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Abstract
This paper proposes a novel stochastic process
that represents the arbitrary rectangular partition-
ing of an infinite-dimensional matrix as the con-
ditional projective limit. Rectangular partition-
ing is used in relational data analysis, and is clas-
sified into three types:regular grid, hierarchical,
andarbitrary. Conventionally, a variety of prob-
abilistic models have been advanced for the first
two, including the product of Chinese restaurant
processes and the Mondrian process. However,
existing models for arbitrary partitioning are too
complicated to permit the analysis of the statisti-
cal behaviors of models, which places very se-
vere capability limits on relational data analy-
sis. In this paper, we propose a new probabilis-
tic model of arbitrary partitioning called the rect-
angular tiling process (RTP). Our model has a
sound mathematical base in projective systems
and infinite extension of conditional probabili-
ties, and is capable of representing partitions of
infinite elements as found in ordinary Bayesian
nonparametric models.

1. Introduction

Relational data is now being used in various applications
in order to represent richly structured, real-world data. In
particular, pairwise relations represented by matrices, i.e.,
(Yi,j)m×n, are subjects of intense study. For example, in
the context of binary relational data, entryYi,j represents
an on/off connection between thei-th andj-th elements.
One of the most important problems associated with rela-
tional data analysis is to discover clusters that are hiding in
the relational data. In the context of Bayesian relational
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Figure 1.Left: Regular grid partitioning.Middle: Hierarchical
partitioning.Right: Arbitrary partitioning.

data analysis, a telling example is the stochastic block
model (SBM) (Nowicki & Snijders, 2001), which extracts
hidden clusters through the rectangular partitioning of the
matrix (Wasserman & Anderson, 1987). The goal of SBM
is to find permutations of rows and columns, and their rect-
angular partitioning. The central problem is how to con-
struct generative models to yield rectangular partitioning.

Kemp et al. (2006) presented a Bayesian nonparametric
model, called the infinite relational model (IRM), based on
the product of Chinese restaurant processes (CRP) on both
rows and columns. The partitions obtained by IRM are re-
stricted to regular grids. Splitting one area of the matrix
requires the other parts to be divided, even if the data do
not imply such structure. Motivated by this, Roy & Teh
(2009) proposed the Mondrian process (MP), which can be
regarded as a multi-dimensional generalization of Poisson
processes (Roy, 2011). MP allows more flexible partition-
ing of the matrix by creating inner rectangles, not splitting
entire rows or columns. However, even the MP can gener-
ate only a limited class of rectangular partitionings.

In general, there are three types of rectangular partitionings
(Muthukrishnan et al., 1999) (Fig. 1):

• Regular grid: The rows and columns are partitioned
into clusters. Each block is characterized by the prod-
uct of the row and column clusters,

• Hierarchical: Partitionings are expressed as binary
trees where nodes represent a vertical or horizontal
separation of a rectangle into two disjoint rectangles,

• Arbitrary: No restrictions are required.
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Figure 2.Left: Projector of rectangular partitioning. For any sub-arraysI, J (I ≺ J ∈ F(E)), the projectionPJ,I restricts the partition
of J by keeping theI entries unchanged, and removing the remaining entries.Right: Illustration ofprojectivity. Left side shows the
probability of a sample partitioning of arrayI. Right side shows the probability of the partitioning of arrayJ (I ≺ J) whose projection
(i.e., restriction) ontoI is equivalent to the left side. For anyI, J (I ≺ J), this equation should hold.

IRM and MP correspond toregular grid andhierarchical
types, respectively. We are interested in generalarbitrary
partitioning, and propose a new model accordingly.

To the best of our knowledge, arbitrary partitioning has
been little discussed in machine learning literature. How-
ever, the field of probability theory knows of probabilis-
tic models for arbitrary rectangular partitioning. One
well-known model is the Gilbert tessellation model (1967)
with axis-parallel cuts (i.e., cracks) described below
(Mackisack & Miles, 1996). First, consider points, (called
seeds), drawn from a stationary Poisson process on a plane.
At a given time, each of these seeds initiates the growth of
a line. The lines are confined to two orthogonal directions,
i.e., “vertical” or “horizontal”. Each seed uniformly and
independently chooses a direction from{“vertical”, “hori-
zontal”}, and each line grows bidirectionally from its seed
at the same rate. When the current line encounters and in-
tersects another line that has grown from another seed, the
growth of that line stops. As a result, Gilbert tessellations
can generate arbitrary partitionings. However, it is noto-
riously difficult to analyze statistical behaviors of Gilbert
tessellations (Burridge et al., 2013). For example, no ana-
lytic solution yielding the ray-length distribution (or the ex-
pected length, height/width of each block) has been found.

Our goal is to construct a new probabilistic model for arbi-
trary rectangular partitioning where the distribution of the
height/width of each block can be easily analyzed. As a
result, we can easily employ it for SBM-based relational
data analysis. We call itrectangular tiling process(RTP),
analogous torectangular tiling problemin combinatorics.

2. Preliminaries
Notations: Random events are modeled by the abstract
probability space(Ω,A,P), whereΩ is a point set,A is a
σ-algebra onΩ, andP is a probability measure. A random
variable (e.g.,X) is a measurable mapping fromΩ into
some space of observations (e.g.,X ), such asX : Ω→ X .
Their distribution is denoted asµX := X(P) = P ◦X−1.

2.1. Construction of infinite models

In machine learning, there are two main approaches to ob-
taining infinite models: (1) the use of well-known stochas-

tic processes, including Dirichlet processes, beta processes,
and Bernoulli processes; (2) applying infinite extension
theorems to a family of finite-dimensional models. As with
most Bayesian nonparametric models in machine learning,
the former strategy makes it much easier to construct infi-
nite models if it is possible. However, the former strategy,
sometimes, is not applicable to the problem. This makes it
essential to consider the latter approach. That is exactly the
case for the arbitrary rectangular partitionings.

2.1.1. KOLMOGOROV’ S THEOREM(USED IN SEC. 3.2)� �
Sketch: A projective family of finite-dimensional mod-
els can be extended to an infinite-dimensional model.� �

It follows from Kolmogorov’s extension theorem that we
can construct infinite-dimensional models via a family of
finite-dimensional marginals, namely, theprojective system
(Crane, 2012). This paper deals with rectangular partition-
ings of infinite-dimensional matrixE := N × N. A pro-
jective systemis a family indexed by the elements of index
setF(E), where we useF(E) as the set of all finite sub-
arrays ofE (i.e., for anym ≤ m′ ∈ N, andn ≤ n′ ∈ N,
{m,m + 1, . . . ,m′} × {n, n + 1, . . . , n′}). We consider
a family of measurable spaces(XI ,BI) with I ∈ F(E),
whereXI means a set of rectangular partitionings ofI. The
index setF(E) has partial order relation�, and, when-
everI ≺ J ∈ F(E), there existsK ∈ F(E) such that
I � K andJ � K. As Fig. 2 shows, the component
spaces(XI)I∈F(E) are related viaprojection. The projec-
tion operator fromXJ to XI will be denotedPJ,I . Projec-
tion PJ,I restricts the partition ofJ by keeping theI en-
tries unchanged, and removing the remaining entries. For
setsBI ⊂ XI , the preimage under projection is denoted
asP−1

J,IBI = {XJ ∈ XJ |PJ,IXJ ∈ BI}. The projec-
tion of a measure is defined, by means of a push-forward,
as(PJ,IµXJ

)(BI) := µXJ
(P−1

J,IBI). This family defines
measurable space(XE ,BE), called theprojective limit.

Theorem 2.1 (Bochner, 1955) Let (XI ,BI , µXI )I∈F(E)

be a projective system of measurable spaces such that, for
projectionPJ,I : XJ → XI , µXI (BI) = µXJ (P

−1
J,IBI)

holds for all BI ∈ BI . ThenµXI
(I ∈ F(E)) can be

uniquely extended to measureµXE on(XE ,BE) as the pro-
jective limit measurable space.
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2.1.2. ORBANZ’ S THEOREM(USED IN SEC. 3.3)� �
Sketch: A conditionally projective family of finite
“Bayesian” models can be extended to an infinite model.� �

“Conditioning” is useful in the context of probabilistic data
modeling since it can lead to the hierarchical structure of
probabilistic models. We may wonder if we can extend a
family of finite hierarchical models to an infinite model by
analogy to the Kolmogorov extension. Recently, Orbanz
gave a positive answer to this question (2008; 2009).

In the context of Bayesian modeling, hierarchical models
typically correspond to parametric models. Consider pa-
rameter variablesΘI : Ω → YI , and the parametric model
of XI with parameterΘI is the conditional distribution
µI(XI |ΘI). The family µI(XI |ΘI) with I ∈ F(E) is
called conditionally projectiveif (PJ,IµXJ )( . |ΘJ ) :=
µXJ

(P−1
J,I . |ΘJ ) = µXI

( . |ΘI) for all I ≺ J ∈ F(E).

Theorem 2.2 (Orbanz, 2009) Let µI(XI |ΘI) be a family
of regular conditional probabilities. If the family is con-
ditionally projective, and the parameter variables are also
projective (i.e.,PJ,IΘJ = ΘI ), there exists a conditional
probabilityµE(XE |ΘE) with projective limitΘE .

Briefly, unlike the standard Kolmogorov extension setting,
we have to take a projective limit with respect to both the
sample variable and the parameter variable. For more de-
tails refer to (Orbanz, 2008; 2009). Moreover, Orbanz
(2011) (lemma 2 and 3) provides applicable criteria to con-
struct an infinite model by means of the above theorem.

2.2. Discrete Mondrian process (used in Sec. 3.3)

We describe here a special case of the Mondrian process
(MP) (Roy & Teh, 2009; Roy, 2011), a Markov process
with values in the space of hierarchical partitioning. The
original MP generates partitioning of planes(∈ R × R),
while the discrete MP deals with arrays(∈ N× N).

Consider stochastic rectangular partitioning of input array
I ∈ N × N: MI ∼ dMP(λ, I), whereλ > 0 is a bud-
getparameter. LeteI be the sum of the number of bound-
aries of rows and columns ofI. That is,eI = #row(I) +
#column(I)−2, where#row(I) and#column(I) are the
number of rows and columns ofI, respectively. Rectangu-
lar partitioning is recursively constructed. Letλ′ = λ− e′,
wheree′ ∼ Exp(eI). If λ′ < 0, the process halts, and
returns the currentI. Otherwise, an axis-aligned cut splits
I into two sub-arraysI ′ and I ′′. The cut is chosen uni-
formly at random from all possible boundaries of the rows
and columns ofI. The partitionM is recursively gener-
ated from independent dMPs with the diminished budget
λ′ on both sides of the cut:M = M< ∪ M>, where
M< ∼ dMP(λ′, I ′) andM> ∼ dMP(λ′, I ′′).

2.3. Aldous-Hoover exchangeable array (used in Sec. 4)

As an attractive application, rectangular partitionings can
be used in relational data analysis. In the sense of infi-
nite data analysis (finite observations of potentially infinite
data), rows and columns should be infinitely exchangeable:

Theorem 2.3 (Aldous, 1981; Hoover, 1979) Random ar-
ray (Yi,j) is separately exchangeable if and only if it
can be represented as follows: There is a random mea-
surable functionG : [0, 1]3 → Y such that(Yi,j) =
G(U row

i , U column
j , Ui,j), whereU row

i , U column
j and Ui,j

areUniform[0, 1] random variables.

This provides a natural way to construct the rectangular-
partitioning-based exchangeable array (Orbanz & Roy,
2013): We first generate a rectangular partitioning of
[0, 1]2, then each(i, j)-entry is assigned to a rectangle
based on a geometrical interpretation ofU row

i andU column
j

on [0, 1]2, and finally, for example, categorical dataYi,j

is generated from each Dirichlet-categorical model on the
assigned rectangle. Since our RTP itself does not have ex-
changeability of rows and columns, we use this idea.

3. Rectangular tiling process

Our goal is to obtain probabilistic models for arbitrary rect-
angular partitioning. First, Sec. 3.1 explains a key strat-
egy for projective rectangular partitionings, and presents
a local growth algorithm(LGA) for a matrix with2 rows
and 2 columns. Second, Sec. 3.2 shows arepeated lo-
cal growth algorithm(RLGA) that extends LGA to matri-
ces of any finite size, which can be naively extended to
an infinite model in the sense of Kolmogorov’s theorem.
However, this naive approach has both positive and neg-
ative properties. A positive side is that it is easy to ana-
lyze ray-length distributions unlike Gilbert tessellation. A
negative side is that a parameter used in LGA (direction
of growthdescribed later) undesirably biases the resulting
arrangements of blocks. To reduce the negative influence,
Sec 3.3 presents a more sophisticated construction based
on Orbanz’s theorem. Proofs of theorems are described in
supplementary material.

In the following, we consider a stochastic rectangular par-
titioning of a matrix withm rows andn columns(m,n ∈
N), denoted by “(m × n)-array”. We call each tile of the
rectangular partitioning a “block”.

3.1. Local growth algorithm for (2× 2)-array� �
Strategy: As a prototype of the projective partitioning,
we embed projectivity among the relationships between
a (2× 2)-array , and a(2× 1)- or a(1× 2)-array.� �

As discussed in Sec. 2.1, we deal with aprojective family
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Figure 3.(Best viewed in color.)Left: (2 × 2)-array (top), and projectivity between(2 × 2)-array and array of any size (bottom).
Center: Rectangular partitioning of(2 × 2)-array by LGA(→↓). Right: LGA(↓→). Projectivity implies that all probabilities that the
adjacent two entries are assigned into the same block should be same. For example, ifA1,1 is assigned to the same block asA1,2 with
probabilityp, A2,1 is assigned to the same block asA2,2 with probabilityp, which is achieved by LGA withq = p/(p2 − p+ 1).

of rectangular partitionings (Fig. 3 left). That is, we need
to consider all pairs of finite sub-arraysI, J (I ≺ J ∈ N2).
Thus, as a primitive example, we first consider the case
with J as a(2 × 2)−array and its stochastic rectangular
partitioning. Naively, we assume that the top two entries
(A1,1 andA1,2 in Fig. 3 left) are assigned to the same block
with probabilityp. Projectivity implies that, if we remove
the top entries and focus only on the bottom two entries
(A2,1 andA2,2), they can be regarded as “top entries” of the
current(1×2)-array, and their assignment must be done in
a similar manner (that is, the probability thatA2,1 andA2,2

are assigned to a same block isp). Similarly, this is just as
valid for the left or right entries. In short, the probabilities
that the top/left/right/bottom two entries are assigned to the
same block are allp.

To obtain the projective partitionings, we present alocal
growth algorithm(LGA), that randomly generates the rect-
angular partitioning of a(2 × 2)-array. The input of this
algorithm consists of real variablesp, q ∈ (0, 1) and a
direction of growthchosen from eight patterns{→↓,→↑
,←↑,←↓, ↑→, ↑←, ↓→, ↓←}. It consists of two stages
(prestage and main body). Algorithm 1 shows LGA
with →↓, and Fig. 3 illustrates LGA with→↓ and↓→.
The direction of growth determines the order of merg-
ing/partitioning of the 4 possible pairs of adjacent entries
(Fig. 3). All patterns are summarized as follows (supple-
mentary material describes a formal description):

→↓ (A1,1, A1,2)⇒ (A1,1, A2,1)⇒ (A2,1, A2,2)⇒ (A1,2, A2,2)
↓→ (A1,1, A2,1)⇒ (A1,1, A1,2)⇒ (A1,2, A2,2)⇒ (A2,1, A2,2)
←↓ (A1,2, A1,1)⇒ (A1,2, A2,2)⇒ (A2,2, A2,1)⇒ (A1,1, A2,1)
↓← (A1,2, A2,2)⇒ (A1,2, A1,1)⇒ (A1,1, A2,1)⇒ (A2,2, A2,1)
→↑ (A2,1, A2,2)⇒ (A2,1, A1,1)⇒ (A1,1, A1,2)⇒ (A2,2, A1,2)
↑→ (A2,1, A1,1)⇒ (A2,1, A2,2)⇒ (A2,2, A1,2)⇒ (A1,1, A1,2)
←↑ (A2,2, A2,1)⇒ (A2,2, A1,2)⇒ (A1,2, A1,1)⇒ (A2,1, A1,1)
↑← (A2,2, A1,2)⇒ (A2,2, A2,1)⇒ (A2,1, A1,1)⇒ (A1,2, A1,1)

What is to be noted is that, if the procedure reaches the final
(fourth) merging/partitioning of the above table, the proba-
bility of merger isq. To obtain the projective partitionings,
we must appropriately choose the value ofq as follows:

Algorithm 1 LOCAL GROWTH ALGORITHM (LGA)
Input: p, q (0 < p < 1, 0 < q < 1) anddirection of
growth(as an example, assume→↓. )
Prestage
·We start from the top-left entry as a singleton.
· The top-right entry is assigned to the same block with
probabilityp, otherwise, to a new block.
· The bottom-left entry is assigned to the same block with
probabilityp, otherwise, to a new block.
Main body
· If the top-right and bottom-left entries are assigned to
the same block, the bottom-right entry is also assigned
to the same block. Otherwise, go to the next line.
·With probabilityp, the bottom-right entry is assigned to
the block to which the bottom-left entry belongs. With
probability(1− p)q, it is assigned to the block to which
the top-right entry belongs. With probability(1−p)(1−
q), it is assigned to a new block.
Output: Rectangular partitioning of a(2× 2)-array.

Remark 3.1 Consider stochastic rectangular partition-
ings of a(2 × 2)-array based on LGA withq = p/(p2 −
p + 1). The probabilities that the top/left/right/bottom two
entries are assigned to the same block are allp regardless
of the choice of the direction of growth. For example, in
Fig. 3 center, the right two entries are assigned to the same
block with the sum of the probabilities of the (from left) 2nd
((1− p)3q), 5th ((1− p)pq) and 8th (p2) leaves.

3.2. Repeated LGA for array with any finite size� �
Strategy: We construct aprojective (Sec. 2.1.1.) family
of rectangular partitionings by applying LGA repeatedly.
Theorem 3.3 gives us an infinite model based on Kol-
mogorov’s theorem.� �

In the previous subsection, we construct a projective rect-
angular partitioning of a(2 × 2)-array. Recall that pro-
jectivity means that all two adjacent entries of a(2 × 2)-
array are assigned to the same block with probabilityp.
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Algorithm 2 REPEATEDLGA (RLGA)
Input: (m × n)−arrayA, p, q (0 < p < 1, 0 < q < 1)
anddirection of growth(as an example,→↓)
Prestage
·We start from the top-left entryA1,1 as a singleton.
for n′ = 2 to n do
·With prob. p, A1,n′ is assigned to the same block as
A1,n′−1; with prob.(1− p), to a new block.

end for
for m′ = 2 to m do
·With prob.p, Am′,1 is assigned to the same block as
Am′−1,1; with prob.(1− p), to a new block.

end for
Main body
for m′ = 2 to m do

for n′ = 2 to n do
· Given the block of Am′−1,n′−1, Am′,n′−1,
Am′−1,n′ , the assignment ofAm′,n′ is determined
by the main body of the LGA.

end for
end for
Output: Rectangular partitioning ofA.

Figure 4.(Best viewed in color.)Top: Illustration of RLGA(→↓)
for (7× 4)-array. (From left to right.) (1) The prestage of RLGA
is completed. According to the direction of growth, the remaind-
ing entries are assigned to blocks. (2) The current block failed
to grow vertically with probability(1 − p). (3) The block suc-
ceeded in growing horizontally with probabilityp. (4)-(5) The
block first failed to grow horizontally with probability(1 − p),
then succeeded in growing vertically with probabilityq. Bottom:
Illustration of RLGA(↓→).

Now, we extend this projectivity to matrices of any finite
size. That is, the probability that adjacent two entries of a
(m × n)-array (m,n ∈ N) are assigned into a same block
are allp. To obtain such a projective rectangular partition-
ing, we can apply LGA repeatedly. Consider the rectangu-
lar partitioning of any finite-dimensional array,(m × n)-
array(m ∈ N, n ∈ N). As Fig. 4 shows, we can generate
the rectangular partitioning by applying therepeated local
growth algorithm(RLGA). Algorithm 2 and Fig. 4 shows
theRLGA(→↓). The uppermost and leftmost entries are

Figure 5.Undesirable property of naive RLGA.From top.
Four samples drawn fromRLGA(0.8,→↓), RLGA(0.9,→↓),
RLGA(0.8, ↓→), andRLGA(0.9, ↓→).

first assigned to blocks (prestage). Then we apply LGA
to the remaining entries (main body). The key property of
RLGA is described as follows:

Proposition 3.2 For any sub-arrayI ∈ F(E), consider
a space of rectangular partitionings ofI (denoted byTI ).
LetµTI

be a measure forTI ∈ TI provided by RLGA with
q = p/(p2 − p + 1). Consider a distribution of the height
(width) of each block ofTI drawn fromµTI

, none of whose
growing edges reach the edges ofI. It is equivalent to a
distribution of the number of successful trials with success
probabilityp until failure.

Kolmogorov’s theorem gives us an infinite model, since the
above proposition directly leads to a projective family of
rectangular partitionings. Again, as the index setF(E), we
employ the set of all sub-arrays ofN×N, partially ordered
by inclusion. The projection operatorPJ,I from TJ to TI
(with I ≺ J) restrictsTJ ∈ TJ to the rectangular partition-
ing by keeping theI entries unchanged, and removing the
remaining entries. It follows from Kolmogorov’s theorem
that RLGA provides an infinite model:

Theorem 3.3 The familyµTI
(I ∈ F(E)) can be uniquely

extended to a measure on the projective limit measurable
spaceTE . Moreover, the height (width) of each block isk
with probabilitypk−1(1− p).

Unlike Gilbert tessellations, it is a new infinite model for
arbitrary rectangular partitioning, where the distribution of
the height/width of each block can be easily analyzed. This
makes us interested in the properties of the resulting rect-
angular partitionings drawn from the RLGAs. Intuitively,
p controls the size of blocks. However, the role of the di-
rection of growth is still unclear.

To visualize the role of the direction of growth, we show
some samples drawn from the RLGAs. Recall that RLGA
requires a direction of growth chosen from{↓→, ↓←, ↑→
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Figure 6.Left: Order ofboxesgenerated from discrete Mondrian
process and total order (e.g.,↘). Right: Projectivity of parameter
variables that leads toconditional projectivity of RTP, which is
required for Orbanz’s theorem.

, ↑←,→↑,→↓,←↑,←↓}. Fig. 5 shows the cases of→↓
and↓→. The direction of growth controls the entire block
arrangement. In other words, specific choice of the direc-
tion of growth results in largely biased outputs, which is
usually undesirable. Next we reduce this undesirable influ-
ence. Supplementary material provides more details.

3.3. Final construction as conditional projective limit� �
Strategy: To overcome the undesirable property of the
naive construction discussed in the previous subsection,
we construct aconditionally projective (Sec. 2.1.2.)
family of rectangular partitionings by combining discrete
MP (Sec. 2.2.) and RLGA; it leads to infinite partition-
ings according to Orbanz’s theorem.� �

We now consider how to suppress the undesirable charac-
teristic of the naive construction discussed in the previous
subsection. The problem is the use of one RLGA with a
specific direction of growth. Thus, to overcome this prob-
lem, roughly speaking, we first divide the input array into
sub-arrays (calledboxes), and then apply RLGAs with dif-
ferent (randomized) directions of growth to each of them.
This idea is exactly two-step modeling, i.e., “conditioning”
in the context of Bayesian modeling.

The key insight is that our strategy is to focus on the order
of entries on which the merging/splitting decision is made.
Each direction of growth in RLGA decides the order of the
entries in “each box”. Thus, to obtain a total order for the
whole input array, we additionally require the “order of the
boxes”. That is, we first generate the order of the boxes,
and then we independently generate a direction of growth
for each box. This is followed by deciding the order of ap-
plying merging/splitting procedures for the entries in each
box based on each direction of growth. Finally we obtain
the total order of applying merging/splitting procedures.

To obtain a suitable order of boxes, we have to address the
following conditions:

• We can apply RLGA only to a box where one up-
per/lower column at most and one right/left row at
most have already been assigned to blocks. In other
words, we cannot apply it to a box where more than
two sides have already been assigned.

Figure 7.(Best viewed in color.) Flow of rectangular tiling pro-
cess. (Clockwise from top left.) (1) The discrete Mondrian pro-
cess first generates a binary space partitioning. Each box inde-
pendently chooses a direction of growth. (2)-(3) Then, the order
of applying merging/splitting procedures is determined. (4)-(5)
The RLGAs sequentially generate partitionings. (6) The resulting
object shows a sample of rectangular partitioning.

• The order of boxes should be projective. That is, if we
restrict the input array to any sub-array, the restricted
order of boxes must be preserved (Fig. 6).

dMP is sufficient for these conditions. We show a dMP-
RLGA hierarchical model that satisfies the above condi-
tions in Fig. 7. We first introduce a global direction from
{↗,↘,↙,↖} (typically, it is uniformly chosen in ad-
vance). As discussed below, this makes it possible to assign
a randomized direction of growth to each box. Specifically,
for example, when we chose↘, each box can choose, in-
dependently a direction of growth from{→↓, ↓→}. Then,
dMP generates a binary tree (binary space partitioning).
Note that the leaves of the binary tree correspond to boxes.
Along the binary tree, box orders are recursively generated
as follows: Suppose that a current node of the binary tree
is divided vertically/horizontally; We give priority to the
side of the starting points of the arrow of the global direc-
tion, e.g.,↘ means that we give priority to left or upper
leaves. For all paths of the binary tree, we apply the above
procedure. By construction, the above procedure must en-
sure that each untreated box has more than two residual
neighboring sides in any step. All boxes can choose inde-
pendently and uniformly their direction of growth from two
candidates, e.g., for the case of↘, each box chooses it from
{→↓, ↓→} (similarly,↗: {↑→,→↑},↙: {←↓, ↓←},↖:
{←↑, ↑←}). Thus this hierarchical model suppresses the
undesirable influence discussed in Sec. 3.2.

Finally Orbanz’s theorem provides an infinite model as a
conditional projective limit. In summary, our rectangu-
lar tiling process is based on the RLGAs conditioned by
dMP (Fig. 7). The input consists of an input array, real
valuep (0 < p < 1), and the global direction chosen from
{↗,↘,↙,↖}. We can construct a family ofµI(TI |ΘI)
for I ∈ F(E) as follows: Using dMP, we generate param-
eter variablesΘI , which consist of a hierarchical partition-
ing of I, and directions of growth. According toΘI and the
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Figure 8.Illustration of RTP-based relational model.Left: First
we make grid-style pre-clusters based on the product of Pois-
son processes on[0, 1], and generate the coordinates for each
row/column fromUniform[0, 1]. Middle: We then regard the
pre-clusters ID’s as a matrix, and apply the RTP to obtain a rect-
angular partitioning.Right: Finally each observation is generated
from the assigned block.

global direction, the suitable order of RLGAs is automat-
ically determined. Then, the sequential RLGAs generate
rectangular partitioningTI ∈ TI .

Theorem 3.4 RTP uniquely defines probability measure
µE(TE |ΘE) as the conditional projective limit of the fam-
ily µI(TI |ΘI) (I ∈ F(E)). Moreover, the height/width of
each block isk with probabilitypk−1(1− p).

4. Application: relational data analysis

We show an application of the proposed RTP to be used as
the priors for SBMs. Note that RTP itself does not have the
exchangeability of rows and columns similar to MP. Thus,
we require additional models for the infinitely exchange-
able permutations of the rows and the columns needed to
obtain the RTP-based SBM. Obviously, it is preferable that
the model leads to a tractable inference algorithm. Specif-
ically, in the sense of Bayesian inference (e.g., Markov
chain Monte Carlo methods or variational methods), it is
preferable to perform (conditionally) independent updates
for a partition and two permutations.

4.1. Relational model based on RTP� �
Strategy: We use a hierarchical structure. First we gen-
erate a grid-style partition, which leads to exchangeabil-
ity of rows and columns similar to IRM. Then the grid-
style partition is translated to a final rectangular partition-
ing by RTP, which belongs to the “arbitrary” class.� �

We here describe a Bayesian relational model based on
the combination of RTP and the Aldous-Hoover represen-
tation (1981; 1979). Our strategy is to make grid-style
clusters (calledpre-clusters) based on the product of Pois-
son processes, and then to apply RTP to the pre-clusters.
Fig. 8 provides an illustration. First, each row/column
is represented as a vertical/horizontal coordinates in[0, 1],
and two (vertical and horizontal) independent Poisson pro-
cesses (PP) on[0, 1] divide the row and column coordinates
into pre-clusters that provide a grid-style partition. For the
observation matrix(Yi,j)m×n, the pre-cluster IDs of each

row/column (denoted byξi or ηj) are generated from the
PP-based clustering (PPC):ξi ∼ PPC(µ) (i = 1, . . . ,m),
ηj ∼ PPC(µ) (j = 1, . . . , n), whereµ denotes the rate
parameter of PP. We use a matrix to represent the grid-
style pre-cluster ID’s. Note that we fix the ID’s (we do
not consider the permutations of the ID’s). Thus, the per-
mutations of the rows/columns of the observation are in-
directly expressed as assignment of the fixed pre-cluster
ID’s. We then apply RTP to this matrix, consisting of the
pre-cluster IDs, and obtain a rectangular partitioning:θ ∼
dMP(λ)× (Bernoulli(1/2))#leaf , T | θ ∼ RLGAs(p, θ),
where#leaf means the number of leaf nodes of the dMP.
Finally, observation data is generated from the Dirichlet-
categorical models:φr ∼ Dirichlet(α) (r ∈ T ), Yi,j |
R, ξ,η ∼ Categorical(φri,j ), whereri,j denotes the block
such that(ξi, ηj) ∈ ri,j .

For Bayesian inference, we can use a Markov chain Monte
Carlo (MCMC) method that iterates over draws from poste-
riors for rectangular partitioningT (Metropolis-Hastings),
pre-clustersξ andη (Gibbs), and intermediate variablesθ
(reversible jump (Wang et al., 2011)). See the supplemen-
tary material for details.

4.2. Experiments

For inference, we set the real variablep = 0.7, set the
Mondrian budgetλ = 1, and let the intensity of the
PPs and the MP be Lebesgue measures. In practice, we
found that it was better to increase the frequency of the
Metropolis-Hastings (MH) updates for rectangular parti-
tioning since MH has lower acceptance rate than Gibbs
(100% acceptance) for row and column entries. Thus,
we performed one MH update (for rectangular partition-
ing) and one Gibbs update (for one row and one column)
per iteration. To examine the influence of MCMC initial-
ization, we also employed 3 types of manually-generated
regular grid partitionings as initialization:(7 × 7) (re-
ferred as RTPs),(15× 15) (RTPm), and(30× 30) (RTPl).
We evaluated the models using perplexity:perp(X̂) =
exp(−(log p(X̂))/N), whereN is the number of non-
missing entries inX̂. Roughly speaking, small perplexity
means that the model fits the data better.

We used the following three real relational data sets: (a)
Animal feature (50 × 85 binary data). We used a animal-
feature matrix for 50 animals with 85 features (Kemp et al.,
2006). (b) Donations (14 × 111 binary data). We used
a political dataset for 14 countries with 111 binary fea-
tures (Kemp et al., 2006). (c) Cities (55 × 46 categorical
(∈ {0, 1, 2, 3}) data). This dataset consists of the distri-
bution of offices for 46 service firms over 55 world cities.
Service values for a firm in a city are given as 3, 2, 1 or 0
(Beaverstock et al., 2000).

Visualization of partitioning. (a) Animal feature. Fig.



Rectangular Tiling Process

10 20 30 40 50 60 70 80

10

20

30

40

50

10 20 30 40 50 60 70 80

10

20

30

40

50

10 20 30 40 50 60 70 80

10

20

30

40

50

10 20 30 40 50 60 70 80

10

20

30

40

50
10 20 30 40 50 60 70 80

10

20

30

40

50

Figure 9.Animal-feature data analysis. (Supplementary material
provides larger figures with animal-feature labels.)Top: two
samples of RTP-based analysis.Bottom: three samples of MP-
based analysis. The RTP provides more parsimonious explana-
tions. As an example, for the right analysis of the RTP, two dense
blocks on the right side indicate that{active, fast, smart} are in-
cluded in a cluster for all animals, but{big, strong, group} are
included in a cluster only for approximately half the animals.
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Figure 10.MCMC performances on animal-feature dataset.Left:
Evolution of perplexity. Blue and red lines show 5 runs of the
RTP- and MP-based model, respectively.Right: Evolution of
RTP-based partitionings. (Left to right, top to bottom.) Each rep-
resents the sample on the 50/100/200/500/1000/2000-th iteration.

9 shows samples of rectangular partitionings for the ani-
mal dataset, and Fig. 10 (left) plots the training perplexity
evolution for 5 RTP runs and 5 MP runs. Fig. 10 (right)
represents an example of the MCMC evolution of RTP-
based partitioning. Fig. 11 shows perplexity and number
of blocks of 10 RTPs runs, 10 RTPm runs, 10 RTPl runs,
and 10 MP runs. For each run, we focused on the sam-
ple that obtained the highest likelihood. As Fig. 11 shows,
RTP tends to find partitionings that have a smaller num-
ber of blocks than MP with similar perplexity, or to use a
similar number of blocks to MP with better perplexity than
MP. Supplementary material provides the visualizations of
b) Nationsand (c)Cities.

Perplexity comparison on test datasets.For model com-
parison, we held out20% of the data for testing. Table
1 lists the average perplexity over 5 runs, with the stan-
dard deviation of each average given in parentheses. For all
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Figure 11.Number of blocks and perplexity of RTP and MP. RTPs
(red square) typically find partitionings that have a smaller num-
ber of blocks than MP (blue asterisk), even though RTPs match
the perplexity of MP. RTPm (green circle) use a similar number
of blocks to MP. However, RTPm fits the data better than MP
in the sense of perplexity. Although RTPl uses many blocks to
obtain better perplexity, the final experiment (test perplexity com-
parison) implies that it avoids over-fitting.

datasets, our primitive sampler for RTP shows at least com-
parable performance to the reversible jump MCMC for MP.
However, the performance depends on the initialization of
MCMC, which should be improved in the near future.

Table 1.Perplexity comparison on test datasets

Animal Dnations Cities
MP 1.806 (0.032) 1.858 (0.000) 2.582 (0.138)

RTPs 1.749 (0.070) 1.840(0.029) 2.560 (0.095)
RTPm 1.741 (0.049) 1.913 (0.086) 2.495(0.218)
RTPl 1.688(0.061) 2.367 (0.266) 2.783 (0.154)

5. Discussion

One of the new generation of Bayesian nonparametrics
must involve array- and graph-valued random variables
(Lloyd et al., 2012; Choi & Wolfe, 2014). It also involves
classical Aldous-Hoover theorem (1981; 1979) and recent
graph limit theory (Lovász, 2009; Airoldi et al., 2013). We
believe that this paper provides a significant contribution
in the context of rectangular partitionings. Moreover, our
strategy involves Orbanz’s extension theorem beyond Kol-
mogorov’s well-known extension theorem, which will lead
to various new stochastic processes in the near future.

One of the most important future directions is to construct
more sophisticated inference methods. Our primitive sam-
pler requires more computation time than MP, since it in-
cludes MP inference as a subroutine, and the performance
strongly depends on the initialization. We are currently in-
terested in improving MCMC schemes for the RTP-based
relational model by combining the essence of recent meth-
ods for combinatorial problems, including measure factor-
ization (Bouchard-Ĉoté & Jordan, 2010), and MCMC via
bridging (Lin & Fisher, 2012).
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