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1 James-Stein Estimator

Stein’s result has transformed common belief in statistical world that the maximum
likelihood estimator, which is in common use for more than a century, is optimal. Charles
Stein showed in 1955 that it is possible to uniformly improve the maximum likelihood
estimator (MLE) for the Gaussian model in terms of total squared error risk when several
parameters are estimated simultaneously from independent normal observations (Stein
1955). James and Stein later proposed a particularly simple estimator which dominates
the usual MLE, given that there are more than two parameters (James and Stein 1961).

The following proposition gives a general form of the James-Stein estimator.

Proposition 1. Assuming X ∼ N (θ, σ2I) with dim(X) ≥ 3, the estimator δ(X) = X
for θ is inadmissible under the squared loss function and is dominated by the following
estimator

δJS(X) =

(
1− (d− 2)σ2

‖X‖2
)
X

where d is the dimension of X.

Although the original works on James-Stein estimator were entirely written from the
frequentist point of view, it was shown later that James-Stein estimator can be under-
stood as an empirical Bayes estimator (Efron and Morris 1973a). This is a treatment of
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James-Stein estimator from the Bayesian point of view. There have been a considerable
number of works in this direction, e.g., (Efron and Morris 1972; 1973b; 1975) and later
by Berger (1975), Bock (1975), Hudson (1978). Whether the same Bayesian interpre-
tation is possible in an infinite-dimensional space such as the RKHS is still an open
problem.

The James-Stein estimator is a special case of a larger class of estimators known as
shrinkage estimator (Gruber 1998). In its most general form, the shrinkage estimator
averages two different models: a high-dimensional model with low bias and high variance,
and a lower dimensional model with larger bias but smaller variance. For example, one
might consider the following estimator:

θ̂shrink = λθ̃ + (1− λ)θ̂ML

where λ ∈ [0, 1], θ̂ML denotes the usual maximum likelihood estimate of θ, and θ̃ is an
arbitrary point in the input space. In the case of James-Stein estimator, we have θ̃ = 0.
That is, it shrinks the usual estimator toward zero.

2 Proof of Theorem 1

Theorem 1. For all distributions P and the kernel k, there exists α > 0 for which
R(µ, µ̂α) < R(µ, µ̂).

Proof. The risk of standard kernel mean estimator satisfies

E‖µ̂− µ‖2 = 1

n
(E[k(x, x)]− E[k(x, x̃)]) =: ∆.

Let us define the risk of the proposed shrinkage estimator by ∆α := E‖µ̂α − µ‖2 where
α is a non-negative shrinkage parameter. Then we can write it in term of the standard
risk as follows:

∆α = E‖(1− α)µ̂+ αf∗ − µ‖2
= E‖(µ̂− µ) + α(f∗ − µ̂)‖2
= ∆− 2αE 〈µ̂− µ, µ̂− f∗〉+ α2

E‖f∗ − µ̂‖2
= ∆− 2αE 〈µ̂− µ, µ̂− µ+ µ− f∗〉+ α2

E‖f∗‖2 − 2α2
E[f∗(x)] + α2

E‖µ̂‖2.

It follows from the reproducing property of H that E[f∗(x)] = 〈f∗, µ〉. Using the fact
that E‖µ̂‖2 = E‖µ̂ − µ + µ‖2 = ∆ + E[k(x, x̃)], we can simplify the risk of shrinkage
estimator by

∆α = ∆− 2α∆+ α2
E‖f∗‖2 − 2α2 〈f∗, µ〉+ α2 (∆ + E[k(x, x̃)])

= ∆− 2α∆+
(
α2‖f∗‖2 − 2α2〈f∗, µ〉+ α2

E[k(x, x̃)]
)
+ α2∆

= ∆− 2α∆+ α2‖f∗ − µ‖2 + α2∆

= α2
(
∆+ ‖f∗ − µ‖2

)
− 2α∆+∆.
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Consequently, we have

∆α −∆ = α2
[
∆+ ‖f∗ − µ‖2

]
− 2α∆.

This is non-positive where

α ∈
[
0,

2∆

∆+ ‖f∗ − µ‖2
]
, (1)

and minimized at

α∗ :=
∆

∆+ ‖f∗ − µ‖2 .

This completes the proof. �

As we can see from (1), there is a range of α for which a non-positive ∆α − ∆ is
guaranteed. Moreover, the value of α is not necessarily less than 1. To see this, recall
that µ̂α = αf∗ + (1− α)µ̂. The distance from µ̂α to the true mean is

∆α = α2
[
∆+ ‖f∗ − µ‖2

]
− 2α∆+∆.

When α = 0, this distance is ∆. When α = 2, the distance is ‖f∗ − µ‖2 + ∆, so if we
guess was f∗ = µ then these distances would be exactly the same. We can think of the
optimal solution

α∗ =
∆

∆+ ‖f∗ − µ‖2
as being the midpoint along a line of “close” solutions which gives the lowest error ∆α,
but there is no reason we cannot move further along this line up until 2α∗.

3 Kernel Mean Shrinkage Estimator

We give a detailed derivation of both simple kernel mean shrinkage estimator (S-KMSE)
and flexible kernel mean shrinkage estimator (F-KMSE). Firstly, note that the loss we
define in Section 2 is given by

ℓ(µ, g) := ‖µ− g‖2
H
= ‖E[φ(x)]− g‖2

H
= Exx′k(x, x′)− 2Exg(x) + ‖g‖2. (2)

By Jensen’s inequality, we can upper bound (2) by the loss functional

‖E[φ(x)]− g‖2
H
≤ E‖φ(x)− g‖2

H
=: E(g). (3)

But actually,
E(g) = Exk(x, x)− 2Exg(x) + ‖g‖2 .

Thus, the loss ℓ(µ, g) differs from E(g) only by Exk(x, x) − Exx′k(x, x′), which is not a
function of g. In this paper, we formulate the problem in term of the loss functional (3)
as it simplifies the analysis of leave-one-out cross-validation score.
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Given an i.i.d. sample x1, x2, . . . , xn, the KMSE can be obtained by minimizing the
following loss functional

Êλ(g) :=
1

2n

n∑

i=1

‖φ(xi)− g‖2
H
+ λΩ(‖g‖), (4)

Different choices of Ω(·) lead to different estimators, as outlined below.

3.1 Simple Shrinkage

By representer theorem, the solution of (4) can be written as g =
∑n

i=1 βiφ(xi) for some
β ∈ R

n. Moreover, the S-KMSE uses Ω(g) = ‖g‖2
H
. Substituting both g =

∑n
i=1 βiφ(xi)

and Ω(‖g‖) = ‖g‖2 into (4) yields

Êλ(β) =
1

2n

n∑

i=1

∥∥∥∥∥∥
φ(xi)−

n∑

j=1

βjφ(xj)

∥∥∥∥∥∥

2

H

+
λ

2

∥∥∥∥∥∥

n∑

j=1

βjφ(xj)

∥∥∥∥∥∥

2

H

. (5)

We can write (5) in term of the kernel function as

Êλ(β) =
1

2n

n∑

i=1


k(xi, xi)− 2

n∑

j=1

βjk(xj , xi) +
n∑

j=1

n∑

k=1

βjβkk(xj , xk)


+

λ

2
β⊤Kβ

=
1

2n

n∑

i=1

k(xi, xi)−
1

n

n∑

i,j=1

βjk(xj , xi) +
1

2n

n∑

i,j,k=1

βjβkk(xj , xk) +
λ

2
β⊤Kβ

=
1

2n
trace(K)− β⊤K1n +

1

2
β⊤Kβ +

λ

2
β⊤Kβ

=
1

2n
trace(K)− β⊤K1n +

1

2
β⊤(K+ λK)β

Taking the derivative of Êλ(β) w.r.t. the vector β and setting it to zero yield the optimal
weight vector

β =

(
1

1 + λ

)
1n.

Consequently, the shrinkage estimator of the kernel mean is given by

µ̂λ =
n∑

i=1

βiφ(xi) =

(
1

1 + λ

)
µ̂ = (1− α)µ̂

where α := λ/(1 + λ) < 1 and µ̂ denotes the standard kernel mean estimator.
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3.2 Flexible Shrinkage

Using the expansion g =
∑n

j=1 βjφ(xj), the flexible KMSE is obtained by minimizing

Êλ(β) =
1

2n

n∑

i=1

∥∥∥∥∥∥
φ(xi)−

n∑

j=1

βjφ(xj)

∥∥∥∥∥∥

2

H

+
λ

2
β⊤β

with respect to the weight vector β ∈ R
n. It can be rewritten in term of the kernel

function as

Êλ(β) =
1

2n
trace(K)− β⊤K1n +

1

2
β⊤Kβ +

λ

2
β⊤β

=
1

2n
trace(K)− β⊤K1n +

1

2
β⊤(K+ λI)β

Taking the derivative of Êλ(β) with respect to β and setting it to zero yield

∂Êλ
∂β

= 0 ⇒ −K1n + (K+ λI)β = 0

(K+ λI)β = K1n

β = (K+ λI)−1K1n

where 1n denotes an n× 1 vector whose elements are all 1/n.

4 Proof of Theorem 2

Theorem 2. The F-KMSE can be written as µ̂λ =
∑n

i=1
γi

γi+λ
〈µ̂,vi〉vi where {γi,vi}

are eigenvalue and eigenvector pairs of the empirical covariance operator Ĉxx in the
RKHS H.

Proof. Assume that we know the eigendecompositionK = UDU⊤ whereU = [u1,u2, . . . ,un]
consists of orthogonal eigenvectors ofK such thatU⊤U = I andD = diag(γ1, γ2, . . . , γn)
consists of corresponding eigenvalues. Hence, the weights β of the F-KMSE is given by

β = (UDU⊤ + λI)−1K1n = (U(D+ λI)U⊤)−1K1n = U(D+ λI)−1U⊤K1n.

Consequently,

β =
n∑

i=1

ui

(
1

γi + λ

)
u⊤
i K1n. (6)

Note also that

K1n =


 1

n

n∑

j=1

k(xj , x1), . . . ,
1

n

n∑

j=1

k(xj , xn)



⊤

= [〈µ̂, φ(x1)〉, . . . , 〈µ̂, φ(xn)〉]⊤ .
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Thus, we can rewrite (6) as

β =
n∑

i=1

ui

(
1

γi + λ

) n∑

j=1

uij〈µ̂, φ(xj)〉

=

n∑

i=1

ui

( √
γi

γi + λ

)〈
µ̂,

1√
γi

n∑

j=1

uijφ(xj)

〉

It follows from the correspondence between the eigenvectors of kernel matrix K and
covariance matrix Ĉxx that vi = (1/

√
γi)
∑

j uijφ(xj) where vi is the ith eigenvector of
the covariance matrix. Consequently, we have

〈
µ̂,

1√
γi

n∑

j=1

uijφ(xj)

〉
= 〈µ̂,vi〉 (7)

In words, (7) is a projection of the standard kernel mean embedding onto the eigenvector
vi. Using this representation, the shrinkage estimate of the F-KMSE given by the weights
β becomes

µ̂λ =
n∑

j=1

[
n∑

i=1

ui

( √
γi

γi + λ

)
〈µ̂,vi〉

]

j

φ(xj).

Applying the same trick, we can write the F-KMSE estimate entirely in term of
eigenvectors of the covariance matrix Ĉxx as

µ̂λ =
n∑

j=1

φ(xj)
n∑

i=1

uij

( √
γi

γi + λ

)
〈µ̂,vi〉

=
n∑

i=1

( √
γi

γi + λ

)
〈µ̂,vi〉

n∑

j=1

uijφ(xj)

=
n∑

i=1

(
γi

γi + λ

)
〈µ̂,vi〉vi

Since λ > 0, we have that γi/(γi + λ) < 1. This completes the proof. �

5 Proof of Theorem 3

Theorem 3. Let ρ := 1
n2

∑n
i,j=1 k(xi, xj) and ̺ := 1

n

∑n
i=1 k(xi, xi). The shrinkage pa-

rameter λ∗ = (̺−ρ)/((n−1)ρ+̺/n−̺) of the S-KMSE is the minimizer of LOOCV (λ).

Proof. Note that the leave-one-out cross-validation score for the S-KMSE is

LOOCV (α) :=
1

n

n∑

i=1

∥∥∥(1− α)µ̂
(−i)
λ − φ(xi)

∥∥∥
2

H

,
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which can be simplified further as

LOOCV (α) =
1

n

n∑

i=1

∥∥∥∥
n

n− 1
(1− α)µ̂− 1− α

n− 1
φ(xi)− φ(xi)

∥∥∥∥
2

H

=

∥∥∥∥
n

n− 1
(1− α)µ̂

∥∥∥∥
2

H

− 2

n

〈
n∑

i=1

n− α

n− 1
φ(xi),

n

n− 1
(1− α)µ̂

〉

+
1

n

n∑

i=1

∥∥∥∥
n− α

n− 1
φ(xi)

∥∥∥∥
2

H

=
n2(1− α)2

(n− 1)2
‖µ̂‖2 −

(
2

n

)(
(n− α)n

n− 1

)(
n(1− α)

n− 1

)
‖µ̂‖2

+
1

n

(
n− α

n− 1

)2 n∑

i=1

k(xi, xi)

=

(
n2(1− α)2

(n− 1)2
− 2n(n− α)(1− α)

(n− 1)2

)
‖µ̂‖2

+
(n− α)2

n(n− 1)2

n∑

i=1

k(xi, xi)

Let ρ := 1
n2

∑n
i,j=1 k(xi, xj) and ̺ := 1

n

∑n
i=1 k(xi, xi). Then, the leave-one-out score

becomes

LOOCV (α) =
1

(n− 1)2
{
(−n2 + α2n2 + 2αn− 2α2n)ρ+ (n2 − 2αn+ α2)̺

}

Taking the derivative of LOOCV (α) with respect to α and setting it to zero yield

α∗ =
̺− ρ

(n− 2)ρ+ ̺/n
,

Since the parameter α is given by α = λ/(1 + λ), it follows that

λ∗ =
̺− ρ

(n− 1)ρ+ ̺/n− ̺

as required. �

6 Proof of Theorem 4

In this section we adopt the approach similar to the one presented in P. J. Green (1994)
for ridge regression problem. For a given shrinkage parameter λ, let us consider the
observation xi as being a new observation by omitting it from the dataset. Denote by

µ̂
(−i)
λ =

∑
j 6=i β

(−i)
j φ(xj) the kernel mean estimated from the remaining data, using the
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value λ as a shrinkage parameter, so that β(−i) is the minimizer of

1

2(n− 1)

∑

j 6=i

∥∥∥∥∥∥
φ(xj)−

∑

k 6=i

βkφ(xk)

∥∥∥∥∥∥

2

H

+
λ

2
‖β‖2.

We will measure the quality of µ̂
(−i)
λ by how well it approximates φ(xi). The overall

quality of the estimate can be quantified by the cross-validation score function

LOOCV (λ) =
1

n

n∑

i=1

∥∥∥φ(xi)− µ̂
(−i)
λ

∥∥∥
2

H

.

Note that the vector β(−i) has length n− 1, whereas the original vector β has length n.
To simplify the following analysis, we will assume that β(−i) has length n with βi = 0.

Note that this representation does not alter the leave-one-out estimate µ̂
(−i)
λ .

Theorem 4. The LOOCV score of F-KMSE satisfies

LOOCV (λ) =
1

n

n∑

i=1

(β⊤K−K·i)
⊤Cλ(β

⊤K−K·i)

where β is the weight vector calculated from the full dataset with the shrinkage param-
eter λ and Cλ = (K− 1

n
K(K+ λI)−1K)−1K(K− 1

n
K(K+ λI)−1K)−1.

Note that the leave-one-out cross-validation score in Theorem 4 does not depend on

the leave-one-out solution β
(−i)
λ , but depends only on the non-leave-one-out solution βλ.

Consequently, the overall score can be computed efficiently.

Proof of Thorem 4. To prove Theorem 4, we first show that the leave-one-out solution

β
(−i)
λ can be obtained via the standard formulation with modified target vector.

Lemma 2. For fixed λ and i, let β(−i) denote the vector with components β
(−i)
j for

j 6= i. Let us define a vector Φ∗ = [φ(x1), . . . , φ(xi−1), µ̂
(−i)
λ , φ(xi+1), . . . , φ(xn)]

⊤ and a
matrix B∗

ml = 〈φ(xm),Φ∗
l 〉H. Then β(−i) = (K+ λI)−1B∗1n.

Proof. For any vector β,

n∑

j=1

∥∥∥∥∥Φ
∗
j −

n∑

k=1

βkφ(xk)

∥∥∥∥∥

2

H

+ λ‖β‖2 ≥
∑

j 6=i

∥∥∥∥∥Φ
∗
j −

n∑

k=1

βkφ(xk)

∥∥∥∥∥

2

H

+ λ‖β‖2

≥
∑

j 6=i

∥∥∥∥∥Φ
∗
j −

n∑

k=1

β
(−i)
k φ(xk)

∥∥∥∥∥

2

H

+ λ‖β(−i)‖2

=
n∑

j=1

∥∥∥∥∥Φ
∗
j −

n∑

k=1

β
(−i)
k φ(xk)

∥∥∥∥∥

2

H

+ λ‖β(−i)‖2
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by the definition of β(−i) and the fact that Φ∗
i = µ̂

(−i)
λ . It follows that β(−i) is the

minimizer of
∑

j ‖Φ∗
j −∑k βkφ(xk)‖2H + λ‖β‖2 so that β(−i) = (K + λI)−1B∗1n, as

required. �

As we can see, the resulting formulation of β(−i) in Lemma 2 depends on the leave-

one-out solution µ̂
(−i)
λ which in turn requires a knowledge of β(−i). As a result, we cannot

use this formulation to compute β(−i) in practice. However, it will be very useful as an
intermediate step in deriving the leave-one-out cross-validation score.

In the following, we will write A for (K+ λI)−1 throughout. By virtue of Lemma 2,

we can write an expression for the deleted residual φ(xi)− µ̂
(−i)
λ as

µ̂
(−i)
λ − φ(xi) =

n∑

j=1

β
(−i)
j φ(xj)− φ(xi)

=
1

n

n∑

j=1

n∑

m=1

{AB∗}jm φ(xj)− φ(xi)

=
1

n

n∑

j=1

∑

m 6=i

{AK}jm φ(xj) +
1

n

n∑

j=1

n∑

l=1

AjlB
∗
liφ(xj)− φ(xi)

=
1

n

n∑

j=1

∑

m 6=i

{AK}jm φ(xj) +
1

n

n∑

j=1

n∑

l=1

Ajl〈φ(xl), µ̂(−i)
λ 〉φ(xj)− φ(xi)

=
1

n

n∑

j=1

n∑

m=1

{AK}jm φ(xj)− φ(xi)

− 1

n

n∑

j=1

{AK}ji φ(xj) +
1

n

n∑

j=1

n∑

l=1

Ajl〈φ(xl), µ̂(−i)
λ 〉φ(xj)

=
1

n

n∑

j=1

n∑

m=1

{AK}jm φ(xj)− φ(xi)

− 1

n

n∑

j=1

n∑

l=1

Ajl〈φ(xl), φ(xi)〉φ(xj) +
1

n

n∑

j=1

n∑

l=1

Ajl〈φ(xl), µ̂(−i)
λ 〉φ(xj)

=
1

n

n∑

j=1

n∑

m=1

{AK}jm φ(xj)− φ(xi) +
1

n

n∑

j=1

n∑

l=1

Ajl〈φ(xl), µ̂(−i)
λ − φ(xi)〉φ(xj)

= µ̂λ − φ(xi) +
1

n

n∑

j=1

n∑

l=1

Ajl〈φ(xl), µ̂(−i)
λ − φ(xi)〉φ(xj)

Denote the deleted residual µ̂
(−i)
λ −φ(xi) by ∆

(−i)
λ . Then, the above equation can be

rewritten as

∆
(−i)
λ = µ̂λ − φ(xi) +

1

n

n∑

j=1

n∑

l=1

Ajl〈φ(xl),∆(−i)
λ 〉φ(xj). (8)
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Since the deleted residual ∆
(−i)
λ lies in the subspace spanned by the samples φ(x1), . . . , φ(xn),

we may write

∆
(−i)
λ =

n∑

k=1

ξkφ(xk)

for some ξ ∈ R
n. Substituting back into (8) yields

n∑

k=1

ξkφ(xk) = µ̂λ − φ(xi) +
1

n

∑

j,l

Ajl〈φ(xl),
n∑

k=1

ξkφ(xk)〉φ(xj)

= µ̂λ − φ(xi) +
1

n

∑

j,l

Ajl

n∑

k=1

ξk〈φ(xl), φ(xk)〉φ(xj)

= µ̂λ − φ(xi) +
1

n

∑

j,l

Ajl

n∑

k=1

ξkKlkφ(xj)

= µ̂λ − φ(xi) +
1

n

n∑

j=1

n∑

k=1

n∑

l=1

AjlKlkξkφ(xj)

= µ̂λ − φ(xi) +
1

n

n∑

j=1

n∑

k=1

{AK}jk ξkφ(xj)

= µ̂λ − φ(xi) +
1

n

n∑

j=1

{AKξ}j φ(xj)

By taking the inner product on both sides of the equation with respect to the samples
φ(x1), . . . , φ(xn), the optimal ξ can be obtained by solving the system of equations:

Kξ = β⊤K−K·i +
1

n
KAKξ

(K− 1

n
KAK)ξ = β⊤K−K·i

ξ = (K− 1

n
KAK)−1(β⊤K−K·i),

where K·i denotes the ith column of matrix K. Consequently, the leave-one-out cross-
validation score for the sample xi can be computed by
∥∥∥∆(−i)

λ

∥∥∥
2

H

= ξ⊤Kξ = (β⊤K−K·i)
⊤(K− 1

n
KAK)−1K(K− 1

n
KAK)−1(β⊤K−K·i)

= (β⊤K−K·i)
⊤Cλ(β

⊤K−K·i)

where Cλ = (K − 1
n
KAK)−1K(K − 1

n
KAK)−1. Hence, we have the score over full

dataset

LOOCV (λ) =
1

n

n∑

i=1

∥∥∥∆(−i)
λ

∥∥∥
2

H

=
1

n

n∑

i=1

(β⊤K−K·i)
⊤Cλ(β

⊤K−K·i)

as required. �
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6.1 Efficient Calculation of Cλ

The näıve calculation of Cλ can be computationally expensive. Fortunately, it can be
simplified by the eigendecomposition of K as follows:

Cλ = (K− 1

n
KAK)−1K(K− 1

n
KAK)−1

= U(D− 1

n
D(D+ λI)−1D)−1D(D− 1

n
D(D+ λI)−1D)−1U⊤

Since the last equation only involves the diagonal matrices, it can be computed efficiently.
The inversion of the diagonal matrix is just the reciprocal of the diagonal elements.
Thus, we can evaluate it in O(n) operations. Overall, the computational complexity
of the leave-one-out cross-validation approximation is only O(n2), as opposed to the
näıve approach that requires O(n4) operations. When performed as a by-product of the
algorithm, the computational cost of cross-validation procedure becomes negligible as
the dataset becomes larger.

In practice, the hyper-parameters are often selected by a simple grid-based search
method. That is, the LOOCV score is evaluated at a set of values of λ on a regular grid
with even spacing. Alternatively, as the LOOCV function is a relatively smooth function
of the shrinkage parameter λ, the derivative-free method as implemented in fminsearch

or fminbnd routines of the MATLAB optimization toolbox provides simple and efficient
way to find an optimal value of λ. Lastly, it is important to note that we cannot use
the leave-one-out cross-validation score proposed in the previous section to select kernel
parameters because our loss function also depends on the choice of kernel function.

7 Probabilistic View of Kernel Mean Estimation

The kernel mean estimation can be understood probabilistically. First, one should note
the difference between primal form and dual form of the kernel mean estimation. In the
primal problem, we consider the following average loss functional:

Eprimal(g) :=
1

n

n∑

i=1

‖φ(xi)− g‖2
H

(9)

where the desired solution g lies in the RKHS H. Estimating g directly from (9) can
be difficult as the RKHS H is usually high-dimensional, if not infinite, e.g., the RKHS
associated with the Gaussian RBF kernel. By representer theorem we can transform the
problem (9) into the dual form

Edual(β) :=
1

n

n∑

i=1

∥∥∥∥∥∥
φ(xi)−

n∑

j=1

βjφ(xj)

∥∥∥∥∥∥

2

H

, (10)

where we have g =
∑n

i=1 βiφ(xi) for some β ∈ R
n. As a result, the estimation of g is

amount to estimating the weight vector β. We can rewrite the dual form (10) in term

11



of the kernel matrix K as

Edual(β) = β⊤Kβ − 2β⊤K1n +
1

n
trace(K) . (11)

The standard kernel mean estimator

µ̂P =
1

n

n∑

i=1

φ(xi) =
1

n

n∑

i=1

k(xi, ·)

can be obtained as a minimizer of the primal form (9). The corresponding value of β,
i.e., β = 1n, is a minimizer of the dual form (10). We assume without loss of generality
that the kernel matrix K is invertible.

One can see in (11) that the dual form is quadratic in β, which thereby implies that
it can be viewed as a negative log-likelihood of some Gaussian distribution over β. Let
N (β; ν,Σ) be the Gaussian distribution over β with mean ν and covariance matrix Σ.
Consequently, we have

E ′(β) := − lnN (β;1n,K
−1) = − ln

[
1√

(2π)n|K−1|
exp

(
−1

2
(β − 1n)

⊤K(β − 1n)

)]

= ln
√
(2π)n|K−1|+ 1

2
(β − 1n)

⊤K(β − 1n)

= ln
√
(2π)n|K−1|+ 1

2
1nK1n +

1

2
β⊤Kβ − β⊤K1n

=
1

2
β⊤Kβ − β⊤K1n + const

where const denotes constant terms that do not depend on β. It is easy to see that
Edual(β) and E ′(β) have the same minimizer. If K is strictly positive-definite, the
minimizer is unique. As a result, the weight β of the standard kernel mean estima-
tor can be consdiered as a maximum-likelihood estimate of the probability distribution
N (β;1n,K

−1). Note that this distribution differs from the likelihood in the usual sense,
i.e., the probability density of the observations given the parameters. Instead, it spec-
ifies the probability density of the weight vector β. In the following we will denote
N (β;1n,K

−1) by PX .
Despite being different from the standard likelihood, the distribution PX may still

be interpreted as a data-dependent belief over possible values of β. Following standard
Bayesian formalism, the modelers may want to specify alternative belief over the values
of β. For example,

PM := N (β;0,Σ).

Combining PX and PM yields

Q := PX · PM = N (β;1n,K
−1) · N (β;0,Σ)

∝ exp

(
−1

2
(β − 1n)

⊤K(β − 1n)

)
exp

(
−1

2
β⊤Σβ

)
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∝ exp

(
−1

2
(β − β̄)(K+Σ−1)(β − β̄)

)

where β̄ = (K+Σ−1)−1K1n and this is recognized as the form of Gaussian with mean
β̄ and covariance matrix A−1

β ∼ N (β; β̄, A−1)

where A = K+Σ−1. By imposing different prior on β, we would obtain different mean
β̄. For example, consider when Σ = σ2I where σ2 specifies the uncertainty of our belief.
Then, we have

β̄ = (K+ σ−2I)−1K1n

which corresponds to the F-KMSE if we set λ = σ−2. Alternatively, one may consider
the covariance matrix Σ = σ2K−1 which reflects covariance structure obtained from the
observations. In which case, we have

β̄ = (K+ σ−2K)−1K1n =
1

1 + σ−2
K−1K1n =

1

1 + σ−2
1n

which corresponds to the S-KMSE if we set λ = σ−2.
If we think of PX as a likelihood, then it encodes the dependence of β on the ob-

servations xi through the Gram matrix K. For F-KMSE, the prior PM is independent
of the observations. On the other hand, the “prior” of S-KMSE is data-dependent - it
is a function of the xi. Hence, F-KMSE can be written as the product of a prior and
a data-dependent likelihood, but S-KMSE cannot. Thus, it is different from standard
Bayesian formalism (Rasmussen and Williams 2006; chap. 2.1). The variance term σ2

specifies the uncertainty of the priors and thus plays similar role as the regularization
parameter λ.

8 Shrinkage Centering in Feature Space

In many applications of kernel methods, it is often assumed that the kernel is centered.
That is, the feature map of the data in feature space is given by

φ̃(x) = φ(x)− E[φ(x)].

In practice, the feature mean E[φ(X)] is approximated using the empirical average
1
n

∑n
i=1 φ(xi) such that the centered feature map can be written as

φ̃(x) = φ(x)− 1

n

n∑

i=1

φ(xi).

However, it is very difficult to explicitly center the data because the feature space can
be high-dimensional, if not infinite. Schölkopf et al. (1998) showed that we can compute
the centered kernel in terms of the non-centered kernel alone.
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A direct application of our shrinkage estimators is to replace the empirical average
in the above formulation by its shrinkage version, i.e.,

φ̃(x) = φ(x)−
n∑

i=1

βiφ(xi)

and thereby the centered kernel Kc can be written as

Kc
ij =

(
φ(xi)−

n∑

k=1

βkφ(xk)

)⊤(
φ(xj)−

n∑

k=1

βkφ(xk)

)

= φ(xi)
⊤φ(xj)− φ(xi)

⊤

[
n∑

k=1

βkφ(xk)

]
−
[

n∑

l=1

βlφ(xl)
⊤

]
φ(xj)

+

[
n∑

k=1

βkφ(xk)
⊤

][
n∑

l=1

βlφ(xl)

]

= Kij − β⊤K·i −K⊤
·jβ + β⊤Kβ,

where β is obtained from the shrinkage estimators. Defining an n × n matrix B =
[β,β, . . . ,β], we can write a compact expression of centering operation as

Kc = K−B⊤K−KB+B⊤KB.

Consider a set of test points x∗1, x
∗
2, . . . , x

∗
m and define an m × n test kernel matrix

by
Lij = 〈φ(x∗i ), φ(xj)〉H.

Thus, the centered test kernel matrix can be similarly obtained as

Lc = L−BtK− LB+BtKB

where Bt = [β,β, . . . ,β]⊤ denotes an m× n matrix.

9 Covariance-Operator Shrinkage Estimator

We can extend the idea to improving the estimation of cross-covariance operator on the
RKHS. It is a foundation to several kernel-based approaches such as kernel PCA, kernel
Fisher discriminant analysis, and kernel CCA. The covariance operator can be seen as
a mean function in the joint space.

Let (HX , kX) and (HY , kY ) be the RKHS of functions on measurable space X and
Y, respectively, with positive definite kernel kX and kY (with feature map φ and ϕ). In
this section, we will consider a random vector (X,Y ) : Ω → X × Y with distribution
PXY . The marginal distributions of X and Y are denoted by PX and PY , respectively.
We assume that EX [kX(X,X)] < ∞ and EY [kY (Y, Y )] < ∞.
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One can show that there exists a unique cross-covariance operator ΣY X : HX → HY

such that

〈g,ΣY Xf〉HY
= EXY [(f(X)− EX [f(X)])(g(Y )− EY [g(Y )])] = Cov(f(X), g(Y ))

holds for all f ∈ HX and g ∈ HY . If X is equal to Y , we obtain the self-adjoint operator
ΣXX called the covariance operator.

Given an i.i.d sample from PXY written as (x1, y1), (x2, y2), . . . , (xn, yn), we can write
the empirical cross-covariance operator Σ̂Y X as

Σ̂Y X :=
1

n

n∑

i=1

φ(xi)⊗ ϕ(yi)− µ̂X ⊗ µ̂Y (12)

where µ̂X = 1
n

∑n
i=1 φ(xi) and µ̂Y = 1

n

∑n
i=1 ϕ(yi). Let assume that φ̃ and ϕ̃ are the

centered version of the feature map φ and ϕ, respectively. Then, the empirical cross-
covariance operator (12) can be rewritten as

Σ̂Y X :=
1

n

n∑

i=1

φ̃(xi)⊗ ϕ̃(yi),

which can be obtained as a minimizer of the following loss functional:

Ê(g) := 1

n

n∑

i=1

∥∥∥φ̃(xi)⊗ ϕ̃(yi)− g
∥∥∥
2

HX⊗HY

, g ∈ HX ⊗HY . (13)

Assume that g lies in the subspace spanned by the data, i.e., g =
∑n

i=1 βiφ̃(xi) ⊗
ϕ̃(yi). By the inner product property in product space, we have 〈φ̃(x) ⊗ ϕ̃(y), φ̃(x′) ⊗
ϕ̃(y′)〉HX⊗HY

= 〈φ̃(x), φ̃(x′)〉HX
〈 ˜ϕ(y), ˜ϕ(y′)〉HY

= kX(x, x′)kY (y, y
′).

Note that (13) is of the same form as the kernel mean estimator. As a result, we can
apply the same analysis throughout.
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