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Abstract

Recovering a low-rank tensor from incomplete
information is a recurring problem in signal pro-
cessing and machine learning. The most popu-
lar convex relaxation of this problem minimizes
the sum of the nuclear norms (SNN) of the un-
folding matrices of the tensor. We show that this
approach can be substantially suboptimal: reli-
ably recovering a K-way nxnx---Xn tensor
of Tucker rank (r,r,...,r) from Gaussian mea-
surements requires (rn~1) observations. In
contrast, a certain (intractable) nonconvex for-
mulation needs only O(r¥ +nrK) observations.
We introduce a simple, new convex relaxation,
which partially bridges this gap. Our new formu-
lation succeeds with O(r5/2n%/21) observa-
tions. The lower bound for the SNN model fol-
lows from our new result on recovering signals
with multiple structures (e.g. sparse, low rank),
which indicates the significant suboptimality of
the common approach of minimizing the sum of
individual sparsity inducing norms (e.g. ¢, nu-
clear norm). Our new tractable formulation for
low-rank tensor recovery shows how the sample
complexity can be reduced by designing convex
regularizers that exploit several structures jointly.

1. Introduction

Tensors arise naturally in problems where the goal is to
estimate a multi-dimensional object whose entries are in-
dexed by several continuous or discrete variables. For ex-
ample, a video is indexed by two spatial variables and one
temporal variable; a hyperspectral datacube is indexed by
two spatial variables and a frequency/wavelength variable.

Proceedings of the 31°" International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

While tensors often reside in extremely high-dimensional
data spaces, in many applications, the tensor of interest is
low-rank, or approximately so (Kolda & Bader, 2009), and
hence has much lower-dimensional structure. The general
problem of estimating a low-rank tensor has applications
in many different areas, both theoretical and applied: e.g.,
estimating latent variable graphical models (Anandkumar
et al., 2012), classifying audio (Mesgarani et al., 2006),
mining text (Cohen & Collins, 2012), processing radar sig-
nals (Nion & Sidiropoulos, 2010), multilinear multitask
learning (Romera-Paredes et al., 2013) , to name a few.

We consider the problem of recovering a K-way tensor
X € RmXn2xXnk from linear measurements z =
GlX] € R™. Typically, m < N = Hfil n;, and so
the problem of recovering X from z is ill-posed. In the
past few years, tremendous progress has been made in un-
derstanding how to exploit structural assumptions such as
sparsity for vectors (Candes et al., 2006) or low-rankness
for matrices (Recht et al., 2010) to develop computation-
ally tractable methods for tackling ill-posed inverse prob-
lems. In many situations, convex optimization can esti-
mate a structured object from near-minimal sets of observa-
tions (Negahban et al., 2012; Chandrasekaran et al., 2012;
Amelunxen et al., 2013). For example, an n X n matrix
of rank r can, with high probability, be exactly recovered
from C'nr generic linear measurements, by minimizing the
nuclear norm || X||, = >, 03(X). Since a rank r matrix
has r(2n — r) degrees of freedom, this is nearly optimal.

In contrast, the correct generalization of these results to
low-rank tensors is not obvious. The numerical algebra
of tensors is fraught with hardness results (Hillar & Lim,
2013). For example, even computing a tensor’s (CP) rank,

ranke, (&) := min{r | X = le agi) oo a(l?}’

is NP-hard in general. The nuclear norm of a tensor is also
intractable, and so we cannot simply follow the formula
that has worked for vectors and matrices.

With an eye towards numerical computation, many re-
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searchers have studied how to recover tensors of small
Tucker rank (Tucker, 1966). The Tucker rank of a K-way
tensor X is a K -dimensional vector whose i-th entry is the
(matrix) rank of the mode-i unfolding X ;) of X

rankc(X) := (rank(X(q)), - ,rank(X (x))). (1.1
Here, the matrix X ;) € R %1% ™ is obtained by con-
catenating all the mode-7 fibers of X as column vectors.
Each mode-i fiber is an n;-dimensional vector obtained by
fixing every index of X but the ¢-th one. The Tucker rank
of X can be computed efficiently using the (matrix) sin-
gular value decomposition. For this reason, we focus on
tensors of low Tucker rank. However, we will see that our
proposed regularization strategy also automatically adapts
to recover tensors of low CP rank, with some reduction in
the required number of measurements.

The definition (1.1) suggests a natural, tractable convex ap-
proach to recovering low-rank tensors: seek the X that
minimizes >°; A; | X (5 ||* out of all X satisfying G[X]| =
z. We will refer to this as the sum-of-nuclear-norms (SNN)
model. Originally proposed in (Liu et al., 2009), this ap-
proach has been widely studied (Gandy et al., 2011; Sig-
noretto et al., 2010; 2013; Tomioka et al., 2011) and ap-
plied to various datasets in imaging (Semerci et al., 2013;
Kreimer & Sacchi, 2013; Li & Li, 2010; Li et al., 2010).

Perhaps surprisingly, we show that this natural approach
can be substantially suboptimal. Moreover, we will sug-
gest a simple new convex regularizer with provably bet-
ter performance. Suppose n; = --- = ng = n, and
rank.(X) =< (r,7,...,7r). Let ¥, denote the set of all
such tensors.! We will consider the problem of estimat-
ing an element X of T, from Gaussian measurements G
(i.e., z; = (Gi, X), where G; has i.i.d. standard normal en-
tries). To describe a generic tensor in ¥,., we need at most
r& +rnK parameters. In Section 2, we show that a certain
nonconvex strategy can recover all X € ¥, exactly when
m > (2r)K + 2nrK. In contrast, the best known theo-
retical guarantee for SNN minimization, due to Tomioka
et al. (2011), shows that X'; € ¥,. can be recovered (or ac-
curately estimated) from Gaussian measurements G, pro-
vided m = Q(rn®~1). In Section 3, we prove that this
number of measurements is also necessary: accurate re-
covery is unlikely unless m = Q(rnf~1). Thus, there
is a substantial gap between an ideal nonconvex approach
and the best known tractable surrogate. In Section 4, we
introduce a simple alternative, which we call the square re-
shaping model, which reduces the required number of mea-
surements to O (rL5/2nlK/21) For K > 3, we obtain an
improvement of a multiplicative factor polynomial in n.

!"To keep the presentation in this paper compact, we state most
of our results regarding tensors in .., although it is not difficult
to modify them for general tensors.

Our theoretical results pertain to Gaussian operators G. The
motivation for studying Gaussian measurements is twofold.
First, Gaussian measurements may be of interest for com-
pressed sensing recovery (Donoho, 2006), either directly
as a measurement strategy, or indirectly due to universal-
ity phenomena (Bayati et al., 2012). Second, the avail-
able theoretical tools for Gaussian measurements are very
sharp, allowing us to rigorously investigate the efficacy of
various regularization schemes, and prove both upper and
lower bounds on the number of observations required. In
Section 5, we demonstrate that our qualitative conclusions
carry over to more realistic measurement models, such as
random subsampling (Liu et al., 2009). We expect our re-
sults to be of great interest for a wide range of problems
in tensor completion (Liu et al., 2009), robust tensor recov-
ery/decomposition (Li et al., 2010; Goldfarb & Qin, 2014)
and sensing.

Our technical approach draws on, and enriches, the liter-
ature on general structured model recovery. The surpris-
ingly poor behavior of the SNN model is an example of a
phenomenon first discovered by Oymak et al. (2012): for
recovering objects with multiple structures, a combination
of structure-inducing norms is often not significantly more
powerful than the best individual structure-inducing norm.
Our lower bound for the SNN model follows from a general
result of this nature, which we prove using the novel geo-
metric framework of (Amelunxen et al., 2013). Compared
to (Oymak et al., 2012), our result pertains to a more gen-
eral family of regularizers, and gives sharper constants. In
addition, for low-rank tensor recovery problem, we demon-
strate the possibility to reduce the number of generic mea-
surements through a new convex regularizer that exploits
several sparse structures jointly.

2. Bounds for Non-Convex Recovery

In this section, we introduce a non-convex model for tensor
recovery, and show that it recovers low-rank tensors from
near-minimal number of measurements.

For a tensor of low Tucker rank, the matrix unfolding along
each mode is low-rank. Suppose we observe G[X ] € R™.
We would like to attempt to recover Xy by minimizing
some combination of the ranks of the unfoldings, over all
tensors X that are consistent with our observations. This
suggests a vector optimization problem:

min  rankge (X s.t.
(W.LL RE) te(¥)

GlX] =G[Xo). (2.1)

In vector optimization, a feasible point is called Pareto op-
timal if no other feasible point dominates it in every cri-
terion. Similarly, we say that (2.1) recovers X if there
does not exist any other tensor X’ that is consistent with the
observations and has no larger rank along each mode, i.e.



Square Deal: Lower Bounds and Improved Relaxations for Tensor Recovery

the set {X’ # X | G[X'] = G[X(], rank(X’) =R
rank.(Xo)} is empty.”

The recovery performance of (2.1) depends heavily on the
properties of G. Suppose (2.1) fails to recover Xy € ¥,.
Then there exists another X' € %, such that G[X'] =
G[Xo]. To guarantee that (2.1) recovers any Xy € T,,
a necessary and sufficient condition is that G is injective
on T, which is implied by the condition null(G) N Ty, =
{0}. So, if null(G) N Ty, = {0}, (2.1) will recover any
Xy € T,.. We expect this to occur when the number of
measurements significantly exceeds the number of intrin-
sic degrees of freedom of a generic element of °¥,., which is
O(r¥ 4+ nrK). The following theorem shows that when m
is approximately twice this number, with probability one,
G is injective on T,..

Theorem 1. Whenever m > (QT)K ~+2nr K +1, with prob-
ability one, null(G) N T, = {0}, and hence (2.1) recovers
every Xg € T,.

The proof of Theorem 1 follows from a covering argument,
which we present in the appendix.

Although problem (2.1) is not tractable, it can serve as
a baseline for understanding how many generic measure-
ments are required to recover X, and thus provide a
benchmark for tractable formulations.

3. Convexification: Sum of Nuclear Norms?

Since the nonconvex problem (2.1) is NP-hard for general
G, it is tempting to seek a convex surrogate. In matrix re-
covery problems, the nuclear norm is often an excellent
convex surrogate for the rank (Fazel, 2002; Recht et al.,
2010; Gross, 2011). It seems natural, then, to replace the
ranks in (2.1) with nuclear norms. Due to convexity, the
resulting vector optimization problem can be solved by the
following scalar optimization:

K
min Z?mehsm GlxX)=¢6lxo, G.1)

where A > 0. The optimization (3.1) was first introduced
by (Liu et al., 2009) and has been used successfully in
applications in imaging (Semerci et al., 2013; Kreimer &
Sacchi, 2013; Li & Li, 2010; Ely et al., 2013; Li et al.,
2010). Similar convex relaxations have been considered
in a number of theoretical and algorithmic works (Gandy
et al., 2011; Signoretto et al., 2010; Tomioka et al., 2011;

?Equivalently, it means Xo is the unique optimal solution to:

rank(X (;))

aﬁ@aﬁg}SLmﬂ=gw@

min max
x i

Signoretto et al., 2013). It is not too surprising, then, that
(3.1) provably recovers the underlying tensor X'y, when the
number of measurements m is sufficiently large. The fol-
lowing is a (simplified) corollary of results of Tomioka et.
al. (2011)

Corollary 2 (of (Tomioka et al., 2011), Theorem 3).
Suppose that X has Tucker rank (r,...,r), and m >
Crn® =1, where C is a constant. Then with high probabil-
ity, X is the optimal solution to (3.1), with each \; = 1.

This result shows that there is a range in which (3.1) suc-
ceeds: loosely, when we undersample by at most a factor
of m/N ~ r/n. However, the number of observations
m ~ rn®~1 is significantly larger than the number of de-
grees of freedom in X o, which is on the order of r* +nrK.
Is it possible to prove a better bound for this model? Unfor-
tunately, we show that in general O(rn* ~1) measurements

are also necessary for reliable recovery using (3.1):

Theorem 3. Let Xy € T, be nonzero. Set Kk =
min; {H (X)) i / HXO”%} xn® =L, Then if the number
of measurements m < k — 2, X is not the unique solution
to (3.1), with probability at least 1 — 4 exp(—

k—m—2)2
(16(5—2)) )

Moreover, there exists X € T, for which k = rn 1,

This implies that Corollary 2 (as well as some other re-
sults of (Tomioka et al., 2011)) is essentially tight. Unfor-
tunately, it has negative implications for the efficacy of the
SNN model in (3.1): although a generic element X of T,
can be described using at most 7 4+nr K real numbers, we
require (rn€~1) observations to recover it using (3.1).
Theorem 3 is a direct consequence of a much more gen-
eral principle underlying multi-structured recovery, which
is elaborated next. After that, in Section 4, we show that
for low-rank tensor recovery, better convexifying schemes
are available.

General lower bound for multiple structures

The poor behavior of (3.1) is an instance of a much more
general phenomenon, first discovered by Oymak et. al.
(2012). Our target tensor X ( has multiple low-dimensional
structures simultaneously: it is low-rank along each of the
K modes. In practical applications, many other such si-
multaneously structured objects could also be of interest.
For sparse phase retrieval problems in signal processing
(Oymak et al., 2012), the task can be rephrased to infer
a block sparse matrix, which implies both sparse and low-
rank structures. In robust metric learning (Lim et al., 2013),
the goal is to estimate a matrix that is column sparse and
low rank concurrently. In computer vision, many signals of
interest are both low-rank and sparse in an appropriate basis
(Liang et al., 2012). To recover such simultaneously struc-
tured objects, it is tempting to build a convex relaxation by
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combining the convex relaxations for each of the individual
structures. In the tensor case, this yields (3.1). Surprisingly,
this combination is often not significantly more powerful
than the best single regularizer (Oymak et al., 2012). We
obtain Theorem 3 as a consquence of a new, general re-
sult of this nature, using a geometric framework introduced
in (Amelunxen et al., 2013). Compared to (Oymak et al.,
2012), this approach has a clearer geometric intuition, cov-
ers a more general class of regularizers® and yields sharper
bounds.

Consider a signal £y € R™ having K low-dimensional
structures simultaneously (e.g. sparsity, low-rank, etc.)*.
Let ||-[|;) be the penalty norms corresponding to the i-th
structure (e.g. ¢1, nuclear norm). Consider the composite
norm optimization

min f(@) = A @]y + Azl + oo Ax el gy

s.t. Glx] = Glxo],

where G[-] is a Gaussian measurement operator, and A > 0.
Is x( the unique optimal solution to (3.2)? Recall that the
descent cone of a function f at a point x¢ is defined as

C(f,@o) = cone{v | f(zo +v) < f(o)},

which, in short, will be denoted as C. Then xj is the unique
optimal solution if and only if null(G) N C = {0}. Thus,
recovery fails if null(G) has nontrivial intersection with C.
Since G is a Gaussian operator, null(G) is a uniformly ori-
ented random subspace of dimension n — m. This random
subspace is more likely to have nontrivial intersection with
C if C is large, in a sense we will make precise. The po-
lar of C is C° = cone (8 f (mo)). Because polarity reverses
inclusion, C will be large whenever C° is small.

(3.2)

(3.3)

To control the size of C'°, we first consider a single norm
|-l,» with dual norm |-||5. Suppose that ||, is L-
Lipschitz: |||, < L||z||, for all . Then ||z|, < L |z|
for all x as well. Noting that

11l (@) = {v | (v, ) = |||, [[v]; <1},
forany v € 9|-||, (xo), we have

o]l
L o],

[oll,
*
Lol llzoll

(v, x0)

[0ll3 [[zoll

A more geometric way of summarizing the above fact is as
follows: for & # 0, let us denote the circular cone with
axis x and angle 6 as

circ(z,0) :={z | L(z,x) < 6}.

(3.4)

(3.5)

3(Oymak etal., 2012) studies decomposable norms, with some
additional assumptions. Our result holds for arbitrary norms.

“xo € R™ is the underlying signal of interest, perhaps after
vectorization. For example, suppose we want to recover the ma-
trix Xo € R™*"2, Then ¢g = vec(Xo) € R"1"2.

cone( [zl 1)) cone(d [|@o |l (2))

-

(Il yy - o) Cll-llay - =

~

Figure 1. Cones and their polars for convex regularizers ||-||
and H~H(2) respectively. Suppose that & has two sparse struc-
tures simultaneously. Consider convex regularizer f(x) =
lzoll 1) + ll@oll (). Suppose, as depicted, 61 > 2. Then both
cone(0 ||@o|;)) and cone(d ||@o| ) are in the circular cone

circ(xo, 61). Thus we have: cone(df (o)) = cone(d ol 1) +
dlmol| () S conv{cire(zo, 01), circ(zo, 02) } = circ(zo, 01).

Then if ¢y # 0, and § = cos™*(||zo |, /L [|zo],).

|1, (o) C circ (o, 0) . (3.6)

Table 1 describes the angle parameters 6 for various popu-
lar structure inducing norms. Notice that in general, more
complicated x( leads to smaller angles 6. For example, if
T is a k-sparse vector with entries all of the same magni-
tude, and ||-||, the £1 norm, cos? § = k/n. As x becomes
more dense, 0 |||, is contained in smaller circular cones.

For f = 32 Ai[[[l;)» every element of 0 f(ao) is a conic
combination of elements of the 9 ||-[| ;) (@o). Since each of
the O ||| ;) (%o) is contained in a circular cone with axis
X, cone (Of (xg)) is also contained in a circular cone:

Lemma 1. Suppose that ||-|| ;) is Li-Lipschitz. For xo #
0, set §; = cos™! (||:n0||(i) /L; ||(l:()H2) Then

cone (0f (xg)) C circ (azo,lmaﬁ( Gi) ) 3.7

i=1.

So, the subdifferential of our combined regularizer f is
contained in a circular cone whose angle is given by the
largest of {6;}X . Figure 1 visualizes this geometry.

How does this behavior affect the recoverability of x( via
(3.2)? The informal reasoning above suggests that as 6
becomes smaller, the descent cone C becomes larger, and
we require more measurements to recover xg. This can
be made precise using an elegant framework introduced by
Amelunxen et. al. (2013). They define the statistical di-
mension of the convex cone C to be the expected norm of
the projection of a standard Gaussian vector onto C"

6(0) = Eguyunon [IPe@)l3] . 38)
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Table 1. Concise models and their surrogates. For each norm ||-|| , the third column describes the range of achievable angles 6. Larger
cos 6 corresponds to a smaller C°, a larger C, and hence a larger number of measurements required for reliable recovery.

Object Complexity Measure Relaxation cos? 6 Kk = ncos? 0
Sparse @ € R b= l=l, I, LE M
Column-sparse X ¢ B"1 77 C—#U X 20} N, IXejly =] [mnend]
Low-rank X € R™1X"2 (n; > n,) r = rank(X) X1, [ =] [n1,7n1]

Using tools from spherical integral geometry, (Amelunxen
et al., 2013) shows that for linear inverse problems with
Gaussian measurements, a sharp phase transition in recov-
erability occurs around m = §(C). Since we attempt to de-
rive a necessary condition for the success of (3.2), we need
only one side of their result, with slight modifications:

Corollary 4. Let G : R™ — R"™ be a Gaussian operator,
and C a convex cone. Then if m < §(C),

P[CNnull(G) ={0}] < 4dexp (_@(C)—mf) :

163(C)

To apply this result to our problem, we need to have a lower
bound on the statistical dimension §(C), of the descent cone
C of f at xo. Using the Pythagorean theorem, monotonicity
of §(-), and Lemma 1, we calculate

5(C) = n—46(C°) = n— 4 (cone (9f(xp)))

> n — 6(cire(xg, max 6;)).

(3.9)

Moreover, using the properties of statistical dimension, we
are able to prove an upper bound for the statistical dimen-
sion of circular cone, which improves the constant in exist-
ing results (Amelunxen et al., 2013; McCoy, 2013).

Lemma 2. §(circ(z,6)) < nsin® 6 + 2.

By combining (3.9) and Lemma 2, we have 6(C) >
n min; cos? §; — 2. Using Corollary 4, we finally obtain:
Theorem 5. Let xog # 0. Suppose for each i, |||, is
L;-Lipschitz. Set

2
_ nHl'oH(i)

2
i = ————5 = ncos”(6;),
L ||lzoll;

and k = min; k;. Then if m < Kk — 2,

IP [ is the unique optimal solution to (3.2) ]

o2y

16 (k — 2) (3.10)

< 4exp (—

Thus, for reliable recovery, the number of measurements
needs to be at least proportional to x.> Notice that K =

SE.g., if m = (k — 2)/2, the probability of success is at most
dexp(—(k —2)/64).

min; x; is determined by only the best of the structures. Per
Table 1, k; is often on the order of the number of degrees
of freedom in a generic object of the ¢-th structure. For
example, for a k-sparse vector whose nonzeros are all of
the same magnitude, x = k.

Theorem 5 together with Table 1 leads us to the phe-
nomenon recently discovered by Oymak et. al. (2012): for
recovering objects with multiple structures, a combination
of structure-inducing norms tends to be not significantly
more powerful than the best individual structure-inducing
norm. As we demonstrate, this general behavior follows
a clear geometric interpretation. The subdifferential of a
norm at x is contained in a relatively small circular cone
with central axis xg.

Theorem 3 can then be easily deduced by specializing The-
orem 5 to low-rank tensors as follows: if X" is a K-mode
nxn X ---xntensor of Tucker rank (r,r, ..., r), then for
eachi, || X[ ;) = | % 3||, is L = /n-Lipschitz. Hence,

. 2 2 _
po=min { [ 2| /125 b 2t

The term min; {HX@) i/ ||X\|%} lies between 1 and 7,

inclusively. For example, if X has Tucker decomposition®
X =Cx1U; x9--- xKUK,withUZ-TUY; =TI and C su-
persymmetric (C;, i, = 1{i1=i2=,“=iK}), then that term
is equal to r.

4. A Better Convexification: Square Deal

The number of measurements promised by Corollary 2 and
Theorem 3 is actually the same (up to constants) as the
number of measurements required to recover a tensor X
which is low-rank along just one mode. Since matrix nu-
clear norm minimization correctly recovers a ny X ny ma-
trix of rank » when m > Cr(ny 4+ ny) (Chandrasekaran
et al., 2012), solving

4.1

minimize | X (1)|[. subjectto G[X] = G[X ]

also recovers Xg w.h.p. when m > Crnf—1,

SThe mode-i (matrix) product A x ; B of size-compatible ten-
sor A and matrix B outputs the tensor C such that C(;) = BA;).
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This suggests a more mundane explanation for the diffi-
culty with (3.1): the term rn®~! comes from the need to
reconstruct the right singular vectors of the n x n~! ma-
trix X' (1). If we had some way of matricizing a tensor that
produced a more balanced (square) matrix and also pre-
served the low-rank property, we could remedy this effect,
and reduce the overall sampling requirement. In fact, this
is possible when the order K of X is four or larger.

For A € R™>*™  and integers mo and ns satisfying
mim1= Mmans, the reshaping operator reshape( A, ms, no)
returns an ms X N9 matrix whose elements are taken colum-
nwise from A. This operator rearranges elements in A and
leads to a matrix of different shape. In the following, we
reshape matrix X (1) to a more square matrix while pre-
serving the low-rank property. Let X € Rm1xn2xXnK,
Select j € [K] := {1, 2, ---, K}. Then we define ma-
trix X' as’

J K
X = reshape(X(l), Hni, H nz) “4.2)
i=1 i=j+1
We can view X[;; as a natural generalization of the stan-
dard tensor matricization. When j = 1, X ] is nothing but
X (1)- However, when some j > 1 is selected, X ] could
become a more balanced matrix. This reshaping also pre-
serves some of the algebraic structures of X'. In particular,
we will see that if X is a low-rank tensor (in either the CP

or Tucker sense), X ] will be a low-rank matrix.
Lemma 3. (/) If X has CP decomposition X =
Z§:1 )\iagl) o agz) 0-++0 aEK), then

X = ZAi(GEj) & ®a51)) o (a§K) Q- ®a§j+1)),
i=1

4.3)
(2) If X has Tucker decomposition X = C x1 U1 xoUg X3
- X Ug, then

X =(U;®--@Up)CL (Ugk®---@Ujp)". (44)

Using Lemma 3 and the fact that rank(A ® B) =
rank(A) rank(B), we obtain:

Lemma 4. Ler rank. (X) = (r1,r2, -+ ,Tk), and
ranke, (X) = rep. Then rank(X'[j) < rep, and

rank(&Xp;) < min{ ngl Ti, HiK:jH T }

"One can also think of (4.2) as embedding the tensor X into
the matrix X'[;) as follows: X iy, ife = (X[j])a »» Where

S
Il

1+Z <(im1)an>

= =1

K m—1
1+ > ((im—l)Hm).
m=j+1 1=j+1

S3
I

Thus, X[ is not only more balanced but also maintains the
low-rank property of the tensor X, which motivates us to
recover X by solving

12X,

Using Lemma 4 and (Chandrasekaran et al., 2012), we can
prove that this relaxation exactly recovers Xy, when the
number of measurements is sufficiently large:

minimize subjectto  G[X] = G[Xy]. (4.5)

Theorem 6. Consider a K-way tensor with the same
length (say n) along each mode. (1) If X has CP rank r,
using (4.5) with j = (%] m > Crnl %51 is sufficient to re-
cover Xy with high probability. (2) If Xy has Tucker rank
(r,r, -+ 1), using (4.5) with j = [£7, m > Crlzlnls]
is sufficient to recover X o with high probability.

The number of measurements O(rl2nl=1) required to
recover X with square reshaping (4.5), is always within
a constant of the number O(rn®~1) with the sum-of-
nuclear-norms model, and is significantly smaller when r
is small and K > 4. E.g., we obtain an improvement of
a multiplicative factor of nl%/2J=1 when r is a constant.
This is a significant improvement.

Our square reshaping can be generalized to group together
any j modes (say modes i1, i3, ..., %;) rather than the first
j modes. Denote Z = {iy,d2,...,%;} C [K]and J =
[K\Z = {441,942, ...,k }. Then the embedded matrix
X7 € Rl=imi *ITi=j1 M can be defined similarly as
in (4.2) but with a relabeling preprocessing. In specific, for
1 < k < K, we relabel the k-th mode as the original ix-th
mode. Regarding this relabeled tensor X', we can define

7 K
X=X} = reshape(.?c’(l)7 H Ni,. H n”)
k=1 k=j+1
Lemma 4 and Theorem 6 can then also be easily extended.

Note that for tensors with different lengths or ranks, the
comparison between SNN and our square reshaping be-
comes more subtle. It is possible to construct examples
for which the square reshaping model does not have an ad-
vantage over the SNN model, even for KX > 3. Neverthe-
less, for a large class of tensors, our square reshaping is
capable of reducing the number of generic measurements
required by SNN model, both in theory and in numerical
experiments.

5. Numerical Experiments

We corroborate the improvement of square reshaping with
numerical experiments on low-rank tensor completion
(LRTC) for both noise-free (synthetic data) and noisy (real
data) cases. LRTC attempts to reconstruct the (approxi-
mately) low-rank tensor X' from a subset € of its entries.
By imposing appropriate incoherence conditions, it is pos-
sible to prove exact/stable recovery guarantees for both our
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square deal formulation (Gross, 2011) and the SNN model
(Huang et al., 2014) for LRTC. However, unlike the recov-
ery problem under Gaussian random measurements, due to
the lack of sharp bounds, we have no proof that the square
model is guaranteed to outperform the SNN model here.
Nonetheless, numerical results below clearly indicate the
advantage of our square approach, complementing our the-
oretical results established in previous sections.

5.1. Simulation

We generate a four-way tensor Xy € R"*"*X"X™ a3 X =
Co X1 Uy X2 Uy X3 U3 X4 ug, Where cg ~ N(0,1), and
u;’s are generated uniformly over the unit sphere S"~! =
{zx € R" | |lx||, = 1}. The observed entries are cho-
sen uniformly with ratio p. Since the unfolding matrix of
X along each mode has the same distribution, we set each
A; = 1. Therefore, we compare the recovery performances
between

K
min §||X(i)||* st. PolX] = Pa[Xo], (5.1)

S.t. PQ[X] = PQ[X()] (5.2)

min [ X1 2],
We increase the problem size n from 10 to 30 with incre-
ment 1, and the observation ratio p from 0.01 to 0.2 with
increment 0.01. For each (p, n)-pair, we simulate 10 test
instances and declare a trial to be successful if the recov-
ered X* satisfies || X* — Xo|| /|| X ol » < 1072

The optimization problems are solved using efficient first-
order methods. Since (5.2) is equivalent to standard matrix
completion, we use the existing solver ALM (Lin et al.,
2010). For the sum of nuclear norms minimization (5.1),
we implement the accelerated linearized Bregman algo-
rithm (Huang et al., 2013) (see appendix for details).

Figure 2 plots the fraction of correct recovery for each pair.
Clearly, the square approach succeeds in a much larger re-
gion.

Size of tensor (n)
N o w
S & S
Size of tensor (n)
N N w
S & S

=
15}

N

5}

=
1)

0.05 0.1 0.15 0.2
Fraction of entries observed (rho)

Square SNN

0.05 0.1 0.15 0.2
Fraction of entries observed (rho)

Figure 2. Tensor completion. The colormap indicates the frac-
tion of instances that are correctly recovered for each (p, n)-pair,
which increases with brightness from 100% failure (black) to
100% success (white).

5.2. Video Completion

Color videos can be naturally represented as four-mode
tensors (lengthx widthxchannelsxframes). We compare
the performances of our square model and the SNN model
on video completion from randomly missing pixels. We
consider three video datasets: Ocean video (112 x 160 x
3 x 32), Campus video (128 x 160 x 3 x 199) and Face
video (96 x 65 x 3 x 994).8

For our square model, we set Z = {1,4} for the Ocean
video, and set Z = {1,2} for the Campus and the Face
videos, to construct more balanced embedded matrices
X 7. Due to the existence of noise in real data, we would
solve the regularized least square problems

1 -
mn. o [PalX] - D7 + ;Ai X, 63)

min o [PalX] - DI+ ARz, G4
where D = Pq[X] is the observed tensor, \; > 0 and
A > 0 are tuning parameters. Since the purpose of our
experiment is to compare SNN and square models, to make
the comparison fair and meaningful, we should tune those
parameters as optimally as possible. That is not an easy
task, especially for the SNN model (5.3), which involves
four tuning parameters. As a remedy, we solve equivalent
nuclear norm constrained programs,’

min 5 [PalX] =Dl st || Xl < 8. vi €[4, 5.5)

min 1 [PalX] - DIE st X, <5, (5.6)
where we set 3; and 3 to their oracle values, i.e. 3; =
||(XO)(1')H* and 5 = [|(Xo)z]|,, which can be reason-
ably considered as (nearly) optimal settings. Therefore, our

comparisons here are quite fair to both models.

To solve (5.5) and (5.6), we exploit the Frank-Wolfe al-
gorithm, interests in which have recently resurged (Jaggi,
2013), due to its good scalability for dealing with nuclear
norm constrained problems (see appendix for details). Fig-
ures 3 and 4 display the results obtained using (5.5) and
(5.6). Clearly, our square approach outperforms the SNN
model.

We expect the benefits of using our square formulation will
be magnified in multi-spectral video data, where the num-
ber of channels could be much larger than three. In such
data, the video tensor tends to be low rank in both the wave-
length and the temporal modes. Thus we can group these
two modes to form our low-rank matrix X'z. When the

8A detailed description of these data is included in the ap-
pendix.

The equivalence between the penalized problem and the norm
constrained problem is shown in the appendix.
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Figure 3. Sample snapshots from our datasets: Ocean, Campus,
Face. Left: sampled video (20 % for the Ocean video, 20% for the
Campus video and 2.5% for the Face video). Middle: video re-
covered by SNN model. Right: video recovered by square model.
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Figure 4. Video Completion. (relative) recovery error vs. sam-
pling rate, for the three videos in Figure 3.

technique of taking multi-spectral data becomes mature in
the future, we believe our square reshaping model will be
more useful and more significant for the completion task.

6. Discussions

In this paper, we establish several theoretical bounds for
the problem of low-rank tensor recovery using random
Gaussian measurements. For the nonconvex model (2.1),
we show that (2r)%X+4+2nrK+1 measurements are suf-
ficient to recover any X, € ¥, almost surely. For
the conventional convex surrogate sum-of-nuclear-norms
(SNN) model (3.1), we prove a necessary condition that
Q(rn~1) Gaussian measurements are required for reli-
able recovery. This lower bound is derived from our study
of multi-structured object recovery in a very general set-
ting, which can be applied to many other scenarios (e.g.
signal processing, metric learning, computer vision). To
narrow the apparent gap between the non-convex model
and the SNN model, we unfold the tensor into a more bal-
anced matrix while preserving its low-rank property, lead-
ing to our square reshaping model (4.5). We then prove that
O(rLan[T]) measurements are sufficient to recover a
tensor Xy € ‘T, with high probability. Though the theoret-
ical results only pertain to Gaussian measurements, our nu-

02

merical experiments for tensor completion still suggest the
square reshaping model outperforms the SNN model gen-
erally. Compared with (rn®~1) measurements required
by the SNN model, the sample complexity, O(rl 2 /nl2 1),
required by the square reshaping (4.5), is always within a
constant of it, and is much better for small » and KX > 4.
Although this is a significant improvement, compared with
the nonconvex model (2.1), the improved sample complex-
ity achieved by the square model is still suboptimal. It
remains an open and intriguing problem to obtain near-
optimal tractable convex relaxations for all K > 2.

Very recently, other interesting models and algorithms have
been proposed for low-rank tensor recovery. In (Romera-
Paredes & Pontil, 2013), the nuclear norm in the SNN
model is replaced by a new convex regularizer along each
mode. Since this new convex penalty function is not a
norm, Theorem 3 does not imply its suboptimality. In
(Romera-Paredes et al., 2013; Xu et al., 2013), efficient
methods based on alternating minimization are designed to
solve related non-convex models. Empirical improvements
over the SNN model are shown in all the above convex
and non-convex approaches. However, to the best of our
knowledge, no theoretical guarantees have been obtained
yet. Further analyzing these methods is an interesting prob-
lem for future research.

Putting our work in a broader setting, to recover objects
with multiple structures, regularizing with a combination
of individual structure-inducing norms is proven to be sub-
stantially suboptimal (Theorem 5 and also (Oymak et al.,
2012)). The resulting sample requirements tend to be much
larger than the intrinsic degrees of freedom of the low-
dimensional manifold in which the structured signal lies.
Our square model for low-rank tensor recovery demon-
strates the possibility that a better exploitation of those
structures can significantly reduce this sample complexity
(see also (Richard et al., 2013) for ideas in this direction).
However, there are still no clear clues on how to intelli-
gently utilize several simultaneous structures generally, and
moreover how to design tractable methods to recover multi-
structured objects with near minimal numbers of measure-
ments. These problems are definitely worth future study.
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