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Figure 1.Left: Regular grid partitioning.Middle: Hierarchical
partitioning.Right: Arbitrary partitioning.
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Abstract

This paper proposes a novel stochastic process
that represents the arbitrary rectangular partition-
ing of an infinite-dimensional matrix as the con-
ditional projective limit. Rectangular partition-
ing is used in relational data analysis, and is clas-
sified into three typesegular grid, hierarchical
andarbitrary. Conventionally, a variety of prob-
abilistic models have been advanced for the first
two, including the product of Chinese restaurant
processes and the Mondrian process. However,
existing models for arbitrary partitioning are too
complicated to permit the analysis of the statisti-
cal behaviors of models, which places very se-
vere capability limits on relational data analy-
sis. In this paper, we propose a new probabilis-
tic model of arbitrary partitioning called the rect-
angular tiling process (RTP). Our model has a
sound mathematical base in projective systems

data analysis, a telling example is the stochastic block
model (SBM) Nowicki & Snijders 2001), which extracts
hidden clusters through the rectangular partitioning of the
matrix (Wasserman & Andersori987. The goal of SBM

is to find permutations of rows and columns, and their rect-
angular partitioning. The central problem is how to con-
struct generative models to yield rectangular partitioning.

Kemp et al. 200§ presented a Bayesian nonparametric
model, called the infinite relational model (IRM), based on
the product of Chinese restaurant processes (CRP) on both
rows and columns. The partitions obtained by IRM are re-

and infinite extension of conditional probabili-
ties, and is capable of representing partitions of
infinite elements as found in ordinary Bayesian
nonparametric models.

stricted to regular grids. Splitting one area of the matrix
requires the other parts to be divided, even if the data do
not imply such structure. Motivated by this, Roy & Teh

(2009 proposed the Mondrian process (MP), which can be

regarded as a multi-dimensional generalization of Poisson
processesRoy, 2011). MP allows more flexible partition-
ing of the matrix by creating inner rectangles, not splitting

. ) . ) ) ~_entire rows or columns. However, even the MP can gener-
Relational data is now being used in various applicationsyie only a limited class of rectangular partitionings.

in order to represent richly structured, real-world data. In

particular, pairwise relations represented by matrices, i.eln general, there are three types of rectangular partitionings
(Y;.;)mxn, are subjects of intense study. For example, in(Muthukrishnan et 21999 (Fig. 1):

the context of binary relational data, entry; represents
an on/off connection between thigh andj-th elements.
One of the most important problems associated with rela-
tional data analysis is to discover clusters that are hiding in
the relational data. In the context of Bayesian relational

1. Introduction

e Regular grid The rows and columns are partitioned
into clusters. Each block is characterized by the prod-
uct of the row and column clusters,

e Hierarchical Partitionings are expressed as binary
trees where nodes represent a vertical or horizontal

T st . .
Proceedings of the?1°" International Conference on Machine separation of a rectangle into two disjoint rectangles,
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Figure 2.Left: Projector of rectangular partitioning. For any sub-arrhy$ (I < J € F(E)), the projectionP;,; restricts the partition
of J by keeping thel entries unchanged, and removing the remaining entRéght: lllustration of projectivity. Left side shows the
probability of a sample partitioning of arrdy Right side shows the probability of the partitioning of arthyl < J) whose projection
(i.e., restriction) ontd is equivalent to the left side. For adyJ (I < J), this equation should hold.

IRM and MP correspond teegular grid and hierarchical  tic processes, including Dirichlet processes, beta processes,
types, respectively. We are interested in genarhitrary ~ and Bernoulli processes; (2) applying infinite extension
partitioning, and propose a new model accordingly. theorems to a family of finite-dimensional models. As with

To the best of our knowledge, arbitrary partitioning has;rnOSt Bayesian nonparame’;rlc models n machine Iearmng,
the former strategy makes it much easier to construct infi-

been little discussed in machine learning literature. How-nite models if it is possible. However. the former strate
ever, the field of probability theory knows of probabilis- P ' ' 9y,

i . Lk sometimes, is not applicable to the problem. This makes it
tic models for arbitrary rectangular partitioning. One : . .
X ) . essential to consider the latter approach. That is exactly the
well-known model is the Gilbert tessellation mod&d67) ) L
. : . . case for the arbitrary rectangular partitionings.
with axis-parallel cuts (i.e., cracks) described below

(Mackisack & Miles 199@. First, c_on5|der points, (called 2.1.1. KOLMOGOROV S THEOREM(USED IN SEC. 3.2)
seed}y drawn from a stationary Poisson process on a plane.

At a given time, each of these seeds initiates the growth TSketCh: A projective family of finite-dimensional mo%

aline. The lines are confined to two orthogonal directions| g5 can be extended to an infinite-dimensional modell.
i.e., “vertical” or “horizontal”. Each seed uniformly and
independently chooses a direction frdftvertical”, “hori- |t follows from Kolmogorov's extension theorem that we
zontal}, and each line grows bidirectionally from its seed can construct infinite-dimensional models via a family of
at the same rate. When the current line encounters and iffinite-dimensional marginals, namely, th®jective system
tersects another line that has grown from another seed, th€rane 2012. This paper deals with rectangular partition-
growth of that line stops. As a result, Gilbert tessellationsings of infinite-dimensional matri¥ := N x N. A pro-
can generate arbitrary partitionings. However, it is noto-jective systemis a family indexed by the elements of index
riously difficult to analyze statistical behaviors of Gilbert setF(E), where we useF(E) as the set of all finite sub-
tessellationsBurridge et al, 2013. For example, no ana- arrays ofE (i.e., for anym < m’ € N, andn < n’ € N,
lytic solution yielding the ray-length distribution (or the ex- {m, m + 1,...,m'} x {n,n + 1,...,n'}). We consider
pected length, height/width of each block) has been founda family of measurable spacéd;, B;) with I € F(E),

Our goal is to construct a new probabilistic model for arbi-WhereXi means a set of _rectangular pa_lrt|t|0n|ngslo1l'he
index setF(E) has partial order relatiorr, and, when-

trary rectangular partitioning where the distribution of the )
height/width of each block can be easily analyzed. As £V&r{ < J € F(E), there existsk’ € F(E) such that

result, we can easily employ it for SBM-based relational! = ¥ andJ = K. As Fig. 2 sh.ows.;, the compgnent
data analysis. We call iectangular tiling proces¢RTP), ~ SPacesAr)re(r) are related vigrojection The projec-

analogous teectangular tiling problenin combinatorics. 0N Operator from¥; to A7 will be denotedr;,;. Projec-
tion P;; restricts the partition off by keeping thel en-

. . tries unchanged, and removing the remaining entries. For
2. Preliminaries setsB; C A, the preimage under projection is denoted
Notations: Random events are modeled by the abstracas PJ_,}BI = {X, € X;|P;1X; € Bs}. The projec-
probability space(, A, P), where( is a point set,Ais a  tion of a measure is defined, by means of a push-forward,
o-algebra o), andP is a probability measure. A random as(Pjrux,)(Br) = MXJ(Pi}BI). This family defines
variable (e.g.,.X) is a measurable mapping frofd into ~ measurable spade&’s, Bg), called theprojective limit

some space of observations (edj), such asx : Q@ — X. Theorem 2.1 (Bochner 1959 Let (X7, Br, jix,)rer (k)

Their distribution is denoted gsy := X(P) =Po X~'.  pa 5 projective system of measurable spaces such that, for
. o projection Py : X; — Xr, ux,(Br) = px,(P;;Br)
2.1. Construction of infinite models holds for all B; € B;. Thenux, (I € F(E)) can be

In machine learning, there are two main approaches to ohuniquely extended to measweg ,, on(Xg, Bg) as the pro-
taining infinite models: (1) the use of well-known stochas-jective limit measurable space.
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2.1.2. RBANZ'S THEOREM(USED IN SEC. 3.3) 2.3. Aldous-Hoover exchangeable array (used in Sec. 4)

Sketch: A conditionally projective family of finite As an attractive application, rectangular partitionings can
“Bayesian” models can be extended to an infinite model. Pe used in relational data analysis. In the sense of infi-
nite data analysis (finite observations of potentially infinite

“Conditioning” is useful in the context of probabilistic data data), rows and columns should be infinitely exchangeable:

mOdeling since it can lead to the hierarchical structure OfTheorem 23 (A|dous 1981 Hoover, 1979 Random ar-
probabilistic models. We may wonder if we can extend argy (Y;;) is separately exchangeable if and only if it
fam”y of finite hierarchical models to an infinite model by can be represented as follows: There is a random mea-

analogy to the Kolmogorov extension. Recently, Orbanzsraple functionG : (0,1 — Y such that(Y; ;) =
gave a positive answer to this questi@d(g 2009. G(Uev, Usem U ;), where Upew, Ugetumn and Ui ;

In the context of Bayesian modeling, hierarchical models2re Uniform[0, 1] random variables.

typically correspond to parametric models. Consider paThis provides a natural way to construct the rectangular-
rameter variable®; : 2 — ), and the parametric model partitioning-based exchangeab|e arra@rk(anz & Roy

of X; with parameter©; is the conditional distribution 2013: We first generate a rectangular partitioning of
1! (X7|©r). The family u' (X;|©;) with I € F(E)is  [0,1]2, then each(i, j)-entry is assigned to a rectangle
called colnditionally projectiveif (Prrpx,)( - |©s) =  based on a geometrical interpretatiorlgP* andygoumn
px,(Pry - 10g) = px, (- |©5) forall I < J € F(E). on [0,1]2, and finally, for example, categorical data;

is generated from each Dirichlet-categorical model on the
assigned rectangle. Since our RTP itself does not have ex-
changeability of rows and columns, we use this idea.

Theorem 2.2 (Orbanz 2009 Let u! (X;|©7) be a family

of regular conditional probabilities. If the family is con-
ditionally projective, and the parameter variables are also
projective (i.e.,P;0; = Oj), there exists a conditional .
probability 1. (X £|© ) with projective limit® . 3. Rectangular tiling process

. : . . Our goal is to obtain probabilistic models for arbitrary rect-
Briefly, unlike the standard Kolmogorov extension Settmg'angt?lar partitioning.pFirst Sec. 3.1 explains a key}/l strat-

we have to take a projective limit with respect to both thee for proiective rectanaular partitioninas. and presents
sample variable and the parameter variable. For more de—gy proj 9 P gs, P

tails refer to Orbanz 2008 2009. Moreover, Orbanz a local growth algorithm(LGA) for a matrix with 2 rows

(2019 (lemma 2 and 3) provides applicable criteria to con-and 2 columns. . Second, Sec. 3.2 showsepeated Iof
struct an infinite model by means of the above theorem. cal growth algorithm(RLGA) that extends LGA to matri-

ces of any finite size, which can be naively extended to
an infinite model in the sense of Kolmogorov's theorem.
However, this naive approach has both positive and neg-

We describe here a special case of the Mondrian proces¥ive properties. A positive side is that it is easy to ana-
(MP) (Roy & Teh 2009 Roy, 2011), a Markov process lyze ray-length distributions unlike Gilbert tessellation. A
with values in the space of hierarchical partitioning. Thenegative side is that a parameter used in LGliection

original MP generates partitioning of plangs R x R), of growthdescribed later) undesirably biases the resulting
while the discrete MP deals with arrags N x N). arrangements of blocks. To reduce the negative influence,

. . o . Sec 3.3 presents a more sophisticated construction based
Consider stochastic rectangular partitioning of input array,, orpanz’s theorem. Proofs of theorems are described in
I € NxN: M; ~ dMP(\ I), whereX > 0 is abud- supplementary material.

getparameter. Let; be the sum of the number of bound-

aries of rows and columns df That is,e; = #row(I) + In the following, we consider a stochastic rectangular par-
#column(I)—2, where#row(I) and#column(I) are the titioning of a matrix withm rows andn columns(m,n €
number of rows and columns df respectively. Rectangu- N), denoted by (m x n)-array”. We call each tile of the
lar partitioning is recursively constructed. Lét= X — ¢/,  rectangular partitioning alock'.

wheree’ ~ Exp(er). If X' < 0, the process halts, and

returns the current. Otherwise, an axis-aligned cut splits 3.1. Local growth algorithm for (2 x 2)-array

I into two sub-arrayd’ andI”. The cut is chosen uni-
formly at random from all possible boundaries of the rows| Strategy: As a prototype of the projective partitioning,
and columns off. The partition M is recursively gener- | we embed projectivity among the relationships between
ated from independent dMPs with the diminished budgeta (2 x 2)-array , and 42 x 1)- or a(1 x 2)-array.

A on both sides of the cutM = M_ U M-, where
Mo ~dMP(N, I') and M~ ~ dMP(N, I"). As discussed in Sec. 2.1, we deal witprajective family

2.2. Discrete Mondrian process (used in Sec. 3.3)
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Figure 3.(Best viewed in color.)Left: (2 x 2)-array (top), and projectivity betwee2 x 2)-array and array of any size (bottom).
Center: Rectangular partitioning df2 x 2)-array by LGA( ). Right: LGA(J{—). Projectivityimplies that all probabilities that the
adjacent two entries are assigned into the same block should be same. For exampleisifissigned to the same block.4s» with
probabilityp, As ; is assigned to the same block.4s» with probabilityp, which is achieved by LGA witly = p/(p*> — p + 1).

of rectangular partitionings (Fig. 3 left). That is, we need Algorithm 1 LOCAL GROWTH ALGORITHM (LGA)

to consider all pairs of finite sub-arrays.J (I < J € N?).

Input: p,q (0 < p < 1,0 < ¢ < 1) anddirection of

Thus, as a primitive example, we first consider the case growth(as an example, assume]. )

with J as a(2 x 2)—array and its stochastic rectangular
partitioning. Naively, we assume that the top two entries
(A1,1 andA, » in Fig. 3 left) are assigned to the same block
with probability p. Projectivity implies that, if we remove
the top entries and focus only on the bottom two entries
(A2,;1 andA, 5), they can be regarded as “top entries” of the
current(1 x 2)-array, and their assignment must be done in
a similar manner (that is, the probability th&s ; and A, >

are assigned to a same bloclkp)s Similarly, this is just as
valid for the left or right entries. In short, the probabilities

that the top/left/right/bottom two entries are assigned to the

same block are ap.

To obtain the projective partitionings, we preserbeal
growth algorithm(LGA), that randomly generates the rect-
angular partitioning of 42 x 2)-array. The input of this
algorithm consists of real variablesq < (0,1) and a

Prestage

- We start from the top-left entry as a singleton.

- The top-right entry is assigned to the same block with
probabilityp, otherwise, to a new block.

- The bottom-left entry is assigned to the same block with
probabilityp, otherwise, to a new block.

Main body

- If the top-right and bottom-left entries are assigned to
the same block, the bottom-right entry is also assigned
to the same block. Otherwise, go to the next line.

- With probabilityp, the bottom-right entry is assigned to
the block to which the bottom-left entry belongs. With
probability (1 — p)g, it is assigned to the block to which
the top-right entry belongs. With probability —p) (1 —

q), itis assigned to a new block.

Output: Rectangular partitioning of & x 2)-array.

direction of growthchosen from eight patterns—], —1
T L T—=, T, 1=, J«}. It consists of two stages
(prestage and main body). Algorithm 1 shows LGA
with —|, and Fig. 3 illustrates LGA with—| and |—.

. . . 1
The direction of growth determines the order of merg-? ™ - :
g g entries are assigned to the same block arepattgardless

ing/partitioning of the 4 possible pairs of adjacent entries
(Fig. 3). All patterns are summarized as follows (supple-
mentary material describes a formal description):

Remark 3.1 Consider stochastic rectangular partition-
ings of a(2 x 2)-array based on LGA witly = p/(p? —

). The probabilities that the top/left/right/bottom two

of the choice of the direction of growth. For example, in
Fig. 3 center, the right two entries are assigned to the same

block with the sum of the probabilities of the (from left) 2nd

((1 — p)3q), 5th (1 — p)pq) and 8th p?) leaves.

—! (A14,17A1,2) = (A1,1,A2,1) = (A2,1~,A2,2) = (A1,27A24,2)

1= (A1,17A2 1) = (A1,17A1,2) = (A1‘2,A2,2) = (A2,17A2,2) . o .

|| (Ar2, A1) = (Arp, Aos) = (Asg, Asi) = (A1, Aza) 3.2. Repeated LGA for array with any finite size

b= (A14,2,A2 2) = (A1,2,A1,1) = (A1,1~A2,1) = (A2,27A24,1) - - -

=1 || (A2,1,A22) = (Ao, A11) = (A1, A12) = (Aa2, A1 9) Strategy: We construct grojective (Sec. 2.1.1.) famil

T_T> &1211,?1; = Eﬁlly ﬁz,z; = Eﬁz,z, ;411,2; = Eﬁl,hj{llﬂg of rectangular partitionings by applying LGA repeatedly.
— 22, A421) = (A22,A412) = (A12,A1,1) = (A21,A11 i infini _
e | (e dra) = (Aso Ans) = (s Ays) = (Ara. A1) Theorem 3.3 gives us an infinite model based on Kol

mogorov’s theorem.

What is to be noted is that, if the procedure reaches the findh the previous subsection, we construct a projective rect-
(fourth) merging/partitioning of the above table, the proba-angular partitioning of g2 x 2)-array. Recall that pro-
bility of merger isq. To obtain the projective partitionings, jectivity means that all two adjacent entries of2ax 2)-

we must appropriately choose the valuey@fs follows: array are assigned to the same block with probability
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Algorithm 2 REPEATEDLGA (RLGA)
Input: (m x n)—arrayA, p,q (0 <p<1,0<qg<1)
anddirection of growth(as an example;»|)

Prestage

- We start from the top-left entryi; ; as a singleton. I %’% el b

for n’ = 2ton do HHH
[ LTI [

- With prob. p, A; ,+ is assigned to the same block as
Ay ny—1; with prob. (1 — p), to a new block.

end for

for m’ =2tomdo
- With prob. p, A4, 1 is assigned to the same block as
Apyr—1,1; With prob. (1 — p), to a new block.

]
BT

end for % % E

Main body

for m’ = 2tom do Figure 5.Undesirable property of naive RLGAFrom top.
for n/ =2tondo Four samples drawn froRLGA(0.8, —]), RLGA(0.9, =),

- Given the block of A, 1,1, A1,  RLGA(0.8,]—),andRLGA(0.9, |—).

Apy—1,n, the assignment ofl,,, ,,» is determined .
by the main body of the LGA. first aSS|gn¢_ed_ to bloqksp(e_stage. Then we apply LGA
to the remaining entriesr(ain body). The key property of

end for : .
end for RLGA is described as follows:
Output: Rectangular partitioning ofl. Proposition 3.2 For any sub-arrayl € F(E), consider
a space of rectangular partitionings df(denoted by7;).
1—g D 1—p q Let ur, be a measure fof; € 7; provided by RLGA with

q = p/(p?> — p+ 1). Consider a distribution of the height
(width) of each block of’; drawn fromgr,, none of whose
B growing edges reach the edgesliof It is equivalent to a
distribution of the number of successful trials with success

| probability p until failure.

. Kolmogorov’'s theorem gives us an infinite model, since the
I ,,,,, :E above proposition directly leads to a projective family of
‘ rectangular partitionings. Again, as the index8ér), we
=y employ the set of all sub-arrays Nfx N, partially ordered
! by inclusion. The projection operatdt; ; from 7; to 7;
(with I < J) restrictsT’; € 7 to the rectangular partition-
for (7 1)ty (From et o ight) () Theprestageof RLGA 0 ¥ (SRR ¥ PR LEE ECRRATE: SO0 Ol
is completed. According to the direction of growth, the remaind- )

ing entries are assigned to blocks. (2) The current block faileothat RLGA provides an infinite model:

to grow yertically with probability(_l —p). (3_)_The block suc- Theorem 3.3 The familyur, (I € F(E)) can be uniquely
ceeded in growing horizontally with probability. (4)-(5) The oy 1anded to a measure on the projective limit measurable

block first failed to grow horizontally with probabilityl — p), . . .
then succeeded in growing vertically with probabilityBottom: spaceT. Moreover, the height (width) of each blockiis

; OTCOVE!
lllustration of RLGA(—). with probability p"~* (1 — p).

—
i— Yy YyYvvy

/
r

Y vvy

Figure 4.(Best viewed in color.Yop: lllustration of RLGA()

. C . ... Unlike Gilbert tessellations, it is a new infinite model for
Now, we extend this projectivity to matrices of any finite . o S
. . - . g arbitrary rectangular partitioning, where the distribution of
size. That is, the probability that adjacent two entries of : : . .
: . he height/width of each block can be easily analyzed. This
(m x n)-array (n,n € N) are assigned into a same block . . X .
makes us interested in the properties of the resulting rect-

are allp. To obtain such a projective rectangular partition- L .
ing, we can apply LGA repeatedly. Consider the rectanguf:mgular partitionings drawn from the RLGAs. Intuitively,

o N . p controls the size of blocks. However, the role of the di-
lar partitioning of any finite-dimensional arraf x n)- . o
: rection of growth is still unclear.
array(m € N,n € N). As Fig. 4 shows, we can generate
the rectangular partitioning by applying trepeated local  To visualize the role of the direction of growth, we show
growth algorithm(RLGA). Algorithm 2 and Fig. 4 shows some samples drawn from the RLGAs. Recall that RLGA
the RLGA(—/). The uppermost and leftmost entries arerequires a direction of growth chosen fra—, |+, T—
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Figure 6.Left: Order ofboxesgenerated from discrete Mondrian
process and total order (e.t},). Right: Projectivity of parameter I: P I

variables that leads teconditional projectivity of RTP, which is
required for Orbanz’s theorem.

I<:I =

<
-

T, =1, =, «1,1}. Fig. 5 shows the cases ef]  Figure 7.(Best viewed in color.) Flow of rectangular tiling pro-
and]—. The direction of growth controls the entire block cess. (Clockwise from top left.) (1) The discrete Mondrian pro-
arrangement. In other words, specific choice of the direceess first generates a binary space partitioning. Each box inde-
tion of growth results in largely biased outputs, which is pendently chooses a direction of growth. (2)-(3) Then, the order
usually undesirable. Next we reduce this undesirable influof applying merging/splitting procedures is determined. (4)-(5)

ence. Supplementary material provides more details. The RLGAs sequentially generate partitionings. (6) The resulting
object shows a sample of rectangular partitioning.

3.3. Final construction as conditional projective limit « The order of boxes should be projective. That s, if we

restrict the input array to any sub-array, the restricted

Strategy: To overcome the undesirable property of the order of boxes must be preserved (Fig. 6).
naive construction discussed in the previous subsegtion,
we construct aconditionally projective (Sec. 2.1.2. dMP is sufficient for these conditions. We show a dMP-

family of rectangular partitionings by combining discrete RLGA hierarchical model that satisfies the above condi-
MP (Sec. 2.2.) and RLGA, it leads to infinite partitign- tions in Fig. 7. We first introduce a global direction from
ings according to Orbanz’s theorem. {5 \6w’s\} (typically, it is uniformly chosen in ad-
vance). As discussed below, this makes it possible to assign
We now consider how to suppress the undesirable chara@ randomized direction of growth to each box. Specifically,
teristic of the naive construction discussed in the previougor example, when we chosg, each box can choose, in-
subsection. The problem is the use of one RLGA with adependently a direction of growth frofa-|, | —}. Then,
specific direction of growth. Thus, to overcome this prob-dMP generates a binary tree (binary space partitioning).
lem, roughly speaking, we first divide the input array into Note that the leaves of the binary tree correspond to boxes.
sub-arrays (calletioxe$, and then apply RLGAs with dif- Along the binary tree, box orders are recursively generated
ferent (randomized) directions of growth to each of them.as follows: Suppose that a current node of the binary tree
This idea is exactly two-step modeling, i.e., “conditioning” is divided vertically/horizontally; We give priority to the
in the context of Bayesian modeling. side of the starting points of the arrow of the global direc-
tion, e.g.,\, means that we give priority to left or upper
The key insight i's that our strategy .is'to focu; on t.he Orderleaves.gFo\rJ all paths of the bi?wary?ree, \Bllve apply thepet)bove
of entrl_es on which the m_erglng/sphttmg decision is m"lee'procedure. By construction, the above procedure must en-
Eac_h dlreitlon of gr(,),wth in RLGA de_udes the order of thesure that each untreated box has more than two residual
entries in each box". ThL.@' to obtain gtotal “order for theneighboring sides in any step. All boxes can choose inde-
whole input array, we additionally require the “order of the pendently and uniformly their direction of growth from two

boxes”. That is, we first generate the order of the boxescandidates, e.g., for the case qf each box chooses it from

and then we independently generate a direction of growtf{_>¢ 1) (similarly, 7 {1, 1), 0 Ll Lot <G

for each box. This is followed by deciding the order of ap- {<1,1<1). Thus this hierarchical model suppresses the
plying merging/splitting procedures for the entries in eachunde’Sirable influence discussed in Sec. 3.2

box based on each direction of growth. Finally we obtain
the total order of applying merging/splitting procedures.  Finally Orbanz’s theorem provides an infinite model as a
) ) conditional projective limit. In summary, our rectangu-
To obt_am a sw_tgble order of boxes, we have to address ﬂ\ﬁr tiling process is based on the RLGAs conditioned by
following conditions: dMP (Fig. 7). The input consists of an input array, real
e We can apply RLGA only to a box where one up- valuep (0 < p < 1), and the global direction chosen from
per/lower column at most and one right/left row at { 7,\,,./,\.}. We can construct a family of’ (7;|0;)
most have already been assigned to blocks. In othefor I € F(FE) as follows: Using dMP, we generate param-
words, we cannot apply it to a box where more thaneter variable® ;, which consist of a hierarchical partition-
two sides have already been assigned. ing of I, and directions of growth. According ®; and the
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row/column (denoted by; or n;) are generated from the
PP-based clustering (PPG):~ PPC(n) (i = 1,...,m),

n; ~ PPC(p) (j = 1,...,n), whereu denotes the rate
parameter of PP. We use a matrix to represent the grid-
style pre-cluster ID’s. Note that we fix the ID’s (we do
not consider the permutations of the ID’s). Thus, the per-

Figure 8.llustration of RTP-based relational modeleft: First . . )
we make grid-style pre-clusters based on the product of poismutations of the rows/columns of the observation are in-

son processes oft), 1], and generate the coordinates for eachdirectly expressed as assignment of the fixed pre-cluster
row/column fromUniform|[0, 1]. Middle: We then regard the ID’s. We then apply RTP to this matrix, consisting of the
pre-clusters ID’s as a matrix, and apply the RTP to obtain a rectpre-cluster IDs, and obtain a rectangular partitionifgs
angular partitioningRight: Finally each observation is generated dMP(\) x (Bernoulli(1/2))#1¢af T | § ~ RLGAs(p, 6),
from the assigned block. where+#leaf means the number of leaf nodes of the dMP.
Finally, observation data is generated from the Dirichlet-
global direction, the suitable order of RLGAs is automat-categorical modelsy, ~ Dirichlet(ax) (r € T), Y;; |
ically determined. Then, the sequential RLGAs generate, &, 1 ~ Categorical(¢,, ;), wherer; ; denotes the block
rectangular partitioning’; € 7;. such that¢;, n;) € r; ;.

Theorem 3.4 RTP uniquely defines probability measure For Bayesian inference, we can use a Markov chain Monte
1P (Tg|OF) as the conditional projective limit of the fam- Carlo (MCMC) method that iterates over draws from poste-

ily 1! (T7|©;) (I € F(E)). Moreover, the height/width of riors for rectangular partitioning’ (Metropolis-Hastings),

each block igk with probability p*—*(1 — p). pre-clusterg andn (Gibbs), and intermediate variablés
(reversible jump\(Vang et al. 2011). See the supplemen-
tary material for details.

2

1

4. Application: relational data analysis

We show an application of the proposed RTP to be used a.2. Experiments
the priors for SBMs. Note that RTP itself does not have theFor inference, we set the real variable= 0.7, set the
exchangeability of rows and columns similar to MP. Thus’Mondrian budgetA _ 1 and let the ateﬁs’ity of the

we require additional models for the infinitely exchange-PpS and the MP be Lebesgue measures. In practice, we

able permutations of the rows and the columns needed t]%und that it was better to increase the frequency of the

obtain the RTP-based SBM. ObV'OUSW’ itis prgferable th"j.“’l\/letropolis-Hastings (MH) updates for rectangular parti-
the model leads to a tractable inference algorithm. Spec'ffioning since MH has lower acceptance rate than Gibbs

ically, in the sense of Bayesian inference (e.g., Markov :
chain Monte Carlo methods or variational methods), it is(loo% acceptance) for row and column entries. Thus,

preferable to perform (conditionally) independent updatesWe performed one MH update (for rectangular partition-
for a partition and two permutations. mg)_and one Gibbs up_date (fqr one row and one c_:o_IL_Jmn)
per iteration. To examine the influence of MCMC initial-
ization, we also employed 3 types of manually-generated
regular grid partitionings as initialization(7 x 7) (re-
ferred as RTPs),15 x 15) (RTPm), and30 x 30) (RTPI).
We evaluated the models using perplexityerp(X) =
exp(—(log p(X))/N), where N is the number of non-
missing entries inX. Roughly speaking, small perplexity
means that the model fits the data better.

4.1. Relational model based on RTP

Strategy: We use a hierarchical structure. First we gen-
erate a grid-style partition, which leads to exchangeabil-
ity of rows and columns similar to IRM. Then the grid-
style partition is translated to a final rectangular partition-
ing by RTP, which belongs to the “arbitrary” class.

We used the following three real relational data sets: (a)

We here describe a Bayesian relational model based op . . .
the combination of RTP and the Aldous-Hoover represenfRrllmal feature (50 x 85 binary data). We used a animal

: ) : feature matrix for 50 animals with 85 featuré&Mmp et al,
tation (1981 1979. Our strategy is to make grld-sty_le 2006. (b) Donations (14 x 111 binary data).m\E)Ve used
clusters (callegre-clustery based on the product of Pois- a political dataset for 14 countries with 111 binary fea-
son processes, and then to apply RTP to the pre-cluster. " ;

Fig. 8 provides an illustration. First, each row/column tres Kemp etal, 2009. (c) Cities (55 x 46 categorical

. ) ) . : (e {0,1,2,3}) data). This dataset consists of the distri-
IS represente_d asa vertu_:al/honz_ontal coordmate{@,m], bution of offices for 46 service firms over 55 world cities.
and two (vertical angl horlzontal) independent P0|ss_0n P'O5ervice values for a firm in a city are givenas 3,2, 1 or 0
cesses (PP) dn, 1] divide the row and column coordinates (Beaverstock et 312000
into pre-clusters that provide a grid-style partition. For the '

observation matriXY; ;)mxx, the pre-cluster IDs of each Visualization of partitioning. (a) Animal feature. Fig.
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Figure 11 Number of blocks and perplexity of RTP and MP. RTPs
(red square) typically find partitionings that have a smaller num-
ber of blocks than MP (blue asterisk), even though RTPs match

based analysis. The RTP provides more parsimonious explanét'e perplexity of MP. RTPm (green circle) use a similar number

tions. As an example, for the right analysis of the RTP, two densé)f blocks to MP. Howeyer, RTPm fits the data better than MP
blocks on the right side indicate thgactive, fast, smajtare in- in the sense of perplexity. Although RTPI uses many blocks to

cluded in a cluster for all animals, bybig, strong, group are obt(_s\in be_tter _perplexi_ty, tht_e final exp_e_riment (test perplexity com-
included in a cluster only for approximately half the animals. parison) implies that it avoids over-ftting.

Figure 9.Animal-feature data analysis. (Supplementary material
provides larger figures with animal-feature labelslpp: two
samples of RTP-based analysBottom: three samples of MP-

datasets, our primitive sampler for RTP shows at least com-
parable performance to the reversible jump MCMC for MP.
However, the performance depends on the initialization of
MCMC, which should be improved in the near future.

Table 1.Perplexity comparison on test datasets

Perplexity

| Animal | Dnations | Cities
MP || 1.806 (0.032)] 1.858 (0.000)] 2.582 (0.138)
RTPs || 1.749 (0.070)| 1.840(0.029) | 2.560 (0.095)
RTPm || 1.741 (0.049)| 1.913 (0.086)| 2.495(0.218)
3 2000 2000 RTPI || 1.688(0.061) | 2.367 (0.266)| 2.783 (0.154)

Iteration

Figure 10MCMC performances on animal-feature datateft:

Evolution of perplexity. Blue and red lines show 5 runs of the ; ;

RTP- and MP-based model, respectiveRight: Evolution of 5. Discussion

RTP-based partitionings. (Left to right, top to bottom.) Each rep-One of the new generation of Bayesian nonparametrics

resents the sample on the 50/100/200/500/1000/2000-th iterationg st involve array- and graph-valued random variables
(Lloyd et al, 2012 Choi & Wolfe, 2014. It also involves

9 shows samples of rectangular partitionings for the aniclassical Aldous-Hoover theoreri981; 1979 and recent

mal dataset, and Fig. 10 (left) plots the training perplexitygraph limit theory Lovasz 2009 Airoldi et al., 2013. We

evolution for 5 RTP runs and 5 MP runs. Fig. 10 (right) believe that this paper provides a significant contribution

represents an example of the MCMC evolution of RTP-in the context of rectangular partitionings. Moreover, our

based partitioning. Fig. 11 shows perplexity and numbeistrategy involves Orbanz’s extension theorem beyond Kol-

of blocks of 10 RTPs runs, 10 RTPm runs, 10 RTPI runs,mogorov’s well-known extension theorem, which will lead

and 10 MP runs. For each run, we focused on the samto various new stochastic processes in the near future.

ple that obtained the highest likelihood. As Fig. 11 ShOWS’One of the most important future directions is to construct

RTP tends to find partitionings that have a smaller num- - . .
A . more sophisticated inference methods. Our primitive sam-
ber of blocks than MP with similar perplexity, or to use a

similar number of blocks to MP with better perplexity than pler requires more computation time than MP, since it in-

. . . e ludes MP inference as a subroutine, and the performance
MP. Supplementary material provides the visualizations o S .
) ” strongly depends on the initialization. We are currently in-
b) Nationsand (c)Cities.

terested in improving MCMC schemes for the RTP-based
Perplexity comparison on test datasetsFor model com-  relational model by combining the essence of recent meth-
parison, we held ou20% of the data for testing. Table ods for combinatorial problems, including measure factor-
1 lists the average perplexity over 5 runs, with the stanization Bouchard-©té & Jordan 2010, and MCMC via
dard deviation of each average given in parentheses. For élridging Lin & Fisher, 2012).
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