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1. Examples of projective system Dirichlet(av, o, a3, g, 5).  The key feature of the
Dirichlet distribution isself-similarity, e.g., (s1, s2,s3 +
s4,85) can be regarded as if it were drawn from
Dirichlet(aq, ag, 3 + ay, a5). Hence, the Dirichlet pro-
cess can be constructed by the following projective sys-
tem. Although the projective limit random probability mea-
sures inherently raise some technical difficulties that in-
clude measurability ana-additivity (Orbanz 2011), here

blocks. th 4 i we give priority to intuition. LetG( be a base measure
k non-empty blocks, the process staysrdor exponential —  gety7 A index setF(E), we can use the set of

time with parametek(k — 1)/2, then jumps at one of the e e : ;

k(k —1)/2 partitions, which can be obtained frorby the aEII 1;|ent|t? p:art(lgtzns 0;‘;) ;:d(?]eﬁie (Z/pé'rflag?)r'dzrndo n
coagulation of two of its blocks, according to uniform prob- = J e (S FW S’-7)i e Intuitivellg/, J7sr;7;ares .
ability. We can verify that the-coalescent is projective in the boundaries oY.J \}\Jle can now define the family of
the following manner. As index séi(E), we can use the X; ~ Dirichlet(Go(S1), ..., Go(Sm)) as follows. For

set of all finite partitions ofN. We here useX; := 2r’, eachsS;, let 7; (C 1,...,n) be a subset of indices such
the set of subsets af. Eacha € Xpisa(#1 x #I)  thats; = Ujes,S}. We can define the projector as fol-
binary matrix: ai; ; = 1 (if (i,j) € o) ande; ; = 0 (0th- 1ows: P, X, (S;) = ez Xs(S}). This construction
erwise), where# I denotes the number of entriesinWe 5 exactly analogous to the above reduction of the five di-
can define the projectioX,, — X, by, for example, the ensions to four.

following restriction. For eachh < m (< n), lety,, , be

the operation orX,, that restrictsy (¢ X,,) to them x m

matrix by keeping the successiye: m) x (1 : m) entries > Eormal representation of RTP

(in Matlab notation) unchanged, and removing the rest of

the entries. For example, consider a draw frote= 4)- Our construction algorithm uses two real values as tunable
coalescent1|4|2|3—14|2|3—14|23—1423. The restricted  input parameters, and returns a rectangular partitioning of
m(= 3)-coalescent correspondst{®|3—1|23—123, that  the input array. Consider a rectangular partitioning of input
is, “4” is removed byrestriction Intuitively, “projective”  array I, where! is a sub-arrayy C N x N (i.e., for all
means that the restricted version can be itself drawn fronmtegersm, n, m’,n’ satisfyingl < m < m’ and1 <
m-coalescent. For the coagulatiopt|2|3—14|2|3 related n < n/,{m,m +1,...,m'} x {n,n+1,...,n'}). The

to “4”, we can regard that a Poisson process yields amectangular partitioning of is a collection of disjoint, sub-
event at rates, and it is assigned to candidates related toarrays of/ whose union corresponds fo We write 7;

“4” with probability of 3/6 (i.e., coagulation candidates to denote the collection of all rectangular partitionings of
(1,4),(2,4),(3,4)). This is similar to thinning a Poisson I. The input parameters are a real valpes (0,1), and
process. That s, its coagulation can be regarded as an evembudget,B > 0. Intuitively, p € (0,1) directly controls
drawn from a Poisson process with rate 3. Coagulations inblock size, that is, if we choose a large value foreach
volving “4” are of no concern to the view dfl, 2, 3}. block is expected to be large.

Example 1 (Kingman’s coalescent):Consider a Markov
process with values in the space of partitionsf (=
{1,2,...,n}), called then-coalescent. If any two parti-
tions, 7, 7/, are such that’ can be obtained from by the
coagulation of two of its blocks, then the jump rate fram
to 7’ is 1. All other collections of blocks coagulate at rate
0. That is, given a current state (i.e., the partitiamyvith

Example 2 (Dirichlet process): For example, consider a Our algorithm consists of two stages: “generating order of
five-dimensional Dirichlet variable(sy, sa, s3, s4, $5) ~ block growth” and “assigning entries to blocks”. These cor-
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Algorithm 1 SAMPLING ORDER OF BLOCK GROWTH

Algorithm 2 SAMPLING RECTANGULAR PARTITIONING

SAMPLEM(X,, t, 0;)
- & ~ Exponential(¢c({X})), wherec(-) denotes a rate

function (that is typically a counter of the sum of the

number of columns and rows).

if t < & then
Draw a uniform binary indicator: Ix ~
Bernoulli(1/2).
if [x = 0then
Update 6; by adding new relations

(u,v) < (u/,v") for every pairs{(u,v), (v/,v") |
(u,v), (W,v") e X, v<v'}.

else

Update 6; by adding new relations

(u,v) < (u/,v") for every pairs{(u,v), (v/,v") |
(u,v), (uW,v") € X, u<u'}.

end if

- return trivial partition { X } andé;.

else

- Sample a uniform axis-parallel partitiohXo, X; }

of X.

if There arery € Xy, 21 € X; such thatry < 21

then
- Updated; by adding relationg:y < x; for every
pairszy € Xg, 21 € X1.

else
- Updated; by adding relations:y > x; for every
pairszy € Xg,x1 € X;.

end if

-return U;co SAMPLEM(X;, t — &, 01).

end if

SAMPLER(Z, 01, p)
- Start from thed; (1)-entry as a singleton.
fori=2to(m' —m+1)(n’ —n+1)do
if Two adjacent entrie§; (i) + (—1,0) and6;(i) +
(0, —1) existinI, and they have already been assigned
to blocks then
if The two adjacent entries are assigned to the same
blockthen
- The ;(z)-entry is also assigned to the same
block.
else
if Rr(i) +(—1,0) < 0;(i) + (1,0) then
- With probability p, the 6;(i)-entry is as-
signed to the block to which thé;(i) +
(—1,0)-entry belongs. With probabilityl —
p)g, it is assigned to the block to which the
61(z) + (0, —1)-entry belongs. With probabil-
ity (1—p)(1—q), itis assigned to a new block.
else
- With probability p, the 6;(i)-entry is as-
signed to the block to which thé;(:) +
(0, —1)-entry belongs. With probabilityl —
p)q, it is assigned to the block to which the
0r(i) + (—1,0)-entry belongs. With probabil-
ity (1—p)(1—gq), itis assigned to a new block.
end if
end if
else
- With probability p, the 8;(i)-entry is assigned to
the same block to the adjacent entry; with probabil-
ity (1 — p), to a new block.
end if

respond to the Bayesian hierarchy, that is, the former means €nd for _ o
conditioning, and the latter generates a sample based on arétum the resulting rectangular partitioning.
conditional probabilistic model. Plainly, for the first step,
our algorithm generates the total order of all entried ,of
denoted by; := (I; <), by applying a discrete Mondrian
process with budgeB. More precisely, we denote &y,

the set, in ascending order@f’ —m+1)(n'—n+1), ofen-
triesof,i.e., foranyl <i < j < (m'—m+1)(n’—n+1),
0:1(i) < 01(y); the first step generates sampleof ©;.
This step is recursively processed. As the initialization, o
partial clues ofd; are given: for any natural numbers 3. Proof of theorems and propositions
andv < v/, (u,v) < (u,v’), and for any natural num-
bersv andu < v/, (u,v) < (v,v). We recursively run
SAMPLEM(I, T, 6;) based on Algorithm 1. It returns a Without loss of generality, we assume that the input of
sample of the total order of all entries 6f i.e., 6;. For RLGA is {—]}. First, we focus on LGA, i.e., the rectan-
the second step, our algorithm assigns the entries to bloclkgular partitioning of(2 x 2)-arrays. Note that the top row

in the obtained orded;, using two types of coins whose (two entries) was first to be assigned to blocks, and then the

Our algorithm provides a self-consistent family of rect-
angular partitionings of matrices of any finite size, which
leads to a probability measure on rectangular partitionings
of matrices of infinite size.

Proof of proposition 3.2

probabilities of turning up heads when tossedaend ¢
such thaty = p/(p? — p + 1). We run \MPLER(Z, 6,

bottom-left entry was assigned. More precisely, we first de-
cide whether or not the top-left block gains an increment in

p) based on Algorithm 2. Finally, we obtain a rectangularthe horizontal direction witfBernoulli(p), then whether or

partitioning ofI.

not it gains one in the vertical direction wiBernoulli(p).
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By construction, we can easily check that (1-i) the prob-Algorithm 3 MCMC FOR RTP-BASED RELATIONAL
ability of the top-right and bottom-right belonging to the MODEL

same block i, and (1-ii) the probability of the bottom-
left and bottom-right belonging to the same block is also
p. For (1-i), by marginalizing out all possibilities of the
top-left and the bottom right entries, we can calculate the
probability that the top-right and bottom-right belong to the
same block:

P>+ (1 —=p)pg + (1 -p)’q
2 p 2
= - (1- —p+1)=p. (1
p+&ﬂ7p+1( pp°—p+1)=p. (1)
For (1-ii), by marginalizing out all possibilities of the top-
left and top-right entries, we can calculate the probability

that the bottom-left and bottom-right belong to the same
block:

p(l—pp+p*+ (1 —p)’p=p. @)
Finally we have to show that (i) the vertical length can be
incremented byl with probability p, and (ii) the horizon-

tal length can also be incremented byith probability p.

For (i), by construction and the above result, the vertical
length is incremented by with probability p. For (i), the
horizontal length should be decided when its first column
is grown, Thus, by construction and the above result, the
horizontal length also increments byvith probability p.

Input: Observation(Y; ;)mxn, p (0 < p < 1) and

global direction(as an exampley,)

Initialization

- Generate a regular grid partitioning (i.e., a pre-cluster)

of [0,1]* based on the vertical and horizontal PPs on

[0, 1] (in our experiment, we manually give this step).
For each rowi, generate the coordinate from

Uniform(0, 1], and initializeg;.

- For each columnj, generate the coordinate from

Uniform|0, 1], and initializen;.

- Generate a RTP partitioning of the pre-cluster from the

RTP. This step involves MP partitioning and directions

of growth.

Main loop of MCMC

- Update the PPs based on random-walk MH.

- For each row, update(; using Gibbs sampling, similar

to (Roy & Teh 2009 and Wang et al.2011).

- For each columry, updaten; using Gibbs sampling,

similar to Roy & Teh 2009 and Wang et al.2011).

- Update the MP partitioning using a reversible jump

method, similar to\(vang et al.2011).

- For each box in MP patrtitioning, update the direction

of growth using Gibbs sampling.

- Update the RTP rectangular partitioning based on MH

FORRTP (Algorithm 4).

Proof of Theorem 3.3

Without loss of generality, we assume that the input of
RLGA is —]. We have to consider four types of restriction,

Proof of theorem 3.4

(1) deleting the right column, (2) deleting the bottom row, Recall that®; consists of a hierarchical partitioning 6f

(3) deleting the left column, and (4) deleting the top row. drawn from the discrete Mondrian process, and directions
(1) and (2) can be easily checked by construction, that ispf growth. This discrete Mondrian process provides a pro-
the deleted row or column are generated based on the othfctive system of hierarchical partitionings, which can be
part of the rectangular partitioning. For (3), we considerverified as being similar to the self-similarity of the original
repeated marginalization from the top-l€#tx 2)-array to ~ Mondrian process Koy, 2011), Prop. V. 10). Moreover,
the bottom-lef 2 x 2)-array. When we marginalize the left each direction of growth is independently chosen. Thus,
column of each2 x 2)-array, we can consider increment- ©; (I € F(E)) are projective. As a result, it follows from
ing the right column byl with probabilityp. Thus, we can Theorem 3.2 and the property of RLGAs that the family of
recursively check that the process is self-consistent under! (7;|0©;) for I € F(E) is conditionally projective, and
the condition that the left column is deleted. leads to the conditional projective limit” (Tz|O ).

For (4), we have to check whether we can regard that the
restricted (remained) top row is incremented with proba-4. Inference

bility p. Each block of the restricted top row are orig- We use Markov chain Monte Carlo (MCMC) methods that

inally (i.e., before restriction) generated in the following . : :
D iterate over draws from posteriors to yield the rectangular
two manners: (i) original top column generated the block, ~ ..~ " .
partitioningT", the pre-cluster§ andn, and the interme-

and was then incremented, or (ii) it is originally generateddiate variable®. Note that we can easily marginalize out

in the restricted top column for the first time. Thus, when o . .
we marginalize all possible patterns of the original top col-the Dirichlet variables, in the same way as\ang et al,
2011). Algorithm 3 provides a sketch.

umn, we can regard each block of the restricted top column
as being capable of being incremented vertically with prob-Rectangular partitioning 7": It is not easy to sample the
ability p. That is, it shows self-consistency when the topconditional posterior distribution for rectangular partition-
column is deleted. ing in the sense of Gibbs sampling. Thus, we employ a
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Algorithm 4 MH FORRTP 5. Properties of RLGASs
- Choose uniformly at random one row/column from the
matrix, i.e., the pre-cluster. For example, in the follow-
ing, suppose that a row is chosen.

- Generate uniformly at random an order of priorities of
“left”, “upper”, and “lower”. For example, in the follow-
ing, we assume thafleft” = “upper” > “lower”.
for from left-most entry to right-most entry of the chosen
row do
- Generate a real valug € [0, 1] from Uniform[0, 1].
If possible (i.e., satisfies the rectangular partitioning
constraint), the current entry is assigned to the “left”
block. Otherwise, go to the next line.
- Regenerate real valuee [0, 1] from Uniform[0, 1].
If possible, the current entry is assigned to the “upper”
block. Otherwise, go to the next line.
- Regenerate real valuee [0, 1] from Uniform|0, 1].
If possible, the current entry is assigned to the “lower”

We here analyze RLGAs more carefully. Specifically, we
clarify the influence of the block growth direction. In this
appendix, we extend index sktto the product of integers
Z2. Note that this extension does not affect our main con-
struction. There are eight possible block growth patterns
of RLGA, i.e., a combination of four corners as stating
points and two choices df For understanding we intro-
duce our notations. We use two random binary variables
onor @ndoy,, t0 express four choices of starting points for
the four patterns ofop.,, over). They provide partial clues

of the total order(/; <): onor = 0/1 means that, for any
integersu andv < v/, (u,v) < / = (u,v’). Similarly,

over = 0/1 means that, for any integetsandu < u/,
(u,v) < / = (v',v). More intuitively, we also write eight
patterns as follows:

block. Otherwise, go to the next line. ® — ]! onor =0, Oyer =0, [ =0.
- The current entry is assigned to a new block.
end for ® | = 0hor =0, Oyer =0, I =1.

- Applying the acceptance/rejection scheme of the MH.

b <_\I/: Onor = 1, Oyer =0, I=0.

® [« 0nor =1, Oyer =0, [ =1.

Metropolis-Hasting (MH) algorithm: we generate the next o Opor = 0, Over = 1, 1 =0
candidate from a proposal distribution, and then accept or or e e '
reject it based on the probability ratio. In terms of the MH 4
scheme, it is important to design a good (ideally, rapid mix-
ing and high acceptance rate) proposal. Our strategy is to
change the partitions of only one row/column per iteration,
and keeping the remainder. In our experiments, we used the T
following proposal: (as an example, for one row) from left
to right, holding the constraint of the rectangular tilings,
we randomly chose whether an entry is assigned to the a
jacent upper, lower, left, or new block (Algorithm 4).

—: Ohor = 0, 0yer =1, 1 = 1.
e <Tiopor =1, Oyer =1, 1 =0.

POhor =1, Oyer =1, I = 1.

(ﬁ natural question is whether the probabilities that a given
rectangular partitioning of input arrdy 77 € 77, is drawn
from eight patterns are equal or not. We have the following
Pre-clusters¢ and n:  Precisely, this step involves not statement:

only pre-clusters but also the split locations of the (verti-

cal and horizontal) Poisson processes. For the pre-clusterz,heorem Al L

we can use Gibbs sampling. This is due to an artifice 01Let Ty be a rectangular partitioning off drawn from
the combination of PPs and RTP. PPCs make it possibl@" REGA Withonor, over, I T ~ RLGA(0nor, over, 1)

to separate the updates of the permutations (i.e., assigni g, ={). (1) It is distributionally equivalent tdy ~

the pre-clusters) from that of the rectangular partitioning. GA((L = Ir)onor +17(1 = Onor), (1 — I7)(1 = Over) + .
Otherwise, the updates of the permutations influence th Over; 1) (€.9., =1). (2) It cannot be regarded as if
rectangular partitioning. For the split locations of PPs, wel I ~ RLGA(Uronor + (1 = 11)(1 = 0nor), lr(1 = over) +
can use random walk MH. (1 = Ir)over, Ir) (€.9-4).

Intermediate variables §: We here discuss a sampler for Proof Without loss of generality, we assume that the in-
0 consisting of the hierarchical partitioningf and the bi-  put of RLGA iSoyer = 0,04 = 0,17 = 0. We also as-
nary variables of leaf blocks. For the binary variables, wesume, w.l.o.g.] = 1:m x 1: n in Matlab notation. For
can easily use Gibbs sampling. For MP sample(con-  notational simplicity, we express the probability tffatis
sisting of a tree of sub-arrays, random costs and locationdrawn fromRTP(—.) asPr_, [T;]. Moreover, we write a
of the cut to each non-leaf block of the tree), we can employrectangular partitioning of the restriction bfs, for exam-

a reversible jump MCMCWeang et al.2017). ple, T1(1.m ;) in Matlab notation.
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We prove the first statement by induction. By construction, e their restrictions tol correspond tdl; € 77,

we have . .
o for any row, both the leftmost entries and the rightmost

Pro [T7] = Pros T2, Tr1,] - Proy [Trs,0 [ Tr2,] entries are on edges of blocks, and

X X Pro [T, T m—1,9]- - (3) o for any two adjacent rows, the horizontal difference
value of their leftmost entries is equal to the horizontal

Thus, we have only to deal with the case of two columns, ‘ - ;
difference value of their rightmost entries.

which can be easily extended to any finite-dimensional ar-
ray. The base cas€ x 2)-arrays, can be easily checked. ] ) )
Suppose that, fof2 x n”)-arrays RLGA (0, 0, 0) is distri- We call setdr, the .|nV(_ast|ture off;. Moreover, we write
butionally equivalent tRLGA (0, 1,0). For (2 x n” + 1)- Uy, as the set satisfying only the first and second argu-
arrays, we can easily check that all possible patterns ha/@€nts-

the same probabilities from LGA. )
We have the following theorem:
For the second statement, we can easily find counterexam-

ples, for example(2 x 2)-arrays. Theorem A. 4
For any sub-arraysl = (m:m/) x (n:n’) of Z2, the

Although the second statement of the above proposition igrobability thatUr, € Uz, is drawn fromRLGA(0,0,0)
unfortunate, we may intuitively think that, for example, is equal to the probability thatUr, is drawn from
RLGA(—|) has a certain resemblance RLGA(+|).  RLGA(1,0,0). Moreover, for any finite-dimensional sub-
This intuition is partially correct. In the following, we dis- arrays I of Z? and infinite-dimensional rectangular par-
cuss it more carefully. We begin with the following remark, titionings 7r € 7Tg, there exists, with probability one,
and then move to a stronger statement. Urg|; € Ury|,-

Remark A. 2 Let I, J, K be the sub-arrays oN? such  To prove the above proposition, we introduce the following
that I = {m + 2,...,m'} x {n +2,...,n'}, J =  threelemmas.
{m+1,....m+1} x{n+1,...,0n + 1}, and K =

, , LemmaA. 5
{m,....m" +2} x {n,...,n" +2}. LetBx|r, be aset p, sub-array I = (m:m')x (n:n') and inte-
of rectangular partitionings o where its restriction to _ _
. S ger sequencesg = (91,92, 9m'—m+1), B =
Jis Ty € T; and the entries inJ do not belong to any (h, ha Bt 1) the probability that

blocks that the entries ifX” \ J belong to. The sum of the
probability that the partitionings iB |, are drawn from
RLGA (0nor; 0ver, I1) (€.9.,—]) is equal to the sum of the
probabilities that they are drawn froRLGA ({;0n0r+ (1 — Pro [T, r(u,guiha)]
lI)(l - Ohor);ll(l - Over) + (1 - lI)Over;lI) (eg=<_\L)
ForanyT; € 71, there is a seB |, whose restriction to
I corresponds td’.

U’ T(u,ge:he) 1S drawn from RLGA(—]) can be
expressed as follows

m’—1
= H Pr—>l,[TI(u+1,gu+1:hu+1)|Tl(u,gu:hu)]- (4)

Althoug_h .the ab_ove remark actually prowdes SOME IN"brof By construction, we can easily check that thier1-
sights, it is nothing more than a special property of the-

/-
compartments of rectangular partitionings. Plainly, thatth fow only depends on the’-th rows,

remark covers only the partitionings that have large recty siate the following lemma, we introdueéu, v : v + 1)
angles whose edges consists only of the edges of block§hich means that theu, v)-entry belongs to blocks differ-
Thus, it holds only in very special cases. We have to congnt from those that th@, v-+1)-entry belongs to. Thus, we
sider a common property of all rectangular partitionings.,,ite Prle(u,v : v + 1)] as the probability that theu, v)-

For simplicity, with loss of generality, we focus on the re- entry and theu, v + 1)-entry belong to different blocks.
lation between the casg,, = 0,0, = 0,I; = 0 and

the casepo: = 1,0ver = 0,1; = 0. Our strategy is to LemmaA.6
approximate any finite sub-arrdyof any rectangular parti- For sub-array I = (m:m/) x (n:n') and integer se-
tioning T € Tx by a compartment df ; that coverd and ~ QUeNcesg = (gm, gm+1,- - - gms), SUch that, anyu =
can be regarded as a drawn from b&hGA(0,0,0) and M., m',n < g, <7/,
RLGA(1,0,0). To state this more precisely, we introduce
a speci(fic def)inition of compartment: Pro, [Nue(u, g(u) - g(u) +1)] =

- Pro [Nue(u, g(u) 1 g(u) + 1) (5)
Definition A. 3

For any sub-arrayd of Z2, letlr, be a set of rectangular Proof It follows from Theorem 4.1 that, for any =
partitionings where m,m+1,...,m/, probabilityPr|_, [e(u, g(u) : g(u)+1)]
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is equivalent to probabilitPr| . [e(u, g(u) : g(u) + 1)].
Moreover, by constructionPr_, [e(u + 1,g(u + 1)
glu+1)+1) | e(u,g(u) : g(u) + 1)]. As a result, we
have

Pr_, [Nue(u, g(u) : g(u) +1)]
= JI Prosle(u+1,g(uw+1): gu+1) +1)

| e(u, g(u) : g(u) +1)]

Protle(u, g(u) : g(u) +1)

’

=t

u

le(u+1,g(u+1):g(u+1)+1))

’
m

=[] Presle(w+1,g(w+1): glu+1)+1)

u=m

| e(u, g(u) = g(u) +1)]

Prle(u,g(u) : g(u)+1)

=t

w ’

|e(u,g(u+1):g(u+1)+1))

= Pro [N, g(u) : glu) +1)] (6)

This completes the proof.

We need the following third lemma to prove Theorem A.4.

Lemma A.7

For a pair of sub-arrayd = (m : m') x (v:v')andJ =
(m:m') x (n:n') such thatn < v < v < »/, if all
widths of blocks are less thdm — n +n’ — v /4)1/(m+1),
then there ard/, € Uy, that are covered by.

Proof We employ the pigeonhole principle. We divide,
1 into subsets each witkrlength width. If any block does
not grow horizontally more thag then, for any rows, least

We now prove Theorem A.4.

Proof To prove the former statement, we first show
that, for sub-array! (m:m/)x (n:n') and in-

teger sequenceg = (Gm,Gm+1,---,9m) @and h =
(R, Aty - - o huns ), We have
Pr%l[Tum,/I(m’,l:gm/)]
m—1
= T ProulTroms11,00 i) Trom 1:9,.0)]
m/=1
m—1
= H Pr(—T[TI(m’,n—gm/:n)|Tl(m’+1,n—gm/+1:n)]
m/=1
m—1

= H Pr%l[TI(m’,n—gm/:n) |TI(7n’+1,n—9m/+1:n)]

m’/=1

= Pr(-i/[TUm’I I(m’,l:gm/)]' (8)
Hereafter we can easily complete the proof of the former
statement by induction on the increment of the width that
does not belong to blocks that have at least one entry that is
on the edge. This completes the proof of the first statement.

For the latter statement, we evaluate the probability that
every union of blocks irf’z does not belong té{;,. For
any sub-arrays/ = (m : m’) x (n : n’) of Z2 such that

n < v < v < n', we consider random variable; :

Te — {0,1} where, ifTg|; hasUr, € Ur,, theny; = 1;
otherwisey ; = 0. Itfollows from Lemma 4. 7 that at least
one block has width more thda —n +n/ — o' /4)1/(m+1)-
length. Thus we have

Z Prﬁi [UTI ¢ uTI]

UTI GU;I

Pr_, [xs = 0]

v—ntn’—v’ 1/(m+1)
< plo—nt /4) 9)

one block edge is present. Thus, the number of possibl@s a result, if.J is sufficiently large, i.e.x’ —n — oo, then
patterns of lines jointing the entries on edges is at mosf; = 1 with probability one. Similarly, we check the case

s™+1 \We here have

n —

v—n
s[ +s 1 > s(s™41)
s
cv-—n—s+n —v—-s > s"litg
cv—n+n —v > s™tl 435
v—n+4+n -0 > 4smt!
1
v—n+n —v\""
s < (4) )

where [z] denotes the integer part of real value As a
result, if we have more thas™ + 1 subsets, then there

of +—|. This completes the proof of the second statement.

6. Experimental result

We here show some figures omitted from the main body.

Visualization of partitioning. (a) Animal feature. Fig. 1
shows samples of RTP-based analysis with animal-feature
labels. (b)Dnations. This data was hard for the MP. Typ-
ically, the MP runs fall into a trivial partition (i.e., no cut).
Thus, Fig. 2 shows samples of the RTP- and the IRM-based
analysis. (cCities. Fig. 3 shows samples of the RTP- and
the MP-based analysis.

exists at least one pair of the same patterns based on the

pigeonhole principle. This completes the proof.
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Figure 1.Animal-feature data analysis. Two samples of RTP-based analysis. As an example, for the right analysis of the RTP, two dense
blocks on the right side indicates thi@ctive, fast, smaftare included in a cluster for all animals, Hudig, strong, group are included
in a cluster only for approximately half of animals.
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Figure 2.Dnations data analysi3op: two samples of RTP-based analy®&ttom: three samples of IRM-based analysis.
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Figure 3.Cities data analysistop: two samples of RTP-based analydattom: three samples of MP-based analysis.
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