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Abstract

Partial canonical correlation analysis (partial

CCA) is a statistical method that estimates a

pair of linear projections onto a low dimensional

space, where the correlation between two multi-

dimensional variables is maximized after elimi-

nating the influence of a third variable. Partial

CCA is known to be closely related to a causal-

ity measure between two time series. However,

partial CCA requires the inverses of covariance

matrices, so the calculation is not stable. This

is particularly the case for high-dimensional data

or small sample sizes. Additionally, we can-

not estimate the optimal dimension of the sub-

space in the model. In this paper, we have ad-

dressed these problems by proposing a proba-

bilistic interpretation of partial CCA and deriv-

ing a Bayesian estimation method based on the

probabilistic model. Our numerical experiments

demonstrated that our methods can stably esti-

mate the model parameters, even in high dimen-

sions or when there are a small number of sam-

ples.

1. Introduction

Partial canonical correlation analysis (partial CCA) was

proposed by Rao (1969). It is a statistical method used to

estimate a pair of linear projections onto a low-dimensional

space, where the correlation between two multidimensional

variables is maximized after eliminating the influence of a

third variable. This is calculated using a CCA of the residu-

als of a linear regression of the third variable. This method

is a generalized version of the partial correlation coeffi-
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cient for multidimensional data. We define the variables

{y1n}
N
n=1 ∈ R

d1 and {y2n}
N
n=1 ∈ R

d2 , the third variable

{xn}
N
n=1 ∈ R

dx and the dimension of the subspace dz .

Then the partial CCA is calculated using the general eigen-

value problem

Σ12|xΣ
−1
22|xΣ21|xu

1 = ρ2Σ11|xu
1,

Σ21|xΣ
−1
11|xΣ12|xu

2 = ρ2Σ22|xu
2, (1)

where Σm1m2|x = Σm1x − Σm1xΣ
−1
xxΣxm2

, and Σab is

a sample covariance matrix. Partial CCA has various ap-

plications in areas such as social science (Kowalski et al.,

2003), and can be used as a causality measure.

Causality measures are indices that measure the influence

of one time series on another. Transfer entropy (Schreiber,

2000) is a measure based on information theory. It mea-

sures the magnitude of a change to the conditional distribu-

tion of y given x, and is calculated using

Tx→y =

∫∫∫
p(yt, y

(l)
t−1, x

(k)
t−1)

log2
p(yt|y

(l)
t−1, x

(k)
t−1)

p(yt|y
(l)
t−1)

dytdy
(l)
t−1dx

(k)
t−1, (2)

where k and l denote the embedding dimensions,

y
(l)
t−1 =

(
yTt−1 y

T
t−2 · · · y

T
t−l+1

)T
, and x

(k)
t−1 =

(
xT
t−1 x

T
t−2 · · · x

T
t−k+1

)T
. Shibuya et al. (2009) showed

that when we assume that the variables are normally dis-

tributed and estimate the model parameters using maxi-

mum likelihood estimation, transfer entropy is equivalent

to Granger causality (Granger, 1969). Granger causality

is based on changes to the estimation error of an autore-

gressive model. Shibuya et al. (2011) showed that we

can use the partial canonical correlations, ρi, calculated us-

ing partial CCA on yt and x
(k)
t−1 and eliminate the effect

of y
(l)
t−1. Then, the transfer entropy can be calculated us-

ing Tx→y = 1
2

∑min(dy,kdx)
i=1 log2

1
1−ρ2

i

. Transfer entropy
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has many applications such as brain analysis (Chávez et al.,

2003), medical science (Verdes, 2005), cognitive develop-

ment modelling (Sumioka et al., 2008), and detecting mo-

tion in a movie (Yamashita et al., 2012).

However, partial CCA requires the inverses of sample co-

variance matrices, so the calculation is unstable when the

variables are highly correlated, the dimension of the data is

large, or there are not enough data. Yamashita et al. regu-

larized the covariance matrix to solve this problem (2012),

but the appropriate optimization of the plural regularization

parameters has not been determined. Additionally, we can-

not estimate the proper dimension of the subspace of the

model.

We have addressed these problems by proposing a prob-

abilistic interpretation of partial CCA, and by deriving a

variational Bayesian estimation algorithm for the model

parameters based on this probabilistic interpretation. Our

experiments show that the proposed methods can more ac-

curately estimate the subspace dimension, and can more

stably estimate the model parameters on both synthetic and

real data, even in high dimensions or when there are few

samples.

2. Canonical Correlation Analysis and its

Extension

In this section, we review canonical correlation analysis,

which is a statistical method similar to partial CCA. We

also consider it from a probabilistic perspective.

Canonical correlation analysis (CCA) was proposed by

Hotelling (1936). It is a method for finding statistical

dependencies between two data sources. Given variables

{y1n}
N
n=1 ∈ R

d1 and {y2n}
N
n=1 ∈ R

d2 , and the dimension of

the subspace dz ≤ min(d1, d2), the CCA can be calculated

using the general eigenvalue problem

Σ12Σ
−1
22 Σ21u

1 = ρ2Σ11u
1,

Σ21Σ
−1
11 Σ12u

2 = ρ2Σ22u
2, (3)

where Σm1m2
represents a sample covariance matrix be-

tween ym1 and ym2 . The projection is a dz × di (i = 1, 2)
matrix with the d-th row eigenvector corresponding to the

d-th largest eigenvalue. Each eigenvalue equals the corre-

lation in each dimension. Numerous studies have extended

CCA, including a nonlinear extension using kernels (Lai &

Fyfe, 2000; Melzer et al., 2001), online inferences of the

model parameters (Vı́a et al., 2007; Yger et al., 2012), and

sparse variants (Hardoon & Shawe-Taylor, 2009).

Bach and Jordan gave a probabilistic interpretation of CCA

(2005), such that the maximum likelihood estimates of the

model parameters can be derived from the CCA. Given this

probabilistic interpretation, we can extend CCA to proba-

bilistic models. Figure 1 shows a graphical model of the

Figure 1. Graphical model for probabilistic CCA.

interpretation, where {zn}
N
n=1 ∈ R

dz are the latent vari-

ables. The generative model is

zn ∼ N (0, Idz
),

ymn ∼ N (Wmzn + µm,Ψm) , (4)

where N (µ,Σ) denotes the multivariate normal distribu-

tion with mean µ and covariance Σ, and Id denotes the d
dimensional identity matrix. Wm ∈ R

dm×dz and Ψm ∈
R

dm×dm are the model parameters that we must estimate.

We define the Um
dz

matrices as having their d-th column

equal to the d-th eigenvector, and Pdz
∈ R

dm×dz as a diag-

onal matrix with d-th element equal to the d-th eigenvalue

of Equation (3). Then, the maximum likelihood solution is

Wm = ΣmmUm
dz
Mm,

Ψm = Σmm −Wm(Wm)T ,

µm = ym, (5)

where Mm ∈ R
dm×dm are arbitrary matrices such that

M1M
T
2 = Pdz

and the spectral norms of Mm are smaller

than one. ym is the sample mean 1
N

∑N
n=1 y

m
n . There are

some extensions of this probabilistic model. They include

a robust estimation method that assumes a student distri-

bution for noise (Archambeau et al., 2006), and a nonlin-

ear extension that uses a Gaussian process latent variable

model (Leen & Fyfe, 2006; Ek et al., 2008).

Bayesian CCA (Klami & Kaski, 2007; Wang, 2007) as-

sumes that the model parameters are also random variables.

Wang used a Wishart prior for the precision matrices of the

noise, an ARD prior (Neal, 1995) for each column of the

projection matrices, and derived a variational Bayesian es-

timation algorithm for the posterior distribution of the pa-

rameters. Virtanen et al. (2011) reduced the number of

model parameters by assuming that the noise was isotropic

and by introducing non-shared latent variables. Klami et al.

(2013) derived an algorithm that simultaneously inferred

the projection matrices for the shared and non-shared vari-

ables. Damianou et al. (2012) studied a Bayesian extension

of a Gaussian process latent variable model. Fujiwara et al.

(2009) used Bayesian CCA to estimate image bases from

fMRI data.
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Figure 2. Graphical model for probabilistic partial CCA.

3. Probabilistic Interpretation of Partial CCA

In this section, we propose a generative model that es-

timates the maximum likelihood parameters using partial

CCA. We also derive an expectation-maximization (EM)

algorithm that estimates the model parameters and latent

variables.

3.1. Generative Model

We consider a generative model that combines the regres-

sions of variables that have effects we want to eliminate and

shared latent variables, as shown in Figure 2. The model is

defined as

zn ∼ N (0, Idz
),

ymn ∼ N (Wm
x xn +Wm

z zn + µm,Ψm) . (6)

We will show that the maximum likelihood solution

arg max
Wx,Wz,Ψ

log p(y|x;Wx,Wz,Ψ) can be calculated using

partial CCA. To this end, we show that the proposed model

can be reduced to the generative model of probabilistic

CCA Equation (4). When we define the log likelihood L
and

C=

(
Ψ1 0
0 Ψ2

)
+

(
W 1

z

W 2
z

)(
W 1

z

T
W 2

z

T
)
,

it holds that

∂L

∂µ
= −

N∑

n=1

C−1

((
µ1

µ2

)
−

(
y1n
y2n

)
+

(
W 1

x

W 2
x

)
xn

)
.

Because C is positive definite, the likelihood is maxi-

mized when µ is such that the partial derivative equals zero.

Therefore,

µm = ym −Wm
x x. (7)

We denote each datum minus the sample mean as ỹ1n =
y1n − y1, and substitute Equation (7). Then,

∂L

∂Wx

=
N∑

n=1

C−1

((
ỹ1n
ỹ2n

)
x̃T
n −

(
W 1

x

W 2
x

)
x̃nx̃

T
n

)
.

We can also show that if the data space is spanned by the

samples, L is the negative definite quadratic form of Wx.

So L is maximized when Wx is such that the partial deriva-

tive is zero. Therefore,

Wm
x = ΣmxΣ

−1
xx . (8)

When we substitute this into Equation (6), the model is

equivalent to the probabilistic CCA model with input vari-

ables y′
m
n = ỹmn − ΣmxΣ

−1
xx x̃n. Because the covariance

matrices of these data are

1

N

N∑

n=1

y′
m1

n y′
m2

n

T
= Σm1m2

− Σm1xΣ
−1
xxΣxm2

= Σm1m2|x, (9)

the parameter estimation is reduced to partial CCA. To

summarize, the maximum likelihood solution of the pro-

posed model can be written as

Wm
x = ΣmxΣ

−1
xx ,

Wm
z = Σmm|xU

m
dz
Mm,

Ψm = Σmm|x −Wm
z Wm

z
T ,

µm = ym −Wm
x x, (10)

where Um
dz

denotes matrices that have their d-th column

equal to the d-th eigenvector, Pd denotes the diagonal ma-

trix with its d-th element equal to the d-th canonical corre-

lation of Equation (1), and Mm are arbitrary matrices that

satisfy M1M
T
2 = Pdz

and have spectral norms smaller

than one. From this point, we assume that samples have

zero mean and we do not infer a sample mean.

3.2. EM Parameter Estimation

As with CCA, we can estimate the latent variables using the

EM algorithm without integrating them out. In this case, zn
follows a normal distribution and the update rule for time t
is

(Σz)t = (I + (Wz)t
T
(Ψt)

−1(Wz)t)
−1,

〈Z〉t = (Σz)t(Wz)t
T
(Ψt)

−1(Y − (Wx)tX),

Wm
t+1 = Y m

(
X
〈Z〉t

)T(
XXT X〈Z〉Tt
〈Z〉tX

T 〈ZZT 〉t

)−1

, (11)

Ψm
t+1 =

1

N

(
Y mY mT−

(
Wt+1

(
X
〈Z〉t

)
Y T

)

mm

)
,

where Ψt is the matrix with Ψm
t on its diagonal, Wx,

and Wz are the matrices that have Wm
x and Wm

z in their

columns, Amm is the block matrix corresponding to each

view, Y m is the matrix that has ymn in its rows, and Y =(
Y 1

Y 2

)
. Additionally, X and Z are matrices with xn and

yn in their rows, and 〈·〉 are the expectations of the random

variables.
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Figure 3. Graphical model for BPCCA.

4. Bayesian Partial CCA

To address the previously mentioned weakness of partial

CCA, we propose a hierarchical Bayesian approach to the

probabilistic partial CCA proposed in the previous section.

4.1. Model that Directly uses Probabilistic Partial CCA

In this section, we follow Wang’s approach (2007) and con-

sider the generative model shown in Figure 3. It treats the

model parameters proposed in the previous section as ran-

dom variables. We use an ARD prior (Neal, 1995) for each

column of the projection matrices, and an inverse Wishart

prior for the covariance matrices of the noise. The genera-

tive model is

αm
k ∼ Gamma(a0, b0),

Wm
:,k ∼ N (0, (αm

k )−1Idm
),

Ψm ∼ IW(νm0 ,Km
0 ),

zn ∼ N (0, Idz
),

ymn ∼ N (Wm
x xn +Wm

z zn,Ψ
m), (12)

where the prior for the third variable p(x) does not affect

the inference when p(xn) > 0 for each sample, because

we consider the conditional distribution given xn. Here

Gamma(a, b) is the Gamma distribution with shape param-

eter a and scale parameter b, and IW(ν,K) is the inverse

Wishart distribution. Wm =
(
Wm

x Wm
z

)
. Wm

:,k is the

k-th column of Wm. The hyperparameters a0, b0, ν
m
0 ,Km

0

should be small so that the priors are broad, but from the

definition of the Wishart distribution, νm0 > dm− 1. In our

experiments, we set a0, b0 = 10−14, νm0 = dm,Km
0 =

10−14 · Idm
. The ARD prior drives unnecessary compo-

nents to zero, so we can estimate the dimensions of the

latent variables by choosing sufficiently large dz , or by first

choosing a small dz and then gradually increasing it ac-

cording to the output projection matrices. We refer to this

model as Bayesian PCCA (BPCCA).

Next, we propose a variational Bayesian inference algo-

rithm. The full posterior p(Z,Θ|X,Y ) is approximated as

q(Z,Θ) = q(Z)

2∏

m=1


q(Ψm)q(αm)

dm∏

j=1

q(wm
j )


 , (13)

where wm
j is the j-th row of Wm. We apply standard cycli-

cal updates to the separate terms of q. When the factorized

distribution q has the form
∏

i q(θi), the update rule is

q(θi) ∝ exp
(
〈log p(X,Y, Z,Θ)〉Z,θk 6=i

)
,

q(Z) ∝ exp (〈log p(X,Y, Z,Θ)〉Θ) . (14)

Because p(X) is independent of the other variables, it fol-

lows that

q(θi) ∝ exp
(
〈log p(Y,Z,Θ|X)〉Z,θk 6=i

)
,

q(Z) ∝ exp (〈log p(Y,Z,Θ|X)〉Θ) , (15)

where 〈·〉 with subscripts denote the expectation with re-

spect to the approximate posterior distribution of the corre-

sponding variables. The approximate posterior distribution

has the shape

q(zn) = N (µzn ,Σzn),

q(Ψm) = IW(νm,Km),

q(wm
j ) = N (µwm

j
,Σwm

j
),

q(αm) =
∏

k

Gamma(am, bmk). (16)

Furthermore, the parameters are updated as

Σzn =

(
I +

∑

m

〈(Wm
z )T (Ψm)−1Wm

z 〉

)−1

,

µzn = Σzn

∑

m

(
〈(Wm

z )T 〉〈(Ψm)−1〉ymn

− 〈(Wm
z )T (Ψm)−1Wm

x 〉xn

)
,

Km = Km
0 + Y m(Y m)T

+ 〈Wm

(
XXT XZT

ZXT ZZT

)
(Wm)T 〉

− Y m
(
XT 〈ZT 〉

)
〈(Wm)T 〉

− 〈Wm〉

(
X
〈Z〉

)
Y m,

νm = νm0 +N,

Σwm
j

=

(
diag〈αm〉+〈(Ψm)−1

j,j 〉

(
XXT X〈Z〉T

〈Z〉XT 〈ZZT 〉

))−1

,

µwm
j

= 〈(Ψm)−1
j,: 〉Y

m
(
XT ZT

)

−
∑

l 6=j

〈(Ψm)−1
j,l 〉〈W

m
l,: 〉

(
XXT X〈Z〉T

〈Z〉XT 〈ZZT 〉

)
,

am = a0 + dm/2,

bmk = b0 + 〈‖W
m
:,k‖〉/2, (17)
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Figure 4. Graphical model for GSPCCA.

where diag〈αm〉 is the diagonal matrix with k-th element

〈αm
k 〉.

4.2. Model with Isotropic Noise

The model proposed in the previous subsection requires a

large number of calculations to infer noise precision matri-

ces. Additionally, the prior distribution has a large influ-

ence when there are a small number of samples, because

νm0 > dm − 1. Therefore, following the approach used

by Klami et al. (2013), we propose a model that uses

isotropic noise and non-shared latent variables. The gen-

erative model is

zn ∼ N (0, Idz
),

zmn ∼ N (0, Idzm
), (18)

ymn ∼ N
(
Wm

x xn+A
mzn+Bmzmn , (τm)−1Idm

)
.

When the zmn are integrated out, this model is equiva-

lent to the model proposed in the previous subsection with

Ψm = Bm(Bm)T + (τm)−1Idm
. So we can consider

this model as equivalent to imposing a low-rank assump-

tion on the covariance matrices. To simultaneously esti-

mate A and B, we write Wz =

(
A(1) B(1) 0
A(1) 0 B(1)

)
,

W =
(
Wx Wz

)
, and consider the model

αm
k ∼ Gamma(a0, b0),

Wm
:,k ∼ N (0, (αm

k )−1Idm
),

τm ∼ Gamma(a0, b0),

zn ∼ N (0, I(dz+dz1
+dz2

)),

ymn ∼ N
(
Wm

x xn +Wm
z zn, (τ

m)−1Idm

)
, (19)

as shown in Figure 4. This representation reduces the num-

ber of model parameters. We refer to this model as group

sparse PCCA (GSPCCA). This model also requires small

hyperparameters. We have used a0, b0 = 10−14 in our ex-

periments. Additionally, we choose the approximate poste-

rior

q(Z,Θ) = q(Z)
∏

m

(q (τm) q (αm) q (Wm)) , (20)

and the shape

q(Z) =
∏

n

N (µzn ,Σz),

q(Wm) =
∏

d

N (µWm
d,:
,ΣWm),

q(αm) =
∏

k

Gamma(aαm , bαm
k
),

q(τm) = Gamma(aτm , bτm). (21)

The parameters are updated as

ΣWm =

(
diag〈αm〉+〈τm〉

(
XXT X〈Z〉T

〈Z〉XT 〈ZZT 〉

))−1

,

µWm = Y m
(
XT 〈ZT 〉

)
,

Σz =

(
I +

∑

m

〈τm〉〈(Wm
z )TWm

z 〉

)−1

,

〈Z〉 = Σz

(
∑

m

〈τm〉
(
〈(Wm

z )T 〉Y m−〈(Wm
z )TWm

x 〉X
)
)
,

aαm = a0 + dm/2,

bαm
k

= b0 + 〈(W
m)TWm〉k,k/2,

aτm = a0 +Ndm/2,

bτm = b0 +
1

2

(
Tr
(
Y m(Y m)T

− 2Y m
(
XT 〈ZT 〉

)
〈(Wm)T 〉

)

+Tr

(
〈(Wm)TWm〉

(
XXT X〈Z〉T

〈Z〉XT 〈ZZT 〉

)))
. (22)

4.3. Optimization of the Linear Transformation of the

Latent Variables

The maximum likelihood solution of probabilistic partial

CCA has the same degrees of freedom as the linear trans-

formation of latent variables. In the Bayesian model, we

optimize this transformation in each iteration to obtain an

approximate distribution that is closer to the prior distribu-

tion. We expect that this speeds up the convergence and

that the latent variables are more independent. The func-

tion to be maximized is similar to that in (Virtanen et al.,

2011), and is defined as

L(R) = −
Tr(R−1〈ZZT 〉R−T )

2
+(d1+d2−N) log |R|

−
1

2

2∑

m=1

dm

dz∑

k=1

log(rTk 〈(W
m
z )TWm

z 〉rk).(23)

To solve this, we use the L-BFGS method (Liu & Nocedal,

1989) initialized with the identity matrix. Using the opti-
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(a) High-dimensional data
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(b) Low-dimensional data

Figure 5. Comparison of the Wx estimation error and the model

accuracy. The left panel shows the relative estimation error of

Wx. The right panel shows the accuracy of dz .

mal R, the approximate distributions are transformed into

〈Z〉 ← R−1〈Z〉,

ΣZ ← R−1ΣZR
−T ,

µWm
z
← µWm

z
R,

ΣWm
z
← RTΣWm

z
R. (24)

5. Experiments

We have applied our methods to synthetic and real data, to

verify that they can be used with a small number of samples

or high-dimensional data. We compared the stability of the

model selection and the causality measures.

5.1. Model Selection

We first investigated the estimates of Wx and dz using

synthetic data. We did not consider Wz because the

maximum likelihood solution of Wz is not unique. We

compared our methods (BPCCA, GSPCCA) with the

model selection techniques using the Bayesian information

criterion (BIC) and five-fold cross validation (CV). In our

methods, we considered that a component k of the solution

was active when 〈αm
k 〉 < 50, and let dz be an estimate of

the number of k for that are active for each view. We set

d1 = 5, d2 = 4, dx = 3, and dz = 2 for low-dimensional

data, and d1 = 50, d2 = 50, dx = 5, and dz = 5 for
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(a) low-dimensional data
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(b) high-dimensional data

Figure 6. Comparison of the estimates of dz . The left panel shows

the performance on low-dimensional data. The right panel corre-

sponds to high-dimensional data.
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(a) λ = 0
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(b) λ = 0.01
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(c) λ = 0.1

Figure 7. Comparison of the stability of a causality measure.

(a) and the left panels of (b) and (c) show the performance of

GSPCCA (ours). The right panels of (b) and (c) show the per-

formance of PCCA. The blue line shows the estimated causality

measures for the true direction. The green line shows the esti-

mates for the reverse direction.

high-dimensional data. In each setting, we generated N =
25, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000
samples from a generative model. Each column of the

projection matrix was sampled from a Normal distribution

with zero mean and unit variance, and the noise covariance

matrices were Idz
+
∑⌊ dz

2
⌋

i=1 uiu
T
i , for ui ∼ N (0, Idz

).
Wz had five columns for low-dimensional data, and 10

columns for high-dimensional data. We conducted 50

experiments for each parameter. For the Bayesian meth-

ods, we determined that the method had converged if the

relative change in the variational lower bound was below

10−4. As it converges to a local maxima, we initialized the

model by randomly sampling the latent variables from the

prior, and ran the algorithm 10 times choosing the solution

with the best variational lower bound. For each method,

we calculated the mean of the relative error of Wx using
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Tr((Wx−Ŵx)
T (Wx−Ŵx))

Tr(WT
x Wx)

, where Ŵx is an estimate of Wx.

We also recorded the accuracy rate of the system, dz .

The results are presented in Figure 5. In the right subfigure

of Figure 5(a), the CV result is hidden because it has been

overwritten by the BIC result. Because we cannot stably

calculate the BIC and CV of non-Bayesian methods when

D = 50 and N = 25, 50, and the BIC and CV of BPCCA

cannot be calculated when D = 50 and N = 25, we have

not included these results. These plots show that existing

model selection methods perform poorly and that the ac-

curacy decreases to zero in high dimensions. Conversely,

the two Bayesian methods are very accurate, even for high-

dimensional data. BPCCA’s performance degrades when

D = 50 and N = 50, but GSPCCA’s performance de-

grades more gradually. The estimate of Wx follows a sim-

ilar trend. These results demonstrate that our methods cal-

culate the model selection and parameter estimation more

accurately than non-Bayesian methods, and that GSPCCA

is the best method.

Next, we compared the model-selection performance of

GSPCCA by varying the number of columns of Wz to 6, 7,

8, 9, and 10 for low-dimensional data, and 12, 14, 16, 18,

20 for high-dimensional data, with N = 25, 50, 200, 800.
The performance was measured using the mean of the num-

ber of active components divided by the true dz. The results

are shown in Figure 6. In high dimensions, the performance

is almost one for all the parameters. In low dimensions, if

N = 25 the performance decreases gradually. However,

this effect can be ignored because the true dz is two. These

results indicate that the number of columns in Wz has little

effect on the performance, if it is sufficiently large.

5.2. Causality Measure with Synthetic Data

To evaluate the stability of the causality calculations for

a small sample of high-dimensional data, we generated a

time series using the following linear model.

xt = 0.5xt−1 + ǫt,x,

y2t = 0.5y2t−1
+Wxt−1 + ǫt,y2

,

yt =
(
yT2t yT2t

)T
+ ǫt,y, (25)

where the first two columns of W are sampled from

N (0, 0.5 ·I20) and the other columns are zero. ǫt,x, ǫt,y2

denotes Gaussian noise with zero mean and unit vari-

ance. ǫt,y is 0 when r = 0, and is Gaussian noise

with zero mean and variance r · I40 otherwise. The

true causality direction is x → y. The first and sec-

ond halves of yt are strongly correlated. This correla-

tion is strong when r is small. The optimal dimension

of the latent variables is two. Using this model, we set

the embedding dimension to 1, r to 0, 0.01, 0.1, and the

sample size to N = 25, 50, 100, 200, 400, for each pa-

rameter. We expect that the causality measures derived

from PCCA and probabilistic PCCA are equivalent, so

we compared PCCA with GSPCCA (the best performing

method). We used
∑20

d=1
1
2 log2

1
1−ρ2

d

as a causality mea-

sure for PCCA. For GSPCCA, we let ρk be the correla-

tion between 〈Yt−1(k,:)|Yt〉 and 〈Yt−1(k,:)|Xt−1〉, and used∑
k

1
2 log2

1
1−ρ2

k

as a causality measure, where the summa-

tion is over the active components. Figure 7 shows the re-

sults. We have not included results if the solution could not

be stably evaluated. The causality measure using PCCA

diverged when N was below 200, irrespective of λ. This

measure also increased in the direction of y → x, so this

measure is unreliable when N is small. However, the mea-

sure using GSPCCA was zero in the y → x direction when

N was larger than 100, because the Bayesian model makes

directions that have a negligible influence converge to zero.

This behavior helps eliminate false causality relations, but

this model may overlook true causality relations when the

influence is small. In such cases, we could detect small

influences by modifying the hyperparameters of the ARD

prior. This measure tended to diverge when λ was less than

0.01 and N = 50, or λ = 0.1 and N = 25. However, the

measure in the x → y direction was larger than that in the

y → x direction. The Bayes model also becomes unstable

when there are an insufficient number of samples.

5.3. Causality Measure with Real Data

Next, we applied GSPCCA and PCCA to meteorological

data, using the Global Summary of the Day (GSOD) pro-

vided by the National Climatic Data Center (NCDC) on its

website. For this experiment, we used data from the USA

between December 24, 2008 and February 28, 2009. Fig-

ure 8 shows the observed jet stream during that same pe-

riod. We selected seven types of variables that did not have

a substantial amount of missing data: mean temperature,

mean dew point, mean visibility, mean wind speed, max-

imum sustained wind speed, maximum temperature, and

minimum temperature. Therefore, the time series has seven

dimensions. The length was 66. We randomly chose 224

targets based on distance, after excluding targets with many

missing values. We conducted a zero-order hold for miss-

ing values. We set the embedding dimensions to 2, 3, and

4 and used the same causality measure as in the synthetic

data experiments. Figure 9 shows our results. Figure 9

shows the largest 50 index values. Because the causality

measure that used PCCA with the embedding dimension

of four diverged in some pairs, we have included all the

index values that diverged. When the embedding dimen-

sion was two, GSPCCA and PCCA had a similar tendency

to show a strong information flow from west to east over

the eastern region, and from north to south in the central

region. This is consistent with Figure 8. When the embed-

ding dimensions were four, the arrows drawn using PCCA
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(a) 19/1/2009

(b) 19/2/2009

Figure 8. Weather information flow map for the USA (source:

The California Regional Weather Server, San Francisco Univer-

sity).

were scattered over the mainland, although the index val-

ues using GSPCCA had a similar tendency to those with

the embedding dimension of two. This result implies that

PCCA overfits the data when the embedding dimension is

high.

Next, we calculated the average arrow length using the

Hubeny formula1. It was 1.0 × 103, 1.1 × 103, 1.1 × 103

km/day for GSPCCA and 9.8 × 102, 1.2 × 103, 1.7 × 103

km/day for PCCA. This shows that the causality measure

using GSPCCA was more stable and similar to the actual

air current, which was approximately 8.6 × 102 km/day

(Shibuya et al., 2011), even when the embedding dimen-

sion was high. Because the true embedding dimension is

unknown, GSPCCA is a more reliable method.

1http://www.kashmir3d.com/kash/manual-e/

std_siki.htm

GSPCCA (ours)

Average arrow length:

1.0× 103 km/day

PCCA

Average arrow length:

9.8× 102 km/day

(a) Embedding dimension = 2

GSPCCA (ours)

Average arrow length:

1.1× 103 km/day

PCCA

Average arrow length:

1.2× 103 km/day

(b) embedding dimension = 3

GSPCCA (ours)

Average arrow length:

1.1× 103 km/day

PCCA

Average arrow length:

1.7× 103 km/day

(c) Embedding dimension = 4

Figure 9. Weather information flow map of USA (2008/12/24 –

2009/02/28). Maps on the left were calculated using GSPCCA,

and maps on the right were calculated using PCCA.

6. Conclusion

We proposed a probabilistic interpretation of partial CCA.

We also presented a Bayesian extension and an inference

algorithm based on the probabilistic interpretation. Our ex-

periments have demonstrated that the proposed methods

are more appropriate for model selection and estimating

causal relations from time series than existing methods,

when there are a small number of samples or in high di-

mensions. We expect that PCCA and causality measures

will be extensively applied to many areas using our meth-

ods.

Our Bayesian partial CCA method can be extended to a

robust estimation method using a Student distribution for

the noise (Archambeau et al., 2006), or to an inference

method using the online variational Bayes technique (Hoff-

man et al., 2013). Additionally, by considering the projec-

tion matrices as random variables, we can construct a more

complex model that allows the causal relation to change

over time.
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