
Learning Theory and Algorithms for Revenue Optimization
in Second-Price Auctions with Reserve

Mehryar Mohri MOHRI@CIMS.NYU.EDU

Courant Institute and Google Research, 251 Mercer Street, New York, NY 10012
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Abstract
Second-price auctions with reserve play a critical
role in the revenue of modern search engine and
popular online sites since the revenue of these
companies often directly depends on the outcome
of such auctions. The choice of the reserve price
is the main mechanism through which the auc-
tion revenue can be influenced in these electronic
markets. We cast the problem of selecting the
reserve price to optimize revenue as a learning
problem and present a full theoretical analysis
dealing with the complex properties of the cor-
responding loss function. We further give novel
algorithms for solving this problem and report
the results of several experiments demonstrating
their effectiveness.

1. Introduction
Over the past few years, advertisement has gradually
moved away from the traditional printed promotion to the
more tailored and directed online publicity. The advan-
tages of online advertisement are clear: since most modern
search engine and popular online site companies such as as
Microsoft, Facebook, Google, eBay, or Amazon, may col-
lect information about the users’ behavior, advertisers can
better target the population sector their brand is intended
for.
More recently, a new method for selling advertisements has
gained momentum. Unlike the standard contracts between
publishers and advertisers where some amount of impres-
sions is required to be fulfilled by the publisher, an Ad
Exchange works in a way similar to a financial exchange
where advertisers bid and compete between each other for
an ad slot. The winner then pays the publisher and his ad is
displayed.
The design of such auctions and their properties are crucial
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since they generate a large fraction of the revenue of pop-
ular online sites. These questions have motivated exten-
sive research on the topic of auctioning in the last decade
or so, particularly in the theoretical computer science and
economic theory communities. Much of this work has fo-
cused on the analysis of mechanism design, either to prove
some useful property of an existing auctioning mechanism,
to analyze its computational efficiency, or to search for
an optimal revenue maximization truthful mechanism (see
(Muthukrishnan, 2009) for a good discussion of key re-
search problems related to Ad Exchange and references to
a fast growing literature therein).
One important problem is that of determining an auction
mechanism that achieves optimal revenue (Muthukrishnan,
2009). In the ideal scenario where the valuation of the
bidders is drawn i.i.d. from a given distribution, this is
known to be achievable (see for example (Myerson, 1981)).
But, even good approximations of such distributions are not
known in practice. Game theoretical approaches to the de-
sign of auctions have given a series of interesting results
including (Riley & Samuelson, 1981; Milgrom & Weber,
1982; Myerson, 1981; Nisan et al., 2007), all of them based
on some assumptions about the distribution of the bidders,
e.g., the monotone hazard rate assumption.
The results of the recent publications have nevertheless set
the basis for most Ad Exchanges in practice: the mecha-
nism widely adopted for selling ad slots is that of a Vick-
rey auction (Vickrey, 1961) or second-price auction with
reserve price r (Easley & Kleinberg, 2010). In such auc-
tions, the winning bidder (if any) pays the maximum of
the second-place bid and the reserve price r. The reserve
price can be set by the publisher or automatically by the ex-
change. The popularity of these auctions relies on the fact
that they are incentive compatible, i.e., bidders bid exactly
what they are willing to pay. It is clear that the revenue of
the publisher depends greatly on how the reserve price is
set: if set too low, the winner of the auction might end up
paying only a small amount, even if his bid was really high;
on the other hand, if it is set too high, then bidders may not
bid higher than the reserve price and the ad slot will not be
sold.
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We propose a machine learning approach to the problem of
determining the reserve price to optimize revenue in such
auctions. The general idea is to leverage the information
gained from past auctions to predict a beneficial reserve
price. Since every transaction on an Exchange is logged, it
is natural to seek to exploit that data. This could be used to
estimate the probability distribution of the bidders, which
can then be used indirectly to come up with the optimal re-
serve price (Myerson, 1981; Ostrovsky & Schwarz, 2011).
Instead, we will seek a discriminative method making use
of the loss function related to the problem and taking ad-
vantage of existing user features.
Machine learning methods have already been used for the
related problems of designing incentive compatible auction
mechanisms (Balcan et al., 2008; Blum et al., 2004), for
algorithmic bidding (Langford et al., 2010; Amin et al.,
2012), and even for predicting bid landscapes (Cui et al.,
2011). But, to our knowledge, no prior work has used his-
torical data in combination with user features for the sole
purpose of revenue optimization in this context. In fact, the
only publications we are aware of that are directly related to
our objective are (Ostrovsky & Schwarz, 2011) and the in-
teresting work of Cesa-Bianchi et al. (2013) which consid-
ers a more general case than (Ostrovsky & Schwarz, 2011).
The scenario studied by Cesa-Bianchi et al. is that of cen-
sored information, which motivates their use of a bandit
model to optimize the revenue of the seller. Our analysis
assumes instead access to full information. We argue that
this is a more realistic scenario since most companies do in
fact have access to the full historical data.
The learning scenario we consider is more general since it
includes the use of features, as is standard in supervised
learning. Since user information is sent to advertisers and
bids are made based on this information, it is only natural
to include user features in our learning solution. A spe-
cial case of our analysis coincides with the no-feature sce-
nario considered by Cesa-Bianchi et al. (2013), assuming
full information. But, our results further extend those of
this paper even in that scenario. In particular, we present an
O(m logm) algorithm for solving a key optimization prob-
lem used as a subroutine by the authors, for which they do
not seem to give an algorithm. We also do not require an
i.i.d. assumption about the bidders, although this is needed
in (Cesa-Bianchi et al., 2013) only for the bandit approach.
The theoretical and algorithmic analysis of this learning
problem raises several non-trivial technical issues. This is
because, unlike some common problems in machine learn-
ing, here, the use of a convex surrogate loss cannot be suc-
cessful. Instead, we must derive an alternative non-convex
surrogate requiring novel theoretical guarantees (Section 3)
and a new algorithmic solution (Section 4). We present a
detailed analysis of possible surrogate losses and select a
continuous loss that we prove to be calibrated and for which

we give generalization bounds. This leads to an optimiza-
tion problem cast as a DC-programming problem whose
solutions are examined in detail: we first present an effi-
cient combinatorial algorithm for solving that optimization
in the no-feature case, next we combine that solution with
the DC algorithm (DCA) (Tao & An, 1998) to solve the
general case. Section 5 reports the results of our experi-
ments with synthetic data in both the no-feature case and
the general case. We first introduce the problem of select-
ing the reserve price to optimize revenue and cast it as a
learning problem (Section 2).

2. Reserve price selection problem
As already discussed, the choice of the reserve price r is the
main mechanism through which a seller can influence the
auction revenue. To specify the results of a second-price
auction we need only the vector of first and second highest
bids which we denote by b = (b(1), b(2)) ∈ B ⊂ R2

+. For
a given reserve price r and bid pair b, the revenue of an
auction is given by

Revenue(r,b) = b(2)1r<b(2) + r1b(2)≤r≤b(1) . (1)

The simplest setup is one where there are no features as-
sociated with the auction. In that case, the objective is to
select r to optimize the expected revenue, which can be ex-
pressed as follows (see Appendix A.1):

E
b

[Revenue(r,b)] =
∫ ∞
r

P[b(2) > t]dt+ r P[b(1) ≥ r]. (2)

A similar derivation is given by Cesa-Bianchi et al. (2013).
In fact, this expression is precisely the one optimized by
these authors. If we now associate with each auction a fea-
ture vector x ∈ X , the so-called public information, and
set the reserve price to h(x), where h : X → R+ is our
reserve price hypothesis function, the problem can be for-
mulated as that of selecting out of some hypothesis set H a
hypothesis h with large expected revenue:

E
(x,b)∼D

[Revenue(h(x),b)], (3)

where D is the unknown distribution according to which
the pairs (x,b) are drawn. Instead of the revenue, we
will consider a loss function L defined for all (r,b) by
L(r,b) = −Revenue(r,b), and will seek a hypothesis h
with small expected loss L(h) := E(x,b)∼D[L(h(x),b)].
As in standard supervised learning scenarios, we assume
access to a training sample S = ((x1,b1), . . . , (xm,bm))
of size m ≥ 1 drawn i.i.d. according to D and denote by
L̂S(h) the empirical loss 1

m

∑m
i=1 L(h(xi,bi). In the next

sections, we present a detailed study of this learning prob-
lem.
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Figure 1. (a) Plot of the loss function r 7→ L(r,b) for fixed values
of b(1) and b(2); (b) piecewise linear convex surrogate loss.

3. Learning guarantees
To derive generalization bounds for the learning problem
formulated in the previous section, we need to analyze the
complexity of the family of functions LH mapping X ×
B to R defined by LH = {(x,b) 7→ L(h(x),b) : h ∈
H}. The loss function L is neither Lipschitz continuous
nor convex (see Figure 1). To analyze its complexity, we
decompose L as a sum of two loss functions l1 and l2 with
more convenient properties. We have L = l1 + l2 with l1
and l2 defined for all (x,b) ∈ X × B by

l1(r,b) = −b(2)1r<b(2) − r1b(2)≤r≤b(1) − b(1)1r>b(1)

l2(r,b) = b(1)1r>b(1) .

Note that for a fixed b, the function r 7→ l1(r,b) is 1-
Lipschitz since the slope of the lines defining the function
is at most 1. We will consider the corresponding family
of loss functions: l1H = {(x,b) 7→ l1(h(x),b) : h ∈
H} and l2H = {(x,b) 7→ l2(h(x),b) : h ∈ H} and
use the notions of pseudo-dimension as well as empir-
ical and average Rademacher complexity. The pseudo-
dimension is a standard complexity measure (Pollard,
1984) extending the notion of VC-dimension to real-valued
functions (see also (Mohri et al., 2012)). For a fam-
ily of functions G and finite sample S = (z1, . . . , zm)
of size m, the empirical Rademacher complexity is de-
fined by R̂S(G) = Eσ

[
supg∈G

1
m

∑m
i=1 σig(zi)

]
, where

σ = (σ1, . . . , σm)>, with σis independent uniform ran-
dom variables taking values in {−1,+1}. The Rademacher
complexity of G is defined as Rm(G) = ES∼Dm [R̂S(G)].
Theorem 1. Let M = supb∈B b

(1) and let H be a hypoth-
esis set with pseudo-dimension d = Pdim(H). Then, for
any δ > 0, with probability at least 1 − δ over the choice
of a sample S of size m, the following inequality holds for
all h ∈ H:

L(h) ≤ L̂S(h)+2Rm(H)+2M

√
2d log em

d

m
+M

√
log 1

δ

2m
.

Proof. By a standard property of the Rademacher com-
plexity, since L = l1 + l2, the following inequality holds:
Rm(LH) ≤ Rm(l1H)+Rm(l2H). Thus, in view of Propo-
sitions 9 and 10, the Rademacher complexity of LH can be
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Figure 2. Comparison of the sum of real losses

Pm
i=1 L(·,bi)

for m = 500 versus two different surrogates. (a) Sum of con-
vex surrogate losses: the minimizer significantly differs from that
of the sum of the original losses. (b) The surrogate loss sumPm
i=1 Lγ(·,bi) for γ = .02

bounded via

Rm(LH) ≤ Rm(H) +M

√
2d log em

d

m
.

The result then follows by the application of a stan-
dard Rademacher complexity bound (Koltchinskii &
Panchenko, 2002).

This learning bound invites us to consider an algorithm
seeking h∈H to minimize the empirical loss L̂S(h), while
controlling the complexity (Rademacher complexity and
pseudo-dimension) of the hypothesis setH . However, as in
the familiar case of binary classification, in general, mini-
mizing this empirical loss is a computationally hard prob-
lem. Thus, in the next section, we study the question of
using a surrogate loss instead of the original loss L.

3.1. Surrogate loss
As pointed out earlier, the loss function L does not admit
some common useful properties: for any fixed b, L(·,b)
is not differentiable at two points, is not convex, and is
not Lipschitz, in fact it is discontinuous. For any fixed b,
L(·,b) is quasi-convex, a property that is often desirable
since there exist several solutions for quasi-convex opti-
mization problems. However, in general, a sum of quasi-
convex functions, such as the sum

∑m
i=1 L(·,bi) appearing

in the definition of the empirical loss, is not quasi-convex
and a fortiori not convex.1 In fact, in general, such a sum
may admit exponentially many local minima. This leads us
to seek a surrogate loss function with more favorable opti-
mization properties.
A standard method in machine learning consists of replac-
ing the loss function L with a convex upper bound (Bartlett
et al., 2006). A natural candidate in our case is the piece-
wise linear convex function shown in Figure 1(b). How-
ever, while this convex loss function is convenient for opti-
mization, it is not calibrated and does not provide a useful

1It is known that under some separability condition if a finite
sum of quasi-convex functions on an open convex set is quasi-
convex then all but perhaps one of them is convex (Debreu &
Koopmans, 1982).
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surrogate. The calibration problem is illustrated by Fig-
ure 2(a) in dimension one, where the true objective function
to be minimized

∑m
i=1 L(r,bi) is compared with the sum

of the surrogate losses. The next theorem shows that this
problem affects in fact any non-constant convex surrogate.
It is expressed in terms of the loss L̃ : R × R+ → R de-
fined by L̃(r, b) = −r1r≤b, which coincides with L when
the second bid is 0.

Theorem 2 (convex surrogates). There exists no non-
constant function Lc : R×R+ → R convex with respect to
its first argument and satisfying the following conditions:

• for any b0 ∈ R+, limb→b−0
Lc(b0, b) = Lc(b0, b0).

• for any distribution D on R+, there exists a non-
negative minimizer r∗ ∈ argminr Eb∼D[L̃(r, b)] such
that minr Eb∼D Lc(r, b) = Eb∼D Lc(r∗, b).

This theorem, proven in Appendix A.4, leads us to con-
sider alternative non-convex loss functions. Perhaps, the
most natural surrogate loss is then L′γ , an upper bound on
L defined for all γ > 0 by:

L′γ(r,b) = −b(2)1r≤b(2) − r1b(2)<r≤((1−γ)b(1)
)
∨b(2)

+
(1− γ

γ
∨ b(2)

b(1) − b(2)

)
(r−b(1))1(

(1−γ)b(1)
)
∨b(2))<r≤b(1)

,

where c∨d = max(c, d). The plot of this function is shown
in Figure 3(a). The max terms ensure that the function is
well defined if (1 − γ)b(1) < b(2). However, this turns
out to be also a poor choice because L′γ is a loose upper
bound of L in the most critical region, that is around the
minimum of the loss L. Thus, instead, we will consider,
for any γ > 0, the loss function Lγ defined as follows:

Lγ(r,b) = −b(2)1r≤b(2) − r1b(2)<r≤b(1)+
1
γ

(r − (1 + γ)b(1))1b(1)<r≤(1+γ)b(1) , (4)

and shown in Figure 3(b).2 A comparison between the
sum of L-losses and the sum of Lγ-losses is shown in Fig-
ure 2(b). Observe that the fit is considerably better than
when using a piecewise linear convex surrogate loss. A
possible concern associated with the loss function Lγ is
that it is a lower bound for L. One might think then that
minimizing it would not lead to an informative solution.
However, we argue that this problem arises significantly
with upper bounding losses such as the convex surrogate,
which we showed not to lead to a useful minimizer, or
L′γ , which is a poor approximation of L near its minimum.
By matching the original loss L in the region of interest,

2Technically, the theoretical and algorithmic results we
present for Lγ could be developed in a somewhat similar way
for L′

γ .
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Figure 3. Comparison of the true loss Lwith (a) the surrogate loss
L′
γ ; (b) the surrogate loss Lγ , for γ = 0.1.

around the minimal value, the loss function Lγ leads to
more informative solutions in this problem. We further an-
alyze the difference of the expectations of L and Lγ and
show that Lγ is calibrated. We will use for any h ∈ H , the
notation Lγ(h) := E(x,b)∼D[Lγ(h(x),b)].

Theorem 3. Let H be a closed, convex subset of a linear
space of functions containing 0. Denote by h∗γ the solution
of minh∈H Lγ(h). If supb∈B b

(1) = M <∞, then

L(h∗γ)− Lγ(h∗γ) ≤ γM.

The following sets, which will be used in our proof, form a
partition of X × B

I1 = {(x,b)|h∗γ(x) ≤ b(2)}
I2 = {(x,b)|h∗γ(x) ∈ (b(2), b(1)]}
I3 = {(x,b)|h∗γ(x) ∈ (b(1), (1 + γ)b(1)]}
I4 = {(x,b)|h∗γ(x) > (1 + γ)b(1)}

This sets represent the different regions where Lγ is de-
fined. In each region the function is affine. We will now
state a technical lemma that will help us prove Theorem 3.
The proof of this lemma is given in Appendix A.4.

Lemma 4. Under the conditions of Theorem 3,

E
x,b

[
h∗γ(x)1I2(x)

]
≥ 1
γ

E
x,b

[
h∗γ(x)1I3(x)

]
.

Proof. Of Theorem 3. We can express the difference as

E
x,b

[
L(h∗γ(x),b)− Lγ(h∗γ(x),b)

]
(5)

=
4∑
k=1

E
x,b

[
(L(h∗γ(x),b)− Lγ(h∗γ(x),b))1Ik(x)

]
= E

x,b

[
(L(h∗γ(x),b)− Lγ(h∗γ(x),b))1I3(x)

]
= E

x,b

[ 1
γ

((1 + γ)b(1) − h∗γ(x))1I3(x))
]
. (6)

Furthermore, for (x,b) ∈ I3, we know that b(1) < h∗γ(x).
Thus, we can bound (6) by Ex,b[h∗γ(x)1I3(x)], which, by
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Lemma 4, is less than γ Ex,b

[
h∗γ(x)1I2(x)

]
. Thus, we can

write

E
x,b

[
L(h∗γ(x),b)

]
− E

x,b

[
Lγ(h∗γ(x),b)

]
≤ γ E

x,b

[
h∗γ(x)1I2(x)

]
≤ γ E

x,b

[
b(1)1I2(x)

]
≤ γM,

since h∗γ(x) ≤ b(1) for (x,b) ∈ I2.

Notice that, since L ≥ Lγ for all γ ≥ 0, it follows easily
from the proposition that Lγ(h∗γ) → L(h∗). Indeed, if h∗

is the best hypothesis in class for the real loss, then the
following inequalities are straightforward:

0 ≤ Lγ(h∗)− Lγ(h∗γ) ≤ L(h∗)− Lγ(h∗γ)

≤ L(h∗γ)− Lγ(h∗γ) ≤ γM
The 1/γ-Lipschitzness of Lγ can be used to prove the fol-
lowing generalization bound (see Appendix A.5).
Theorem 5. Fix γ ∈ (0, 1] and let S denotes a sample
of size m. Then, for any δ > 0, with probability at least
1 − δ over the choice of the sample S, for all h ∈ H , the
following holds:

Lγ(h) ≤ L̂γ(h) +
2
γ

Rm(H) +M

√
log 1

δ

2m
. (7)

The theorem can be used to derive a learning bound that
holds uniformly for all γ ∈ (0, 1], at the price of an addi-
tional term of the form O(

√
log log(1/γ)/m). These re-

sults are reminiscent of the standard margin bounds with
γ playing the role of a margin. The situation here is how-
ever somewhat different. Our learning bounds suggest, for
a fixed γ ∈ (0, 1], to seek a hypothesis h minimizing the
empirical loss L̂γ(h) while controlling a complexity term
upper bounding Rm(H), which in the case of a family of
linear hypotheses could be ‖h‖2K for some PSD kernel K.
Since the bound can hold uniformly for all γ, we can use it
to select γ out of a finite set of possible grid search values.
Alternatively, γ can be set via cross-validation.

4. Algorithms
In this section we present algorithms for solving the opti-
mization problem for selecting the reserve price. We start
with the no-feature case and then treat the general case.

4.1. No feature case
We present a general algorithm to optimize sums of func-
tions similar to Lγ or L in the one-dimensional case.
Definition 6. We will say that function V : R × B → R is
a v-function if it admits the following form:

V (r,b) = −a(1)1r≤b(2) − a(2)r1b(2)<r≤b(1)+

(a(3)r − a(4))1b(1)<r<(1+η)b(1) ,

−a(1)

b(2)

−a(2)r

b(1)

a(3)r − a(4)

(1 + η)b(1) b
(2)
i b

(1)
i

nk nk+1

(1 + η)b
(1)
i

Vi(nk,bi) = −a
(2)
i nk

Vi(nk+1,bi) = −a
(2)
i nk+1

(a) (b)

Figure 4. (a) Prototypical v-function. (b) Illustration of the fact
that the definition of Vi(r,bi) does not change on an interval
[nk, nk+1].

with a(1) > 0 and η > 0 constants and a(1), a(2), a(3), a(4)

defined by a(1) = ηa(3)b(2), a(2) = ηa(3), and a(4) =
a(3)(1 + η)b(1).

Figure 4(a) illustrates this family of loss functions. A v-
function is a generalization of Lγ and L. Indeed, any v-
function V satisfies V (r,b) ≤ 0 and attains its minimum
at b(1). Finally, as can be seen straightforwardly from Fig-
ure 3, Lγ is a v-function for any γ ≥ 0. We consider
the following general problem of minimizing a sum of v-
functions:

min
r≥0

F (r) :=
m∑
i=1

Vi(r,bi). (8)

Observe that this is not a trivial problem since, for any fixed
bi, Vi(·,bi) is non-convex and that, in general, a sum of m
such functions may admit many local minima. The follow-
ing proposition shows that the minimum is attained at one
of the highest bids, which matches the intuition.

Proposition 7. Problem (8) admits a solution r∗ that sat-
isfies r∗ = b

(1)
i for some i ∈ [1,m].

The problem can thus be reduced to examining the value
of the function for the m arguments b(1)

i , i ∈ [1,m]. This
yields a straightforward method for solving the optimiza-
tion which consists of computing F (b(1)

i ) for all i and
taking the minimum. But, since the computation of each
F (b(1)

i ) takes O(m), the overall computational cost is in
O(m2), which can be prohibitive for even moderately large
values of m.
Instead, we have devised a more efficient combinato-
rial algorithm that can be used to solve the problem in
O(m logm) time. The algorithm consists of first sort-
ing all boundary points, that is the points in N =⋃
i{b(1)

i , b
(2)
i , (1 + η)b(1)

i } associated with the functions
Vi(·,bi), i ∈ [1,m]. We then show that for the ordered
sequence (n1, . . . , n3m), F (nk+1) can be computed from
F (nk) in constant time, using the fact that the definition
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of Vi(·,bi) can only change at boundary points (see Fig-
ure 4(b)). A more detailed description and the proof of the
correctness of the algorithm are given in the Appendix B.
Furthermore, the algorithm can be straightforwardly ex-
tended to solve the minimization of F over a set of r-values
bounded by Λ, that is {r : 0 ≤ r ≤ Λ}. Indeed, we then
only need to compute F (b(1)

i ) for i ∈ [1,m] such that
b
(1)
i < Λ and of course also F (Λ), thus the computational

complexity in that regularized case remains O(m logm).

4.2. General case
We first consider the case of a hypothesis set H of linear
functions x 7→ w · x with bounded norm, ‖w‖ ≤ Λ, for
some Λ ≥ 0. This can be immediately generalized to the
case where a positive definite kernel is used.
The results of Theorem 5 suggest seeking, for a fixed
γ ≥ 0, the vector w solution of the following optimiza-
tion problem: min‖w‖≤Λ

∑m
i=1 Lγ(w · xi,bi). Replacing

the original loss L with Lγ helped us remove the disconti-
nuity of the loss. But, we still face an optimization prob-
lem based on a sum of non-convex functions. This prob-
lem can be formulated as a DC-programming (difference
of convex functions programming) problem. Indeed, Lγ
can be decomposed as follows for all (r,b) ∈ X × B:
Lγ(r,b) = u(r,b) − v(r,b), with the convex functions
u and v defined by

u(r,b) = −r1r<b(1) + r−(1+γ)b(1)

γ 1r≥b(1)

v(r,b) = (−r + b(2))1r<b(2) + r−(1+γ)b(1)

γ 1r>b(1) .

Using the decomposition Lγ = u − v, our optimization
problem can be formulated as follows:

min
w∈RN

U(w)− V (w) subject to ‖w‖ ≤ Λ, (9)

where U(w) =
∑m
i=1 u(w · xi,bi) and V (w) =∑m

i=1 v(w · xi,bi), which shows that it can be formu-
lated as a DC-programming problem. The global minimum
of the optimization problem (9) can be found using a cut-
ting plane method (Horst & Thoai, 1999), but that method
only converges in the limit and does not admit known al-
gorithmic convergence guarantees.3 There exists also a
branch-and-bound algorithm with exponential convergence
for DC-programming (Horst & Thoai, 1999) for finding
the global minimum. Nevertheless, in (Tao & An, 1997),
it is pointed out that this type of combinatorial algorithms
fail to solve real-world DC-programs in high dimensions.
In fact, our implementation of this algorithm shows that
the convergence of the algorithm in practice is extremely
slow for even moderately high-dimensional problems. An-
other attractive solution for finding the global solution of

3Some claims of (Horst & Thoai, 1999), e.g., Proposition 4.4
used in support of the cutting plane algorithm, are incorrect (Tuy,
2002).

a DC-programming problem over a polyhedral convex set
is the combinatorial solution of Hoang Tuy (Tuy, 1964).
However, casting our problem as an instance of that prob-
lem requires explicitly specifying the slope and offsets for
the piecewise linear function corresponding to a sum of Lγ
losses, which admits an exponential cost in time and space.
An alternative consists of using the DC algorithm, a primal-
dual sub-differential method of Dinh Tao and Hoai An (Tao
& An, 1998), (see also (Tao & An, 1997) for a good sur-
vey). This algorithm is applicable when u and v are proper
lower semi-continuous convex functions as in our case.
When v is differentiable, the DC algorithm coincides with
the CCCP algorithm of Yuille and Rangarajan (Yuille &
Rangarajan, 2003), which has been used in several con-
texts in machine learning and analyzed by (Sriperumbudur
& Lanckriet, 2012).
The general proof of convergence of the DC algorithm was
given by (Tao & An, 1998). In some special cases, the DC
algorithm can be used to find the global minimum of the
problem as in the trust region problem (Tao & An, 1998),
but, in general, the DC algorithm or its special case CCCP
are only guaranteed to converge to a critical point (Tao &
An, 1998; Sriperumbudur & Lanckriet, 2012). Neverthe-
less, the number of iterations of the DC algorithm is rela-
tively small. Its convergence has been shown to be in fact
linear for DC-programming problems such as ours (Yen
et al., 2012). The algorithm we are proposing goes one
step further than that of (Tao & An, 1998): we use DCA
to find a local minimum but then restart our algorithm with
a new seed that is guaranteed to reduce the objective func-
tion. Unfortunately, we are not in the same regime as in
the trust region problem of Dinh Tao and Hoai An (Tao &
An, 1998) where the number of local minima is linear in
the size of the input. Indeed, here the number of local min-
ima can be exponential in the number of dimensions of the
feature space and it is not clear to us how the combinatorial
structure of the problem could help us rule out some local
minima faster and make the optimization more tractable.
In the following, we describe more in detail the solution
we propose for solving the DC-programming problem (9).
The functions v and V are not differentiable in our context
but they admit a sub-gradient at all points. We will denote
by δV (w) an arbitrary element of the sub-gradient ∂V (w),
which coincides with ∇V (w) at points w where V is dif-
ferentiable. The DC algorithm then coincides with CCCP,
modulo the replacement of the gradient of V by δV (w). It
consists of starting with a weight vector w0 ≤ Λ and of
iteratively solving a sequence of convex optimization prob-
lems obtained by replacing V with its linear approxima-
tion giving wt as a function of wt−1, for t = 1, . . . , T :
wt ∈ argmin‖w‖≤Λ U(w)−δV (wt−1) ·w. This problem
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DC Algorithm
w← w0 . initialization
for t ≥ 1 do

wt ← DCA(w) . DCA algorithm
w← OPTIMIZE(objective,fixed direction wt/‖wt‖)

end for

Figure 5. Pseudocode of our DC-programming algorithm.

can be rewritten in our context as the following:

min
‖w‖≤Λ,s

m∑
i=1

si − δV (wt−1) ·w (10)

subject to (si≥−w · xi)∧
[
si≥ 1

γ

(
w · xi−(1 + γ)b(1)

i

)]
.

The problem is equivalent to a QP (quadratic-
programming) problem since the quadratic constraint
can be replaced by a term of the form λ‖w‖2 in the objec-
tive and thus can be tackled using any standard QP solver.
We propose an algorithm that iterates along different local
minima, but with the guarantee of reducing the function at
every change of local minimum. The algorithm is simple
and is based on the observation that the function Lγ is
positive homogeneous. Indeed, for any η > 0 and (r,b),

Lγ(ηr, ηb) = −ηb(2)1ηr<ηb(2) − ηr1ηb(2)≤ηr≤ηb(1)

+
ηr − (1 + γ)ηb(1)

γ
1ηb(1)<ηr<η(1+γ)b(1) = ηLγ(r,b).

Minimizing the objective function of (9) in a fixed di-
rection u, ‖u‖ = 1, can be reformulated as follows:
min0≤η≤Λ

∑m
i=1 Lγ(ηu · xi,bi). Since for u · xi ≤ 0

the function η 7→ Lγ(ηu ·xi,bi) is constant equal to−b(2)
i

the problem is equivalent to solving

min
0≤η≤Λ

∑
u·xi>0

Lγ(ηu · xi,bi).

Furthermore, since Lγ is positive homogeneous, for all
i ∈ [1,m] with u · xi > 0, Lγ(ηu · xi,bi) = (u ·
xi)Lγ(η,bi/(u ·xi)). But η 7→ (u ·xi)Lγ(η,bi/(u ·xi))
is a v-function and thus the problem can efficiently opti-
mized using the combinatorial algorithm for the no-feature
case (Section 4.1). This leads to the optimization algorithm
described in Figure 5. The last step of each iteration of our
algorithm can be viewed as a line search and this is in fact
the step that reduces the objective function the most in prac-
tice. This is because we are then precisely minimizing the
objective function even though this is for some fixed direc-
tion. Since in general this line search does not find a local
minimum (we are likely to decrease the objective value in
other directions that are not the one in which the line search
was performed) running DCA helps us find a better direc-
tion for the next iteration of the line search.

6 7 8 9 10
0

20

40

60

80

100

120

Number of bids (3 n)

T
im

e(
s)

 

 
Naïve
Sorting

Figure 6. Running-time of our combinatorial algorithm (sorting)
compared to the naı̈ve algorithm in log-scale.

5. Experiments
Here, we report the results of some preliminary experi-
ments demonstrating the benefits of our algorithm. All
our experiments were carried out using synthetic data.
While experiments with data from online auctions have
been reported in the literature (Cui et al., 2011), due to
confidentiality reasons, the corresponding data is not avail-
able to the public. There are other sources of auction data
(http://modelingonlineauctions.com/datasets),
however, these data sets do not include features. To the
best of our knowledge, there is no publicly available data
set for online auctions including features that could be
readily used with our algorithm.
We first tested the speed of our combinatorial algorithm
in the simple no-feature case. Figure 6 shows the compu-
tational time of that algorithm for finding the optimal so-
lution compared to the naı̈ve approach of evaluating the
loss at each point on a 4-Core 2.6 GHz AMD processor
with 7GB of RAM. The time our algorithm took to solve
the problem with 50,000 points was less than a second,
whereas the naı̈ve approach required more than 2 minutes
to find the solution. This shows the potential for scalabil-
ity of our algorithm. Running our algorithm to solve the
problem using 200,000 points required 1.87 seconds.
Our experiments were set up as follows. We sampled
vectors xi in R200 from a standard Gaussian distribution.
A labeling vector w ∈ R200, also sampled from a stan-
dard Gaussian, was used to generate the bid vectors bi =
(|w ·xi|, 1

2 |w ·xi|). Absolute values were used to make the
dependency between features and bids non-linear.
We are not aware of any published learning algorithm us-
ing features to tackle the same problem. In the absence
of a baseline, we instead compared the performance of our
algorithm with some potential alternatives. One possible
algorithm consists of the regularized minimization of the
convex surrogate loss Lα of Figure 1(b) parametrized by
α ∈ [0, 1] and defined by

Lα(r,b)=

{−r if r < b(1) + α(b(2) − b(1))(
(1−α)b(1)+αb(2)

α(b(1)−b(2))

)
(r − b(1)) otherwise.
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Figure 7. Comparison of the performance of our algorithm (DC)
with that of other reserve price optimization techniques: (a) reg-
ularized minimization of a convex surrogate loss (CONVEX); (b)
ridge regression (RIDGE). The results are reported as percentages
of revenue improvement over the no-feature method. The error
bars are not indicated since they are too tiny to be discernible at
the scale of the plot.

A second alternative consists of using ridge regression to
estimate the first bid and use its prediction as the reserve
price. A third algorithm consists of minimizing the loss
while ignoring the feature vectors xi, i.e., solving the prob-
lem minr≤Λ

∑n
i=1 L(r,bi). It is worth mentioning that

this third approach is very similar to what advertisement
exchanges currently use to suggest reserve prices to pub-
lishers. By Equation (1), this is equivalent to estimating the
empirical distribution of bids and optimizing the expected
revenue with respect to this empirical distribution as in (Os-
trovsky & Schwarz, 2011) and (Cesa-Bianchi et al., 2013).
For all our experiments, the parameters Λ, γ and α were
tuned via 10-fold cross-validation. The test set was a col-
lection of 20,000 examples drawn from the same distri-
bution. The experiment was repeated 20 times. Figure 7
shows the mean revenue increase obtained for each algo-
rithm over the method using no feature. Since our DC-
programming algorithm can converge to a local minimum,
the choice of a good starting vector is crucial. For our ex-
periments, it was selected via cross-validation from ran-
dom starts. Another starting point considered in the cross-
validation was the solution to min‖w‖≤Λ

∑n
i=1 Lα(w ·

xi,bi).
Figure 7 shows the results of our experiments. The per-
formance gain achieved by our algorithm is substantial and
clearly superior to that of a regularized minimization of a
convex surrogate loss or the no-feature algorithm, which
is the current state-of-the-art. Since the square loss used
in ridge regression is not calibrated with respect to L (it
is symmetric around b(1) whereas L is not), we could not
expect a high performance using that algorithm. As can
be seen from Figure 7, its performance is in fact the worst
among the four algorithms tested.
Finally, to test the performance of our algorithm in the pres-
ence of noise, we sampled the feature vectors xi and w as

Table 1. Comparison of the performance for different noise set-
tings. The results reported are percentages of revenue gained over
using no feature using our algorithm (DC) or the regularized min-
imization based on a convex surrogate loss Lα (CONV).

σ 0.5 1.0 1.5 2.0
DC 33.59 ± .65 26.43± .56 18.38 ± .57 10.68 ±.65
CONV 1.13 ± .16 -.08 ± .13 -1.95 ± .07 -3.54 ± .07

before but generated bids as follows:

b
(1)
i = max

(
(|w · xi|+ σε)+, (0.5|w · xi|+ σε)+

)
b
(2)
i = min

(
(|w · xi|+ σε)+, (0.5|w · xi|+ σε)+

)
,

where z+ := max(z, 0), ε ∼ N (0, 1) is a Gaussian ran-
dom variable, and σ takes values in the set {.5, 1, 1.5, 2}.
We trained our algorithm on a sample of 8,000 points and
tested it on a sample of same size, and measured its per-
formance as a function of the noise added to the bids. Ta-
ble 5 shows the mean revenue improvement achieved over
the no-feature algorithm using our algorithm and the regu-
larized minimization of a convex surrogate loss which was
the only competitive algorithm in the previous experiment.
Of course, as expected from all learning algorithm, the
performance deteriorates as the noise parameter increases.
But, while the performance of our algorithm becomes
smaller it remains non negligible for even relatively high
values of σ. In contrast, we observe that the performance
of the surrogate convex loss minimization algorithm de-
creases rapidly under an even moderate amount of noise.
This is likely to be related to the lack of calibration of con-
vex surrogate. Note that this algorithm is even quickly out-
performed by the straightforward no-feature approach in
the presence of noise.

6. Conclusion
We presented a comprehensive theoretical and algorithmic
analysis of the learning problem of revenue optimization in
second-price auctions with reserve. The specific properties
of the loss function for this problem required a new analysis
and new learning guarantees. The algorithmic solutions we
presented are practically applicable to revenue optimization
problems for this type of auctions in most realistic settings.
Our experimental results further demonstrate their effec-
tiveness. Much of the analysis and algorithms presented, in
particular our study of calibration questions, can also be of
interest in other learning problems.
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