
Supplementary Material for
Square Deal: Lower Bounds and Improved Relaxations

for Tensor Recovery

A. Proofs for Section 2
Proof of Theorem 1. The proof of Theorem 1 follows from a covering argument, which we estab-
lish in several steps as below.

Let
S2r = {D | D ∈ T2r, ‖D‖F = 1} . (A.1)

The following lemma shows that the required number of measurements can be bounded in terms of
the exponent of the covering number for S2r, which can be considered as a proxy for dimensionality:

Lemma 1. Suppose that the covering number for S2r with respect to the Frobenius norm, satisfies

N(S2r, ‖·‖F , ε) ≤ (β/ε)
d
, (A.2)

for some integer d and scalar β that does not depend on ε. Then if m ≥ d+ 1, with probability one
null (G) ∩S2r = ∅, which implies that null (G) ∩ T2r = {0}.

Proof. The arguments we used below are primarily adapted from (Eldar et al., 2012), where their
interest is to establish the number of Gaussian measurements required to recover a low-rank matrix
by rank minimization.

Notice that every D ∈ S2r, and every i, 〈Gi,D〉 is a standard Gaussian random variable, and so

∀ t > 0, P [ |〈Gi,D〉| < t ] < 2t · 1√
2π

= t

√
2

π
. (A.3)

Let N be an ε-net for S2r in terms of ‖·‖F . Because the measurements are independent, for any
fixed D̄ ∈ S2r,

P
[ ∥∥G[D̄]

∥∥
∞ < t

]
<
(
t
√

2/π
)m

. (A.4)

Moreover, for any D ∈ S2r, we have

‖G[D]‖∞ ≥ max
D̄∈N

{ ∥∥G[D̄]
∥∥
∞ − ‖G‖F→∞

∥∥D̄ −D
∥∥
F

}
(A.5)

≥ min
D̄∈N

{∥∥G[D̄]
∥∥
∞

}
− ε ‖G‖F→∞ . (A.6)
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Hence,

P
[

inf
D∈S2r

‖G[D]‖∞ < ε log(1/ε)

]
≤ P

[
min
D∈N

‖G[D]‖∞ < 2ε log(1/ε)

]
+ P [ ‖G‖F→∞ > log(1/ε) ]

≤ #N×
(

2
√

2/π × ε log(1/ε)
)m

+ P [ ‖G‖F→∞ > log(1/ε) ]

≤ βd(2
√

2/π)mεm−d log(1/ε)m + P [ ‖G‖F→∞ > log(1/ε) ] . (A.7)

Since m ≥ d + 1, (A.7) goes to zero as ε ↘ 0. Hence, taking a sequence of decreasing ε, we can
show that P [ infD∈S2r

‖G[D]‖∞ = 0 ] ≤ t for every positive t, establishing the result.

Following Lemma 1, it just remains to find the covering number of S2r. We use the following
lemma, which uses the triangle inequality to control the effect of perturbations in the factors of the
Tucker decomposition

[[C;U1,U2, · · · ,UK ]] := C ×1 U1 ×2 U2 ×3 · · · ×K UK , (A.8)

where the mode-i (matrix) product of tensor A with matrix B of compatible size, denoted as A×iB,
outputs a tensor C such that C(i) = BA(i).

Lemma 2. Let C,C′ ∈ Rr1,...,rK , and U1,U
′
1 ∈ Rn1×r1 , . . . ,UK ,U

′
K ∈ RnK×rK with U∗iUi =

U′i
∗
U′i = I, and ‖C‖F =

∥∥C′∥∥
F

= 1. Then

∥∥[[C;U1, . . . ,UK ]]− [[C′;U′1, . . . ,U′K ]]
∥∥
F
≤
∥∥C − C′

∥∥
F

+

K∑
i=1

‖Ui −U′i‖. (A.9)

Proof. This follows from the basic fact that for any tensor X and matrix U of compatible size,

‖X ×k U‖F ≤ ‖U‖ ‖X‖F , (A.10)

which can be established by direct calculation. Write∥∥[[C;U1, . . . ,UK ]]− [[C′;U′1, . . . ,U′K ]]
∥∥
F

≤
∥∥[[C;U1, . . . ,UK ]]− [[C′;U1, . . . ,UK ]]

∥∥
F

+

∥∥∥∥∥
K∑
i=1

[[C′;U′1, . . . ,U′i,Ui+1, . . .Uk]]− [[C′;U′1, . . . ,U′i−1,Ui, . . .UK ]]

∥∥∥∥∥
F

≤
∥∥C − C′

∥∥
F

+

K∑
i=1

‖Ui −U′i‖,

where the first inequality follows from triangle inequality and the second inequality follows from
the fact that ‖C‖F = 1, ‖Uj‖ = 1, U∗iUi = I and U′i

∗
U′i = I.
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Using this result, we construct an ε-net for S2r by building ε/(K + 1)-nets for each of the K + 1
factors C and {Ui}. The total size of the resulting ε net is thus bounded by the following lemma:

Lemma 3. N(S2r, ‖·‖F , ε) ≤ (3(K + 1)/ε)
(2r)K+2nrK

Proof. The idea of this proof is to construct a net for each component of the Tucker decomposition
and then combine these nets to form a compound net with the desired cardinality.

Denote C = {C ∈ R2r×2r×···×2r | ‖C‖F = 1} and O = {U ∈ Rn×r | U∗U = I}. Clearly, for any
C ∈ C, ‖C‖F = 1, and for any U ∈ O, ‖U‖ = 1. Thus by Prop. 4 of (Vershynin, 2007) and Lemma
5.2 of (Vershynin, 2010), there exists an ε

K+1 -net C′ covering C with respect to the Frobenius norm

such that #C′ ≤ ( 3(K+1)
ε )(2r)K , and there exists an ε

K+1 -net O′ covering O with respect to the

operator norm such that #O′ ≤ ( 3(K+1)
ε )2nr. Construct

S′2r = {[[C′;U′1, . . . ,U′K ]] | C′ ∈ C′, U′i ∈ O′}.

Clearly #S′2r ≤
(

3(K+1)
ε

)(2r)K+2nrK

. The rest is to show that S′2r is indeed an ε-net covering
S2r with respect to the Frobenius norm.

For any fixed D = [[C;U1, · · · ,UK ]] ∈ S2r where C ∈ C and Ui ∈ O, by our constructions
above, there exist C′ ∈ C′ and U′i ∈ O′ such that

∥∥C − C′
∥∥
F
≤ 3(K+1)

ε and ‖Ui −U′i‖ ≤
3(K+1)

ε .
Then D′ = [[C′;U′1, · · · ,U′K ]] ∈ S′2r is within ε-distance from D, since by the triangle inequality
derived in Lemma 2, we have

∥∥D −D′
∥∥
F

=
∥∥[[C;U1, . . . ,UK ]]− [[C′;U′1, . . . ,U′K ]]

∥∥
F
≤
∥∥C − C′

∥∥
F

+

K∑
i=1

‖Ui −U′i‖ ≤ ε.

This completes the proof.

With these observations in hand, Theorem 1 follows immediately.

B. Proofs for Section 3
Proof of Corollary 4.

Proof. Denote λ = δ(C)−m. Then following Theorem 7.1 of (Amelunxen et al., 2013), we have

P [ C ∩ null(G) = {0} ] ≤ 4 exp

(
− λ2/8

min{δ(C), δ(C◦)}+ λ

)
≤ 4 exp

(
− λ2/8

δ(C) + λ

)
≤ 4 exp

(
− (δ(C)−m)2

16δ(C)

)
.
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Proof of Lemma 2.

Proof. Denote circ(en, θ) as circn(θ), where en is the nth standard basis for Rn. Since
δ
(
circ(x0, θ)

)
= δ
(
circ(en, θ)

)
, it is sufficient to prove δ

(
circn(θ)

)
≤ n sin2 θ + 2.

Let us first consider the case where n is even. Define a discrete random variable V supported on
{0, 1, 2, · · · , n} with probability mass function P [V = k ] = vk. Here vk denotes the k-th intrinsic
volumes of circn(θ). As specified in Ex. 4.4.8 of (Amelunxen, 2011), we have

vk =
1

2

( 1
2 (n− 2)
1
2 (k − 1)

)
sink−1(θ) cosn−k−1(θ) for k = 1, 2, · · · , n− 1.

From Prop. 5.11 of (Amelunxen et al., 2013), we know that

δ
(
circn(θ)

)
= E [V ] =

n∑
k=1

P [V ≥ k ] .

Moreover, by the interlacing result from Prop. 5.6 of (Amelunxen et al., 2013) and the fact that
P [V ≥ 2k ] = P [V ≥ 2k − 1 ]− P [V = 2k − 1 ], we have

P [V ≥ 1 ] ≤ 2P [V = 1 ] + 2P [V = 3 ] + · · ·+ 2P [V = n− 1 ] ,
P [V ≥ 2 ] ≤ P [V = 1 ] + 2P [V = 3 ] + · · ·+ 2P [V = n− 1 ] ;

P [V ≥ 3 ] ≤ 2P [V = 3 ] + 2P [V = 5 ] + · · ·+ 2P [V = n− 1 ] ,
P [V ≥ 4 ] ≤ P [V = 3 ] + 2P [V = 5 ] + · · ·+ 2P [V = n− 1 ] ;

...
...

...

P [V ≥ n− 1 ] ≤ 2P [V = n− 1 ] ,
P [V ≥ n ] ≤ P [V = n− 1 ] .

Summing up the above inequalities, we have

E [V ] =

n∑
k=1

P [V ≥ k ]

≤
∑

k=1,3,··· ,n−1

2(k − 1)vk +
∑

k=1,3,··· ,n−1

3vk

≤ (n− 2) sin2 θ +
3

2

n∑
k=0

vk

≤ (n− 2) sin2 θ +
3

2
= n sin2 θ + 2 cos2 θ − 1

2
,

where the second last inequality follows from the observations that
∑
k=1,3,··· ,n−1

k−1
2 · (2vk) =

E
[
Bin(n−2

2 , sin2 θ)
]

and
∑n
k=0 vk ≥

∑
k=1,3,··· ,n−1 2vk again by the interlacing result from Prop.

5.6 (Amelunxen et al., 2013).
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Suppose n is odd. Since the intersection of circn+1(θ) with any n-dimensional linear subspace
containing en+1 is an isometric image of circn(θ), by Prop. 4.1 of (Amelunxen et al., 2013), we
have

δ(circn(θ)) = δ(circn(θ)×{0}) ≤ δ(circn+1(θ)) ≤ (n+1) sin2 θ+2 cos2 θ−1

2
≤ n sin2 θ+cos2 θ+

1

2
.

Thus, taking both cases (n is even and n is odd) into consideration, we have

δ
(
circn(θ)

)
≤ n sin2 θ + cos2 θ +

1

2
< n sin2 θ + 2.

Proof of Theorem 5.

Proof. Notice that for any fixed m > 0, the function f : t → 4 exp
(
− (t−m)2

16t

)
is decreasing for

t ≥ m. Then due to Corollary 4 and the fact that δ(C) ≥ κ− 2 ≥ m, we have

P [x0 is the unique optimal solution to 3.3 ] = P [C ∩ null(G) = {0} ]

≤ 4 exp

(
− (δ(C)−m)2

16δ(C)

)
≤ 4 exp

(
− (κ−m− 2)2

16 (κ− 2)

)
.

C. Proofs and Comments for Section 4
C.1. Proof of Lemma 3.

Proof. (1) By the definition of X [j], it is sufficient to prove that the vectorization of the right hand
side of (4.3) equals vec(X (1)).

Since X =
∑r
i=1 λia

(1)
i ◦ a

(2)
i ◦ · · · ◦ a

(K)
i , we have

vec(X (1)) = vec
( r∑
i=1

λia
(1)
i ◦ (a

(K)
i ⊗ a(K−1)

i ⊗ · · · ⊗ a(2)
i )
)

=

r∑
i=1

λivec
(
a

(1)
i ◦ (a

(K)
i ⊗ a(K−1)

i ⊗ · · · ⊗ a(2)
i )
)

=

r∑
i=1

λi(a
(K)
i ⊗ a(K−1)

i ⊗ · · · ⊗ a(2)
i ⊗ a

(1)
i ),

where the last equality follows from the fact that vec(a ◦ b) = b⊗ a. Similarly, we can derive that
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the vectorization of the right hand side of (4.3),

vec(

r∑
i=1

λi(a
(j)
i ⊗ a

(j−1)
i ⊗ · · · ⊗ a(1)

i ) ◦ (a
(K)
i ⊗ a(K−1)

i · · · ⊗ a(j+1)
i ))

=

r∑
i=1

λivec
(
(a

(j)
i ⊗ a

(j−1)
i ⊗ · · · ⊗ a(1)

i ) ◦ (a
(K)
i ⊗ a(K−1)

i · · · ⊗ a(j+1)
i )

)
=

r∑
i=1

λi(a
(K)
i ⊗ a(K−1)

i ⊗ · · · ⊗ a(2)
i ⊗ a

(1)
i )

= vec(X (1)).

Thus, equation (4.3) is valid.

(2) The above argument can be easily adapted to prove the second claim. Since
X = C ×1 U1 ×2 U2 ×3 · · · ×K UK , we have

vec(X (1)) = vec
(
U1 C(1) (UK ⊗UK−1 ⊗ · · · ⊗U2)∗

)
= (UK ⊗UK−1 ⊗ · · · ⊗U1) vec(C(1)),

where the last equality follows from the fact that vec(ABC) = (C∗ ⊗ A)vec(B). Similarly, we
can derive that the vectorization of the right hand side of (4.4),

vec
(

(Uj ⊗Uj−1 ⊗ · · · ⊗U1) C[j] (UK ⊗UK−1 ⊗ · · · ⊗Uj+1)∗
)

= (UK ⊗UK−1 ⊗ · · · ⊗U1) vec(C[j])

= (UK ⊗UK−1 ⊗ · · · ⊗U1) vec(C(1))

= vec(X (1)).

Thus, equation (4.4) is valid.

C.2. Comments on General Square Reshaping.

As suggested in the paper, our square reshaping can be generalized to combine any j modes (say
modes i1, i2, · · · , ij) together rather than the first j modes. Denote I = {i1, i2, · · · , ij} ⊆ [K] and
J = [K]\I = {ij+1, ij+2, · · · , iK}. Then the embedded matrix X I ∈ R

∏j
k=1 nik

×
∏K

k=j+1 nik can
be defined as in (4.2) after relabeling. Specifically for 1 ≤ k ≤ K, we first relabel the kth mode as
the original ikth mode. Denote the relabeled tensor as X̂ . Then we can define

X I := X̂ [j] = reshape
(
X̂ (1),

j∏
k=1

nik ,

K∏
k=j+1

nik

)
. (C.1)

Lemma 4 and Theorem 6 can also be easily extended. As shown by Theorem 6 (after modification),
to maximize the effect of our square model, we would like to choose I to minimize the quantity,

rank(X I) ·max
{ j∏
k=1

nik ,

K∏
k=j+1

nik

}
. (C.2)
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In practice, normally we do not know the exact rank of each mode, and hence (C.2) cannot be
computed directly. However, prior knowledege of the physical properties of the underlying tensor
can provide some guidance. For example, in multi-spectral video data, the video tensor tends to be
low rank in both the wavelength and the temporal modes. Thus grouping these two modes would
lead to a low-rank matrix. Hence, practically, we should set I by taking both the size and the
physical characteristics of the true tensor into consideration.

D. Experimental and Algorithmic Details for Section 5
D.1. Video Data Description for Section 5.2

The Ocean video (source: http://pages.cs.wisc.edu/˜ji-liu/) is of size 112× 160×
3× 32. It records the movements of the ocean and has been used in (Liu et al., 2009) to demonstrate
the efficacy of the SNN model.

The Campus video (Li et al., 2004) (source: http://perception.i2r.a-star.edu.sg/
bk_model/bk_index.html) is of size 128× 160× 3× 199. It records a campus scene in the
day time.

The Face video (source: http://www.youtube.com/watch?v=Ew1i2zY9IEA) is of size
96× 65× 3× 994. It is a YOUTUBE video that records the face of a lady aging from young to old.

D.2. On the Equivalence between Problem (5.3) and Problem (5.5)

In this part, we argue that the unconstrained problem (5.3):

min 1
2 ‖PΩ[X ]−D‖2F +

4∑
i=1

λi
∥∥X (i)

∥∥
∗

and the norm constrained problem (5.5):

min 1
2 ‖PΩ[X ]−D‖2F s.t.

∥∥X (i)

∥∥
∗ ≤ βi, i = 1 . . . 4,

are equivalent, in the following sense:

If X ? is an optimal solution to (5.3) for some choice of λ1, . . . , λ4 ≥ 0, then there exists
a choice of β1, . . . , β4 ≥ 0 such that X ? is also an optimal solution to problem (5.5).
Conversely, if X ? is an optimal solution to problem (5.5) for some β1, . . . , β4, then there
exist λ1, . . . , λ4 ≥ 0 such that X ? is also an optimal solution to (5.3).

To prove the equivalence, we first characterize the optimality conditions for the two problems 1.

For problem (5.3), X ? is an optimal solution if and only if

0 ∈ PΩ[X ?]−D +

4∑
i=1

λi∂
∥∥∥X ?

(i)

∥∥∥
∗
. (D.1)

1Here we always assume the optimal solution X ? to either (5.3) or (5.5) is not trivially 0, though the
equivalence can also be established under this not interesting scenario. Therefore, we would assume βi > 0
for any i ∈ [4] in problem (5.5).

http://pages.cs.wisc.edu/~ji-liu/
http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
http://www.youtube.com/watch?v=Ew1i2zY9IEA
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For problem (5.5), since 0 is in the interior of the feasible region (β > 0), Slater’s condition is
satisfied. Therefore, X ? is an optimal solution to problem (5.5) if and only if the KKT conditions
are satisfied, i.e. 

∥∥∥X ?
(i)

∥∥∥
∗
≤ βi, for any i ∈ [4]

0 ∈ PΩ[X ?]−D +
∑4
i=1 µ

?
i ∂
∥∥∥X ?

(i)

∥∥∥
∗

µ?i

(∥∥∥X ?
(i)

∥∥∥
∗
− βi

)
= 0, for all i ∈ [4]

µ?i ≥ 0, for any i ∈ [4].

(D.2)

Suppose X ? is an optimal solution to problem (5.5). Then due to the optimality condition, there
exists {µ?i } together with X ? satisfying (D.2), which implies that X ? is also an optimal solution to
problem (5.3) with λi = µ?i for all i ∈ [4].

On the other hand, suppose X ? is an optimal solution to problem (5.3). Then set βi =
∥∥∥X ?

(i)

∥∥∥
∗

for

each i ∈ [4] and set µ? = λ. It can be easily verified that (X ?, µ?) satisfies (D.2), which implies
that X ? is an optimal solution to problem (5.5) with βi =

∥∥∥X ?
(i)

∥∥∥
∗
.

Therefore, we have proved the equivalence between problem (5.3) and problem (5.5), i.e. X ? is an
optimal solution to (5.3) with some λ ≥ 0 if and only if X ? is an optimal solution to (5.5) with
some β ≥ 0.

In a similar vein, the equivalence between problem (5.4) and (5.6) can also be established.

D.3. Accelerated linearized Bregman algorithm for problem (5.1)

Recall the SNN model (5.1):

minimizeX
K∑
i=1

‖X (i)‖∗ subject to PΩ[X ] = PΩ[X 0]. (D.3)

By introducing auxiliary variable W and splitting X into X 1, X 2, · · · , XK , it can be easily
verified that problem (D.3) is equivalent to

min({X i},W)

K∑
i=1

‖(X i)(i)‖∗

s.t. X i = W , i = 1, 2, · · · ,K, (D.4)
PΩ[W ] = PΩ[X 0],

whose objective function is now separable.

The accelerated linearized Bregman (ALB) algorithm, proposed in (Huang et al., 2013), is an ef-
ficient first-order method designed for solving convex optimization problems with nonsmooth ob-
jective functions and linear constraints. It has been successfully applied to solve `1 and nuclear
norm minimization problems (Huang et al., 2013). The ALB algorithm solves nonsmooth problem
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Algorithm 1 Accelerated linearized Bregman algorithm for the SNN model (5.1)

Initialization: Y0
i = Ỹ0

i = 0 for each i ∈ [K], Z0 = Z̃0
= 0, µ > 0, τ > 0, t0 = 1;

for k = 0, 1, 2, · · · do
for i = 1, 2, · · · , K do
X k+1
i = µ · Shrinkage(Yk

i , 1);
end for
Wk+1 = µ ·

(
PΩ

[
Zk
]
−
∑
iY

k
i

)
;

for i = 1, 2, · · · , K do
Ỹk

i = Yk
i − τ ·

(
X k+1
i −Wk+1

)
;

end for
Z̃k

= Zk − τ · PΩ

[
Wk+1 −X 0

]
;

tk+1 =
1+
√

1+4t2k
2 ;

for i = 1, 2, · · · , K do
Yk+1
i = Ỹk

i + tk−1
tk+1

(
Ỹk

i − Ỹk−1

i

)
;

end for
Zk+1 = Z̃k

+ tk−1
tk+1

(
Z̃k − Z̃k−1

)
;

end for

by first smoothing the objective function (e.g. adding a small l2 perturbation), and then exploiting
Nesterov’s accelerated scheme (Nesterov, 1983) to the dual problem, which can be verified to be
unconstrained and Lipschitz differentiable. In Algorithm 1, we describe our ALB algorithm adapted
to problem (D.4). Algorithm 1 solves exactly the smoothed version of problem (D.4):

min({X i},W)

K∑
i=1

(
‖(X i)(i)‖∗ +

1

2µ
‖(X i)(i)‖2F

)
+

1

2µ
‖W‖2F

s.t. X i = W , i = 1, 2, · · · ,K, (D.5)
PΩ[W ] = PΩ[X 0],

where we denote Yi as the dual variable for the constraint X i = W and denote Z as the dual
variable for the last constraint PΩ[W ] = PΩ[X 0]. Since the objective function in (D.5) is separable,
each setup of the ALB algorithm is easy to solve as we can see from Algorithm 1 2.

For our numerical experiment (K = 4), we choose smoothing parameter µ = 50‖X 0‖F and step
size τ = 1

5µ . Empirically, we observe that larger values of µ do not result in a better recovery
performance. This is consistent with the theoretical results established in (Lai & Yin, 2013; Zhang
et al., 2012).

2 The Shrinkage operator in line 4 of Algorithm 1 performs the regular shrinkage on the singular values of
the ith unfolding matrix of Yk

i , i.e. (Yk
i )(i), and then folds the resulting matrix back into a tensor.
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Algorithm 2 Frank-Wolfe method for problem (D.6)
Initialization: x0 ∈ D;
for k = 0, 1, 2, · · · do

Compute s = argmins∈D
〈
s,∇f(xk)

〉
;

γ = 2
k+2 ;

Update xk+1 = (1− γ)xk + γs;
end for

D.4. Frank-Wolfe algrorithm for problem (5.6)

Frank-Wolfe algorithm deals with the following general optimization problem

min
x∈D

f(x), (D.6)

where the objective function f is convex and differentiable with Lipschitz continuous gradient, and
the feasible set D is a compact and convex set in Rn. The Frank-Wolfe method, described in Algo-
rithm 2, is a simple iterative scheme that can be dated back to 1956 (Frank & Wolfe, 1956). Regard-
ing its convergence, it is well known that the iterates of Algorithm 2 satisfy f(xk) − f? ≤ O( 1

k ),
where f? is the optimal value to problem (D.6). Recently, due to its good scalability, use of it has
resurged in machine learning (Jaggi, 2013; Harchaoui et al., 2013; Mu et al., 2014).

Recall the nuclear norm constrained problem (5.6):

minimizeX
1

2
‖PΩ[X −D]‖2F subject to ‖A[X ]‖∗ ≤ β. (D.7)

Here we denote A[·] as the matricization operator, A : X → X I , with A∗[·] as its adjoint operator.
Let the matrix D = A[D] and Ω̂ = A[Ω]. It can be easily verified that

X? ∈ arg min
X

1

2

∥∥PΩ̂[X−D]
∥∥2

F
subject to ‖X‖∗ ≤ β, (D.8)

if and only if A∗[X?] is an optimal solution to problem (D.7). Thus it is sufficient to solve problem
(D.8). A direct implementation of Frank-Wolfe method for problem (D.8) is presented in Algorithm
3.

Algorithm 3 Frank-Wolfe method for problem (5.6)
Initialization: X0 = 0;
for k = 0, 1, 2, · · · do

Compute u and v respectively as the left- and right- singular vectors corresponding to the
largest singular value of the matrix PΩ̂[Xk −D];
γ = 2

k+2 ;
Update Xk+1 = (1− γ)Xk − γβuvT ;

end for
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D.5. Frank-Wolfe algrorithm for problem (5.5)

Recall our nuclear norm constrained problem (5.5),

minimizeX
1

2
‖PΩ[X −D]‖2F subject to ‖Ai[X ]‖∗ ≤ βi for all i ∈ [K]. (D.9)

Here we consider Ai[·] as the mode-i unfolding operator, Ai : X → X (i), with A∗i [·] as its adjoint
operator. By considering Mi = Ai[X ], it can be easily verified that problem (D.9) is equivalent to

minimize{Mi}Ki=1

1

2

∥∥PA1[Ω]

[
M1 −A1[D]

]∥∥2

F

subject to ‖Mi‖∗ ≤ βi, i = 1, 2, · · · ,K (D.10)
A∗1[M1] = A∗j [Mj ], j = 2, 3, · · · ,K.

Consider the following penalized version of problem (D.10),

minimize{Mi}Ki=1

1

2

∥∥PA1[Ω]

[
M1 −A1[D]

]∥∥2

F
+
ρ

2

K∑
j=2

∥∥A∗1[M1]−A∗j [Mj ]
∥∥2

F

subject to ‖Mi‖∗ ≤ βi, i = 1, 2, · · · ,K, (D.11)

where ρ > 0 is the penalty parameter. Then a direct implementation of Frank-Wolfe method for
problem (D.11) would lead to Algorithm 4.

Algorithm 4 Frank-Wolfe method for problem (D.11)
Initialization: M0

1 = 0, M0
2 = 0, · · · , M0

K = 0;
for k = 0, 1, 2, · · · do
γ = 2

k+2 ;
Compute u1 and v1 as the left- and right- singular vectors corresponding to the largest singular
value of the matrix PA1[Ω]

[
Mk

1 −A1[D]
]

+ ρ
∑K
j=2

(
Mk

1 −A1A∗j [Mk
j ]
)
;

Update Mk+1
1 = (1− γ)Mk

1 − γβ1u1v
T
1 ;

for j = 2, 3, · · · ,K do
Compute uj and vj as the left- and right- singular vectors corresponding to the largest sin-
gular value of the matrix ρ(Mk

j −AjA∗1[Mk
1 ]);

Update Mk+1
j = (1− γ)Mk

j − γβjujvTj ;
end for

end for

In our video completion experiments, we set the number of iterations as 104 for both Algorithm 3
and Algorithm 4.
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