 + c

(4)
j

= (c(1)
j + c

(2)
j nj+1 + c

(3)
j nj+1 + c

(4)
j ) + a

(1)
i − a(2)

i nj+1

=
∑
k 6=i

Vk(nj+1,bk)− a(2)
i nj+1,

where the last equality holds since the definition of
Vk(r,bk) does not change for r ∈ [nj , nj+1]. Finally,
since nj was a boundary point, the definition of Vi(r,bi)
must change from−a(1)

i to−a(2)
i r, thus the last equation is

indeed equal to F (nj+1). A similar argument can be given
if nj = b

(1)
i or nj = (1 + η)b(1)

i .
Let us analyze the complexity of the algorithm: sorting
the set N can be performed in O(m logm) and each it-
eration takes only constant time. Thus the evaluation of
all points can be done in linear time. Once all evaluations
are done, finding the minimum can also be done in linear
time. Thus, the overall time complexity of the algorithm is
O(m logm).


