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1. Examples of projective system

Example 1 (Kingman’s coalescent):Consider a Markov
process with values in the space of partitions of[n] (=
{1, 2, . . . , n}), called then-coalescent. If any two parti-
tions,π, π′, are such thatπ′ can be obtained fromπ by the
coagulation of two of its blocks, then the jump rate fromπ
to π′ is 1. All other collections of blocks coagulate at rate
0. That is, given a current state (i.e., the partition)π with
k non-empty blocks, the process stays atπ for exponential
time with parameterk(k − 1)/2, then jumps at one of the
k(k−1)/2 partitions, which can be obtained fromπ by the
coagulation of two of its blocks, according to uniform prob-
ability. We can verify that then-coalescent is projective in
the following manner. As index setF(E), we can use the
set of all finite partitions ofN. We here useXI := 2I

2

,
the set of subsets ofI2. Eachα ∈ XI is a (#I × #I)
binary matrix:αi,j = 1 (if (i, j) ∈ α) andαi,j = 0 (oth-
erwise), where#I denotes the number of entries inI. We
can define the projectionXn → Xm by, for example, the
following restriction. For each1 ≤ m (≤ n), let ϕm,n be
the operation onXn that restrictsα (∈ Xn) to them ×m
matrix by keeping the successive(1 : m)× (1 : m) entries
(in Matlab notation) unchanged, and removing the rest of
the entries. For example, consider a draw fromn(= 4)-
coalescent:1|4|2|3→14|2|3→14|23→1423. The restricted
m(= 3)-coalescent corresponds to1|2|3→1|23→123, that
is, “4” is removed byrestriction. Intuitively, “projective”
means that the restricted version can be itself drawn from
m-coalescent. For the coagulation1|4|2|3→14|2|3 related
to “4”, we can regard that a Poisson process yields an
event at rate6, and it is assigned to candidates related to
“4” with probability of 3/6 (i.e., coagulation candidates
(1, 4), (2, 4), (3, 4)). This is similar to thinning a Poisson
process. That is, its coagulation can be regarded as an event
drawn from a Poisson process with rate 3. Coagulations in-
volving “4” are of no concern to the view of{1, 2, 3}.

Example 2 (Dirichlet process): For example, consider a
five-dimensional Dirichlet variable:(s1, s2, s3, s4, s5) ∼

Dirichlet(α1, α2, α3, α4, α5). The key feature of the
Dirichlet distribution isself-similarity, e.g., (s1, s2, s3 +
s4, s5) can be regarded as if it were drawn from
Dirichlet(α1, α2, α3 + α4, α5). Hence, the Dirichlet pro-
cess can be constructed by the following projective sys-
tem. Although the projective limit random probability mea-
sures inherently raise some technical difficulties that in-
clude measurability andσ-additivity (Orbanz, 2011), here
we give priority to intuition. LetG0 be a base measure
on setV . As index setF(E), we can use the set of
all finite partitions ofV . To define a partial order on
E, let I = (S1, . . . , Sm) and J = (S′1, . . . , S

′
n), and

I � J :⇔ (Si ∩ S′j)i,j = J . Intuitively, J shares all
the boundaries ofI. We can now define the family of
XI ∼ Dirichlet(G0(S1), . . . , G0(Sm)) as follows. For
eachSi, let Ji (⊂ 1, . . . , n) be a subset of indices such
that Si = ∪j∈JiS

′
j . We can define the projector as fol-

lows: PJ,IXJ(Si) :=
∑

j∈Ji
XJ(S

′
j). This construction

is exactly analogous to the above reduction of the five di-
mensions to four.

2. Formal representation of RTP

Our construction algorithm uses two real values as tunable
input parameters, and returns a rectangular partitioning of
the input array. Consider a rectangular partitioning of input
array I, whereI is a sub-arrayI ⊂ N × N (i.e., for all
integersm,n,m′, n′ satisfying1 ≤ m ≤ m′ and 1 ≤
n ≤ n′, {m,m + 1, . . . ,m′} × {n, n + 1, . . . , n′}). The
rectangular partitioning ofI is a collection of disjoint, sub-
arrays ofI whose union corresponds toI. We write TI
to denote the collection of all rectangular partitionings of
I. The input parameters are a real value,p ∈ (0, 1), and
a budget,B ≥ 0. Intuitively, p ∈ (0, 1) directly controls
block size, that is, if we choose a large value forp, each
block is expected to be large.

Our algorithm consists of two stages: “generating order of
block growth” and “assigning entries to blocks”. These cor-
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Algorithm 1 SAMPLING ORDER OF BLOCK GROWTH

SAMPLEM(X, t, θI )
· ξ ∼ Exponential(c({X})), wherec(·) denotes a rate
function (that is typically a counter of the sum of the
number of columns and rows).
if t < ξ then
· Draw a uniform binary indicator: lX ∼
Bernoulli(1/2).
if lX = 0 then
· Update θI by adding new relations
(u, v) ≺ (u′, v′) for every pairs{(u, v), (u′, v′) |
(u, v), (u′, v′) ∈ X, v < v′}.

else
· Update θI by adding new relations
(u, v) ≺ (u′, v′) for every pairs{(u, v), (u′, v′) |
(u, v), (u′, v′) ∈ X, u < u′}.

end if
· return trivial partition{X} andθI .

else
· Sample a uniform axis-parallel partition{X0, X1}
of X.
if There arex0 ∈ X0, x1 ∈ X1 such thatx0 ≺ x1

then
· UpdateθI by adding relationsx0 ≺ x1 for every
pairsx0 ∈ X0, x1 ∈ X1.

else
· UpdateθI by adding relationsx0 � x1 for every
pairsx0 ∈ X0, x1 ∈ X1.

end if
· return ∪i∈2SAMPLEM(Xi, t− ξ, θI ).

end if

respond to the Bayesian hierarchy, that is, the former means
conditioning, and the latter generates a sample based on a
conditional probabilistic model. Plainly, for the first step,
our algorithm generates the total order of all entries ofI,
denoted byθI := (I;≺), by applying a discrete Mondrian
process with budgetB. More precisely, we denote byΘI

the set, in ascending order of(m′−m+1)(n′−n+1), of en-
tries ofI, i.e., for any1 ≤ i < j ≤ (m′−m+1)(n′−n+1),
θI(i) ≺ θI(j); the first step generates sampleθI of ΘI .
This step is recursively processed. As the initialization,
partial clues ofθI are given: for any natural numbersu
and v < v′, (u, v) ≺ (u, v′), and for any natural num-
bersv andu < u′, (u, v) ≺ (u′, v). We recursively run
SAMPLEM(I, T , θI ) based on Algorithm 1. It returns a
sample of the total order of all entries ofI, i.e., θI . For
the second step, our algorithm assigns the entries to blocks
in the obtained order,θI , using two types of coins whose
probabilities of turning up heads when tossed arep andq
such thatq = p/(p2 − p + 1). We run SAMPLER(I, θI ,
p) based on Algorithm 2. Finally, we obtain a rectangular
partitioning ofI.

Algorithm 2 SAMPLING RECTANGULAR PARTITIONING

SAMPLER(I, θI , p)
· Start from theθI(1)-entry as a singleton.
for i = 2 to (m′ −m+ 1)(n′ − n+ 1) do

if Two adjacent entriesθI(i) + (−1, 0) andθI(i) +
(0,−1) exist inI, and they have already been assigned
to blocks then

if The two adjacent entries are assigned to the same
block then
· The θI(i)-entry is also assigned to the same
block.

else
if RI(i) + (−1, 0) ≺ θI(i) + (1, 0) then
· With probability p, the θI(i)-entry is as-
signed to the block to which theθI(i) +
(−1, 0)-entry belongs. With probability(1 −
p)q, it is assigned to the block to which the
θI(i) + (0,−1)-entry belongs. With probabil-
ity (1−p)(1−q), it is assigned to a new block.

else
· With probability p, the θI(i)-entry is as-
signed to the block to which theθI(i) +
(0,−1)-entry belongs. With probability(1 −
p)q, it is assigned to the block to which the
θI(i) + (−1, 0)-entry belongs. With probabil-
ity (1−p)(1−q), it is assigned to a new block.

end if
end if

else
· With probabilityp, theθI(i)-entry is assigned to
the same block to the adjacent entry; with probabil-
ity (1− p), to a new block.

end if
end for
return the resulting rectangular partitioning.

Our algorithm provides a self-consistent family of rect-
angular partitionings of matrices of any finite size, which
leads to a probability measure on rectangular partitionings
of matrices of infinite size.

3. Proof of theorems and propositions

Proof of proposition 3.2

Without loss of generality, we assume that the input of
RLGA is {→↓}. First, we focus on LGA, i.e., the rectan-
gular partitioning of(2 × 2)-arrays. Note that the top row
(two entries) was first to be assigned to blocks, and then the
bottom-left entry was assigned. More precisely, we first de-
cide whether or not the top-left block gains an increment in
the horizontal direction withBernoulli(p), then whether or
not it gains one in the vertical direction withBernoulli(p).
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By construction, we can easily check that (1-i) the prob-
ability of the top-right and bottom-right belonging to the
same block isp, and (1-ii) the probability of the bottom-
left and bottom-right belonging to the same block is also
p. For (1-i), by marginalizing out all possibilities of the
top-left and the bottom right entries, we can calculate the
probability that the top-right and bottom-right belong to the
same block:

p2 + (1− p)pq + (1− p)3q

= p2 +
p

p2 − p+ 1
(1− p)(p2 − p+ 1) = p. (1)

For (1-ii), by marginalizing out all possibilities of the top-
left and top-right entries, we can calculate the probability
that the bottom-left and bottom-right belong to the same
block:

p(1− p)p+ p2 + (1− p)2p = p. (2)

Finally we have to show that (i) the vertical length can be
incremented by1 with probabilityp, and (ii) the horizon-
tal length can also be incremented by1 with probabilityp.
For (i), by construction and the above result, the vertical
length is incremented by1 with probabilityp. For (ii), the
horizontal length should be decided when its first column
is grown, Thus, by construction and the above result, the
horizontal length also increments by1 with probabilityp.

Proof of Theorem 3.3

Without loss of generality, we assume that the input of
RLGA is→↓. We have to consider four types of restriction,
(1) deleting the right column, (2) deleting the bottom row,
(3) deleting the left column, and (4) deleting the top row.
(1) and (2) can be easily checked by construction, that is,
the deleted row or column are generated based on the other
part of the rectangular partitioning. For (3), we consider
repeated marginalization from the top-left(2× 2)-array to
the bottom-left(2×2)-array. When we marginalize the left
column of each(2 × 2)-array, we can consider increment-
ing the right column by1 with probabilityp. Thus, we can
recursively check that the process is self-consistent under
the condition that the left column is deleted.

For (4), we have to check whether we can regard that the
restricted (remained) top row is incremented with proba-
bility p. Each block of the restricted top row are orig-
inally (i.e., before restriction) generated in the following
two manners: (i) original top column generated the block,
and was then incremented, or (ii) it is originally generated
in the restricted top column for the first time. Thus, when
we marginalize all possible patterns of the original top col-
umn, we can regard each block of the restricted top column
as being capable of being incremented vertically with prob-
ability p. That is, it shows self-consistency when the top
column is deleted.

Algorithm 3 MCMC FOR RTP-BASED RELATIONAL

MODEL

Input: Observation(Yi,j)m×n, p (0 < p < 1) and
global direction(as an example,↘)
Initialization
· Generate a regular grid partitioning (i.e., a pre-cluster)
of [0, 1]2 based on the vertical and horizontal PPs on
[0, 1] (in our experiment, we manually give this step).
· For each row i, generate the coordinate from
Uniform[0, 1], and initializeζi.
· For each columnj, generate the coordinate from
Uniform[0, 1], and initializeηj .
· Generate a RTP partitioning of the pre-cluster from the
RTP. This step involves MP partitioning and directions
of growth.
Main loop of MCMC
· Update the PPs based on random-walk MH.
· For each rowi, updateζi using Gibbs sampling, similar
to (Roy & Teh, 2009) and (Wang et al., 2011).
· For each columnj, updateηj using Gibbs sampling,
similar to (Roy & Teh, 2009) and (Wang et al., 2011).
· Update the MP partitioning using a reversible jump
method, similar to (Wang et al., 2011).
· For each box in MP partitioning, update the direction
of growth using Gibbs sampling.
· Update the RTP rectangular partitioning based on MH
FOR RTP (Algorithm 4).

Proof of theorem 3.4

Recall thatΘI consists of a hierarchical partitioning ofI
drawn from the discrete Mondrian process, and directions
of growth. This discrete Mondrian process provides a pro-
jective system of hierarchical partitionings, which can be
verified as being similar to the self-similarity of the original
Mondrian process ((Roy, 2011), Prop. V. 10). Moreover,
each direction of growth is independently chosen. Thus,
ΘI (I ∈ F(E)) are projective. As a result, it follows from
Theorem 3.2 and the property of RLGAs that the family of
µI(TI |ΘI) for I ∈ F(E) is conditionally projective, and
leads to the conditional projective limitµE(TE |ΘE).

4. Inference

We use Markov chain Monte Carlo (MCMC) methods that
iterate over draws from posteriors to yield the rectangular
partitioningT , the pre-clustersξ andη, and the interme-
diate variablesθ. Note that we can easily marginalize out
the Dirichlet variablesφ, in the same way as (Wang et al.,
2011). Algorithm 3 provides a sketch.

Rectangular partitioning T : It is not easy to sample the
conditional posterior distribution for rectangular partition-
ing in the sense of Gibbs sampling. Thus, we employ a
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Algorithm 4 MH FOR RTP
· Choose uniformly at random one row/column from the
matrix, i.e., the pre-cluster. For example, in the follow-
ing, suppose that a row is chosen.
· Generate uniformly at random an order of priorities of
“left”, “upper”, and “lower”. For example, in the follow-
ing, we assume that“left′′ � “upper′′ � “lower′′.
for from left-most entry to right-most entry of the chosen
row do
· Generate a real valueγ ∈ [0, 1] from Uniform[0, 1].
If possible (i.e., satisfies the rectangular partitioning
constraint), the current entry is assigned to the “left”
block. Otherwise, go to the next line.
· Regenerate real valueγ ∈ [0, 1] fromUniform[0, 1].
If possible, the current entry is assigned to the “upper”
block. Otherwise, go to the next line.
· Regenerate real valueγ ∈ [0, 1] fromUniform[0, 1].
If possible, the current entry is assigned to the “lower”
block. Otherwise, go to the next line.
· The current entry is assigned to a new block.

end for
· Applying the acceptance/rejection scheme of the MH.

Metropolis-Hasting (MH) algorithm: we generate the next
candidate from a proposal distribution, and then accept or
reject it based on the probability ratio. In terms of the MH
scheme, it is important to design a good (ideally, rapid mix-
ing and high acceptance rate) proposal. Our strategy is to
change the partitions of only one row/column per iteration,
and keeping the remainder. In our experiments, we used the
following proposal: (as an example, for one row) from left
to right, holding the constraint of the rectangular tilings,
we randomly chose whether an entry is assigned to the ad-
jacent upper, lower, left, or new block (Algorithm 4).

Pre-clustersξ and η: Precisely, this step involves not
only pre-clusters but also the split locations of the (verti-
cal and horizontal) Poisson processes. For the pre-clusters,
we can use Gibbs sampling. This is due to an artifice of
the combination of PPs and RTP. PPCs make it possible
to separate the updates of the permutations (i.e., assigning
the pre-clusters) from that of the rectangular partitioning.
Otherwise, the updates of the permutations influence the
rectangular partitioning. For the split locations of PPs, we
can use random walk MH.

Intermediate variables θ: We here discuss a sampler for
θ consisting of the hierarchical partitioningM and the bi-
nary variables of leaf blocks. For the binary variables, we
can easily use Gibbs sampling. For MP sampleM (con-
sisting of a tree of sub-arrays, random costs and locations
of the cut to each non-leaf block of the tree), we can employ
a reversible jump MCMC (Wang et al., 2011).

5. Properties of RLGAs

We here analyze RLGAs more carefully. Specifically, we
clarify the influence of the block growth direction. In this
appendix, we extend index setE to the product of integers
Z2. Note that this extension does not affect our main con-
struction. There are eight possible block growth patterns
of RLGA, i.e., a combination of four corners as stating
points and two choices ofl. For understanding we intro-
duce our notations. We use two random binary variables
ohor andover to express four choices of starting points for
the four patterns of(ohor, over). They provide partial clues
of the total order(I;≺): ohor = 0/1 means that, for any
integersu andv < v′, (u, v) ≺ / � (u, v′). Similarly,
over = 0/1 means that, for any integersv andu < u′,
(u, v) ≺ / � (u′, v). More intuitively, we also write eight
patterns as follows:

• →↓: ohor = 0, over = 0, l = 0.

• ↓→: ohor = 0, over = 0, l = 1.

• ←↓: ohor = 1, over = 0, l = 0.

• ↓←: ohor = 1, over = 0, l = 1.

• →↑: ohor = 0, over = 1, l = 0.

• ↑→: ohor = 0, over = 1, l = 1.

• ←↑: ohor = 1, over = 1, l = 0.

• ↑←: ohor = 1, over = 1, l = 1.

A natural question is whether the probabilities that a given
rectangular partitioning of input arrayI, TI ∈ TI , is drawn
from eight patterns are equal or not. We have the following
statement:

Theorem A. 1
Let TI be a rectangular partitioning ofI drawn from
an RLGA withohor, over, lI : TI ∼ RLGA(ohor, over, lI)
(e.g.,→↓). (1) It is distributionally equivalent toTI ∼
RLGA((1 − lI)ohor + lI(1 − ohor), (1 − lI)(1 − over) +
lIover, lI) (e.g.,→↑). (2) It cannot be regarded as if
TI ∼ RLGA(lIohor + (1 − lI)(1 − ohor), lI(1 − over) +
(1− lI)over, lI) (e.g.,←↓).

Proof Without loss of generality, we assume that the in-
put of RLGA is ohor = 0, over = 0, lI = 0. We also as-
sume, w.l.o.g.,I = 1 : m× 1 : n in Matlab notation. For
notational simplicity, we express the probability thatTI is
drawn fromRTP(→↓) asPr→↓[TI ]. Moreover, we write a
rectangular partitioning of the restriction ofI as, for exam-
ple,TI(1:m′,:) in Matlab notation.
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We prove the first statement by induction. By construction,
we have

Pr→↓[TI ] = Pr→↓[TI(2,:)|TI(1,:)] · Pr→↓[TI(3,:)|TI(2,:)]

× · · · × Pr→↓[TI(m,:)|TI(m−1,:)]. (3)

Thus, we have only to deal with the case of two columns,
which can be easily extended to any finite-dimensional ar-
ray. The base case,(2 × 2)-arrays, can be easily checked.
Suppose that, for(2× n′′)-arrays,RLGA(0, 0, 0) is distri-
butionally equivalent toRLGA(0, 1, 0). For(2× n′′ + 1)-
arrays, we can easily check that all possible patterns have
the same probabilities from LGA.

For the second statement, we can easily find counterexam-
ples, for example,(2× 2)-arrays.

Although the second statement of the above proposition is
unfortunate, we may intuitively think that, for example,
RLGA(→↓) has a certain resemblance toRLGA(←↓).
This intuition is partially correct. In the following, we dis-
cuss it more carefully. We begin with the following remark,
and then move to a stronger statement.

Remark A. 2 Let I, J,K be the sub-arrays ofN2 such
that I = {m + 2, . . . ,m′} × {n + 2, . . . , n′}, J =
{m + 1, . . . ,m′ + 1} × {n + 1, . . . , n′ + 1}, andK =
{m, . . . ,m′ + 2} × {n, . . . , n′ + 2}. LetBK |TJ be a set
of rectangular partitionings ofK where its restriction to
J is TJ ∈ TJ and the entries inJ do not belong to any
blocks that the entries inK \ J belong to. The sum of the
probability that the partitionings inBK |TJ are drawn from
RLGA(ohor, over, lI) (e.g.,→↓) is equal to the sum of the
probabilities that they are drawn fromRLGA(lIohor+(1−
lI)(1 − ohor), lI(1 − over) + (1 − lI)over, lI) (e.g.,←↓).
For anyTI ∈ TI , there is a setBK |TJ whose restriction to
I corresponds toTI .

Although the above remark actually provides some in-
sights, it is nothing more than a special property of the-
compartments of rectangular partitionings. Plainly, that
remark covers only the partitionings that have large rect-
angles whose edges consists only of the edges of blocks.
Thus, it holds only in very special cases. We have to con-
sider a common property of all rectangular partitionings.
For simplicity, with loss of generality, we focus on the re-
lation between the caseohor = 0, over = 0, lI = 0 and
the caseohor = 1, over = 0, lI = 0. Our strategy is to
approximate any finite sub-arrayI of any rectangular parti-
tioningTE ∈ TE by a compartment ofTE that coversI and
can be regarded as a drawn from bothRLGA(0, 0, 0) and
RLGA(1, 0, 0). To state this more precisely, we introduce
a specific definition of compartment:

Definition A. 3
For any sub-arraysI of Z2, letUTI be a set of rectangular
partitionings where

• their restrictions toI correspond toTI ∈ TI ,

• for any row, both the leftmost entries and the rightmost
entries are on edges of blocks, and

• for any two adjacent rows, the horizontal difference
value of their leftmost entries is equal to the horizontal
difference value of their rightmost entries.

We call setUTI the investiture ofTI . Moreover, we write
U∗TI

as the set satisfying only the first and second argu-
ments.

We have the following theorem:

Theorem A. 4
For any sub-arraysI = (m : m′)× (n : n′) of Z2, the
probability thatUTI

∈ UTI
is drawn fromRLGA(0, 0, 0)

is equal to the probability thatUTI is drawn from
RLGA(1, 0, 0). Moreover, for any finite-dimensional sub-
arrays I of Z2 and infinite-dimensional rectangular par-
titionings TE ∈ TE , there exists, with probability one,
UTE |I ∈ UTE |I .

To prove the above proposition, we introduce the following
three lemmas.

Lemma A. 5
For sub-array I = (m : m′)× (n : n′) and inte-
ger sequencesg = (g1, g2, . . . , gm′−m+1),h =
(h1, h2, . . . , hm′−m+1), the probability that
T∪m′

u=mI(u,gu:hu)
is drawn from RLGA(→↓) can be

expressed as follows:

Pr→↓[T∪uI(u,gu:hu)]

=
m′−1∏
u=m

Pr→↓[TI(u+1,gu+1:hu+1)|TI(u,gu:hu)]. (4)

Proof By construction, we can easily check that them′+1-
th row only depends on them′-th rows.

To state the following lemma, we introducee(u, v : v + 1)
which means that the(u, v)-entry belongs to blocks differ-
ent from those that the(u, v+1)-entry belongs to. Thus, we
write Pr[e(u, v : v + 1)] as the probability that the(u, v)-
entry and the(u, v + 1)-entry belong to different blocks.

Lemma A. 6
For sub-array I = (m : m′)× (n : n′) and integer se-
quencesg = (gm, gm+1, . . . , gm′), such that, anyu =
m, . . . ,m′, n < gu < n′,

Pr→↓[∩ue(u, g(u) : g(u) + 1)] =

Pr←↓[∩ue(u, g(u) : g(u) + 1)]. (5)

Proof It follows from Theorem 4.1 that, for anyu =
m,m+1, . . . ,m′, probabilityPr↓→[e(u, g(u) : g(u)+1)]
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is equivalent to probabilityPr↓←[e(u, g(u) : g(u) + 1)].
Moreover, by construction,Pr→↓[e(u + 1, g(u + 1) :
g(u + 1) + 1) | e(u, g(u) : g(u) + 1)]. As a result, we
have

Pr→↓[∩ue(u, g(u) : g(u) + 1)]

=
m′∏

u=m

Pr→↓[e(u+ 1, g(u+ 1) : g(u+ 1) + 1)

| e(u, g(u) : g(u) + 1)]

=
m∏

u=m′

Pr→↑[e(u, g(u) : g(u) + 1)

| e(u+ 1, g(u+ 1) : g(u+ 1) + 1)]

=
m′∏

u=m

Pr←↑[e(u+ 1, g(u+ 1) : g(u+ 1) + 1)

| e(u, g(u) : g(u) + 1)]

=
m∏

u=m′

Pr←↓[e(u, g(u) : g(u) + 1)

| e(u, g(u+ 1) : g(u+ 1) + 1)]

= Pr←↓[∩ue(u, g(u) : g(u) + 1)] . (6)

This completes the proof.

We need the following third lemma to prove Theorem A.4.

Lemma A.7
For a pair of sub-arraysI = (m : m′)× (v : v′) andJ =
(m : m′)× (n : n′) such thatn < v < v′ < n′, if all
widths of blocks are less than(v− n+ n′ − v′/4)1/(m+1),
then there areUTI

∈ UTI
that are covered byJ .

Proof We employ the pigeonhole principle. We divideJ \
I into subsets each withs-length width. If any block does
not grow horizontally more thans, then, for any rows, least
one block edge is present. Thus, the number of possible
patterns of lines jointing the entries on edges is at most
sm+1. We here have

s

[
v − n

s

]
+ s

[
n′ − v′

s

]
> s(sm + 1)

⇐ v − n− s+ n′ − v′ − s > sm+1 + s

⇐ v − n+ n′ − v′ > sm+1 + 3s

⇐ v − n+ n′ − v′ > 4sm+1

⇐ s <

(
v − n+ n′ − v′

4

) 1
m+1

(7)

where [x] denotes the integer part of real valuex. As a
result, if we have more thansm + 1 subsets, then there
exists at least one pair of the same patterns based on the
pigeonhole principle. This completes the proof.

We now prove Theorem A.4.

Proof To prove the former statement, we first show
that, for sub-arrayI = (m : m′)× (n : n′) and in-
teger sequencesg = (gm, gm+1, . . . , gm′) and h =
(hm, hm+1, . . . , hm′), we have

Pr→↓[T∪m′I(m′,1:gm′ )]

=
m−1∏
m′=1

Pr→↓[TI(m′+1,1:gm′+1)
|TI(m′,1:gm′ )]

=
m−1∏
m′=1

Pr←↑[TI(m′,n−gm′ :n)|TI(m′+1,n−gm′+1:n)
]

=
m−1∏
m′=1

Pr←↓[TI(m′,n−gm′ :n)|TI(m′+1,n−gm′+1:n)
]

= Pr←↓[T∪m′I(m′,1:gm′ )]. (8)

Hereafter we can easily complete the proof of the former
statement by induction on the increment of the width that
does not belong to blocks that have at least one entry that is
on the edge. This completes the proof of the first statement.

For the latter statement, we evaluate the probability that
every union of blocks inTE does not belong toUTI . For
any sub-arraysJ = (m : m′) × (n : n′) of Z2 such that
n < v < v′ < n′, we consider random variableχJ :
TE → {0, 1} where, ifTE |J hasUTI

∈ UTI
, thenχJ = 1;

otherwise,χJ = 0. It follows from Lemma 4. 7 that at least
one block has width more than(v−n+n′−v′/4)1/(m+1)-
length. Thus we have

Pr→↓[χJ = 0] =
∑

UTI
∈U∗

TI

Pr→↓[UTI
6∈ UTI

]

< p(v−n+n′−v′/4)1/(m+1)

(9)

As a result, ifJ is sufficiently large, i.e.,n′−n→∞, then
χJ = 1 with probability one. Similarly, we check the case
of←↓. This completes the proof of the second statement.

6. Experimental result

We here show some figures omitted from the main body.

Visualization of partitioning. (a) Animal feature. Fig. 1
shows samples of RTP-based analysis with animal-feature
labels. (b)Dnations. This data was hard for the MP. Typ-
ically, the MP runs fall into a trivial partition (i.e., no cut).
Thus, Fig. 2 shows samples of the RTP- and the IRM-based
analysis. (c)Cities. Fig. 3 shows samples of the RTP- and
the MP-based analysis.
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Figure 1.Animal-feature data analysis. Two samples of RTP-based analysis. As an example, for the right analysis of the RTP, two dense
blocks on the right side indicates that{active, fast, smart} are included in a cluster for all animals, but{big, strong, group} are included
in a cluster only for approximately half of animals.
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Figure 2.Dnations data analysis.Top: two samples of RTP-based analysis.Bottom: three samples of IRM-based analysis.
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Figure 3.Cities data analysis.Top: two samples of RTP-based analysis.Bottom: three samples of MP-based analysis.
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