
Model-Based Relational RL When Object Existence is Partially Observable

Ngo Anh Vien VIEN.NGO@IPVS.UNI-STUTTGART.DE

Machine Learning and Robotics Lab, University of Stuttgart, 70569 Germany

Marc Toussaint MARC.TOUSSAINT@IPVS.UNI-STUTTGART.DE

Machine Learning and Robotics Lab, University of Stuttgart, 70569 Germany

Abstract
We consider learning and planning in relational
MDPs when object existence is uncertain and
new objects may appear or disappear depend-
ing on previous actions or properties of other ob-
jects. Optimal policies actively need to discover
objects to achieve a goal; planning in such do-
mains in general amounts to a POMDP problem,
where the belief is about the existence and prop-
erties of potential not-yet-discovered objects. We
propose a computationally efficient extension of
model-based relational RL methods that approx-
imates these beliefs using discrete uncertainty
predicates. In this formulation the belief update
is learned using probabilistic rules and planning
in the approximated belief space can be achieved
using an extension of existing planners. We
prove that the learned belief update rules encode
an approximation of the exact belief updates of
a POMDP formulation and demonstrate experi-
mentally that the proposed approach successfully
learns a set of relational rules appropriate to solve
such problems.

1. Introduction
In realistic robotic domains, objects of importance are
more often than not hidden from view—in drawers, behind
doors, within clutter—and efficient reasoning and planning
becomes challenging. These problems are inherently par-
tially observable, both with respect to the number of objects
physically present in the area (and accordingly the cardi-
nality of the state space) and with respect to the proper-
ties or relations of potentially discoverable objects. Opti-
mal policies need to reason about actively seeking out ob-
jects, which is a form of belief planning when modeled as a

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

POMDP. We aim to both reason efficiently in such partially
observable domains and learn models of these domains us-
ing model-based Reinforcement Learning.

Several existing formalisms can represent such domains,
including general BLOG (Milch et al., 2005) and first-order
POMDPs (Sanner & Kersting, 2010; Wang & Khardon,
2010). However, efficient learning with such frameworks
remains elusive and is known to be particularly hard even
in ordinary POMDPs.

We instead propose the use of uncertainty predicates to
approximate the belief state, including the belief over the
existence of objects, and learning probabilistic rules that
model their dynamics. This approach is able to express and
learn the probability of object discovery (or disappearance)
depending on the current (belief) state and chosen action,
including probabilities over predicates (object properties
and relations) of the to-be-discovered object. Planning on
this uncertainty predicate representation will entail active
learning strategies for seeking out and discovering objects.

Concretely, our approach builds on existing methods for
learning sets of Noisy Deictic Rules (NDR) rules (Pasula
et al., 2007) and stochastic planners such as UCT (Koc-
sis & Szepesvári, 2006) or the PRADA planner presented
in (Lang & Toussaint, 2010). However, to our knowledge
none of the existing learning and planning methods can
cope explicitly with uncertainty over the existence of ob-
jects.

Our contributions are three-fold. First, for every ordinary
predicate P of the domain we introduce a binary uncer-
tainty predicate ucP which expresses whether the value of
P is known. In addition, we introduce the special unary
predicate Exists(X) (does object X exist?) and the re-
spective uncertainty predicate ucExist(X) (do we know
whether X exists?) to approximate the belief over object
existence. The uncertainty predicates are similar to the 3-
valued structures (Sagiv et al., 2002) from the work of Sri-
vastava et. al. (Srivastava et al., 2009). Alternatively, rep-
resenting degrees of belief using integer valued uncertainty
predicates would be a straightforward extension (all used

Model-based Relational RL with Uncertainty Predicates

methods can cope with interger-valued predicates), but the
additional degrees of freedom are ultimately unnecessary
for the domains that we are interested in here. Second,
rather than assuming full observability as in (Pasula et al.,
2007), our approach addresses partial observability by in-
troducing a belief augmentation of the observed data. This
assumes that in retrospect we can augment the observed
data with uncertainty predicates to form consistent data
which allows us to learn rules that predict both observa-
tions and belief state dynamics as a function of the current
belief state. Third, existing literature on learning (Pasula
et al., 2007) and planning (Lang & Toussaint, 2010) for this
problem assumes unique covering rules. That assumption
inherently contradicts the ucExist(X) predicate since it can
be grounded with infinitely many hypothetical logical con-
stants (since the concrete object ID of not-yet-discovered
objects is arbitrary). We address this issue by relaxing the
unique covering assumption for learning and planning.

We evaluate our Uncertainty Predicate Rule Learning
(UPRL) using four examples. The first example illustrates
the efficacy of our learner by comparing the model learnt by
UPRL to an optimal POMDP solution found given oracle
knowledge of the true propositional model. The second ex-
ample demonstrates how UPRL generally learns rules ex-
plaining the birth-death process of creatures in nature. The
third and fourth examples demonstrate (respectively on a
3D simulated blocksworld manipulator and a 3D simulated
robot in an office environment) that UPRL is able to both
efficiently learn a symbolic representation of a generative
process for potential objects and find a (near-) optimal pol-
icy online that leverages that model.

2. Related Work
Several formalisms have been proposed to deal with uncer-
tainty over the number of objects. Dietterich et. al. have
been addressing object invention (Dietterich et al., 2008)
as one of the future directions in the field of inductive
logic programming (ILP). BLOG (Bayesian Logic) (Milch
et al., 2005), its nonparametric extension (Carbonetto et al.,
2005) and similar formalisms represent relational proba-
bilistic models in stochastic worlds where the number of
objects is unknown. The Church language (Goodman et al.,
2008), a Lisp-like functional programming language, de-
scribes generative models as stochastic functions. While
the above formalisms may be more general than what we
propose, our aim is efficiency of learning and planning for
typical problems that involve the discovery of objects.

The work by Srivastava et. al. (Srivastava et al., 2009) con-
siders planning using abstractions for state aggregation to
represent unknown object quantities using 3-valued struc-
tures (Sagiv et al., 2002). However, the planner is deter-
ministic and cannot deal with uncertainty in learned transi-
tion models. Their method plans on state abstraction aggre-

gated from problem instances having different numbers of
objects. The predicates we will introduce for belief approx-
imation are similarly discrete, but used within relational
probabilistic rules.

POMDPs (Smallwood & Sondik, 1973) are known to be
a general framework for planning under uncertainty. Its
propositional algorithms have complexity of an exponen-
tial power of the time horizon and the number of obser-
vations. Relational representations in POMDPs, first-order
POMDPs or relational POMDPs (Sanner & Kersting, 2010;
Wang & Khardon, 2010) exploit lifted abstraction and use
situations to represent a full history, which replaces an ex-
plicit belief representation. However, this representation
is only efficient for planning. Learning such a POMDP
model in an RL setting from training experiences has not
been shown efficient.

The method of Amir (2005) learns action effects in par-
tially observable STRIPS domains. However, this method
and the probabilistic STRIP method (Blum & Langford,
1999) are less flexible compared to the NDR rules of (Pa-
sula et al., 2007). They have not dealed with the noise ef-
fects and the change of the objects not listed in the action’s
arguments directly as NDRs do (Pasula et al., 2007).

In conclusion we believe there is a lack of practical meth-
ods to model-based relational RL in the face of uncertainty
over object existence, as it naturally is the case when ob-
jects are hidden in drawers of behind doors. With our ap-
proach we aim to provide such a method.

3. Background
The problem of planning under uncertainty in relational
worlds can be modeled as a relational Markov decision pro-
cess (MDP) which is 5-tuple {C,P,A,R,U}; C is a set of
objects; P is a set of predicates (relations) and functions
over these objects; the action set A; and U is a set of re-
ward formulae. The state of the world is represented by all
ground predicates and functions∧

p∈P

∧
c∈C(C,|p|)

p(c) = ∗ (1)

where ∗ means any values in the predicate or function
domain; |p| is the arity of predicate or function p; and
C(C, |p|) is the set of all combinations of length |p| from
C.

In the work of Pasula et. al. (Pasula et al., 2007) transitions
are represented as a set of Noisy Deictic Rules (NDRs). A
NDR is given as

ar(Xa) : Φr(X)→

pr,1 : Ωr,1(X)

...
pr,mr : Ωr,mr (X)
pr,0 : noise

(2)

Model-based Relational RL with Uncertainty Predicates

where X ,Xa is a set of logical variables. All the NDRs in
Rmust have logical variables as their arguments. Each rule
r consists of an action ar having Xa ⊂ X as arguments; a
context formula Φ; and a set of mr + 1 different outcomes
associated with probabilities pr,i ∈ [0, 1]. The subset of
logical variables X \ Xa is called deictic references. The
context Φ and outcomes Ωr,i are conjunctions of predicates
and functions of logical variables. The last outcome Ωr,0 is
the noise. This essentially allows for stronger compression
and better regularization of the rule set, see (Pasula et al.,
2007) for details.

If all logical variables appearing in the rule are substituted
by a substitution σ : X 7→ C (constants or concrete world
objects), it is a ground rule r(σ(X)). For each action a, we
denote Γ(a) as the set of all ground rules of the action a.
A state s and an action a are covered uniquely by a ground
rule if there is only one rule in Γ(a) such that s |= Φ(X) ∧
a = ar. For such a unique covering rule, the distribution
P (s′|s, a) to predict a next state of a state action pair (s, a)
is computed as

P (s′|s, a) =

mr∑
i=0

pr,iP (s′|Ωr,i, s) (3)

where the probability P (s′|Ωr,i, s) is deterministic, which
is one if s′ is received by taking the changes of Ω(X) into s,
otherwise zero. If this state action pair (s, a) is not covered
by any unique rule, then its transition can apply the default
rule.

Learning NDR sets is in general an NP-hard problem
(Walsh, 2010). Pasula et. al. (Pasula et al., 2007) have
proposed a supervised offline learning algorithm to learn
NDRs. Given training data E = {(s, a, s′)i}Mi=1, they do
greedy search for a rule set that maximizes the likelihood of
observing E subject to a penalty on the rules’ complexity

S(Γ) =
∑

(s,a,s′)∈E

log(P (s′|s, r(s,a)))− α
∑
r∈Γ

PEN(r)

where r(s, a) is the rule covering the state-action pair
(s, a); P (s′|s, r(s,a)) is defined as in Eq. (3); and the func-
tion PEN(·) is the complexity term which penalizes the
complex rules. The greedy search algorithm consists of
three search levels. The outermost level, called Learn-
Rules, searches through all possible rule sets to create new
rule sets. The middle level is InduceOutcomes which would
fill possible outcomes into the given incomplete rule. The
inner most level is LearnParameters which learns the prob-
ability distribution of the given incomplete rule returned
from the middle level.

Given a set of learned NDRs, planning can be realized us-
ing UCT (Kocsis & Szepesvári, 2006) or PRADA (Lang
& Toussaint, 2010). The latter translates the learned rules
into a graphical model to evaluate action sequences using
approximate inference.

4. Uncertainty Predicates as Belief
Approximation in Relational POMDPs

We first give a motivating example and briefly discuss the
inefficiency of a full but propositional POMDP formula-
tion. We then introduce uncertainty predicates that can be
used efficiently in a model-based relational RL setting.

4.1. Example

Consider a world in which there is initially one closed box
on a table. The robot’s observation of the world might be

y0 = {table(01), box(02), on(02, 01), closed(02)} .
Assuming that there is a block hidden in box 02, the robot’s
observation after taking action open(02) might be

y1 = {table(01), box(02), block(03), on(02, 01),
contains(02, 03),¬closed(01)} .

A naive application of Pasula et. al.’s NDR-rule learning
will fail on this data. If one assumes that the set of con-
stants C changed from C = {01, 02} in time slice t = 0 to
C = {01, 02, 03} in time slice t = 1 (that is, the object re-
ally appeared and the state space’s cardinality expanded),
NDRs do not apply as they can not create any contexts.
The alternative case, assuming C = {01, 02, 03} also for
t = 0, directly leads to a partial observability problem as
the values of all predicates associated to 03 (including type
and location, etc) are not observed at t = 0. A heuris-
tic approach might try to set all these unobserved predicate
values to negative because this is the only option to ensure
the learned NDRs will have the positive valued outcome
predicates (block(03) and contains(02, 03)) as part of the
outcome prediction (NDRs only include changed predi-
cate values in their outcomes, as motivated by the frame
assumption (Pasula et al., 2007)). This however would
also turnout infeasible: In modeling the data’s substitution
σ = {X → 01, Y → 02} would be created. The deictic
reference in this case consists of the constant {03}. Thus,
relying on the changed predicates an incomplete rule with
the context

open(X) :closed(X),¬block(Y),¬contains(X,Y)

would be learned. However, this rule is not uniquely cover-
ing the state y0, because both substitutions {X = 02;Y =
01} and {X = 02;Y = 03} can hold, rendering the ap-
proach infeasible. If there are more objects concurrently
appearing, there are even more possible substitutions.

Apart from these problems in directly applying Pa-
sula et. al.’s method, such an approach would not yield
probabilistic transition models that would allow for belief
planning, that is planning to reduce uncertainty as it is typi-
cal for POMDPs, because such uncertainties are not explic-
itly represented.

A POMDP formulation realizes such belief planning ide-

Model-based Relational RL with Uncertainty Predicates

ally. In a propositional setting we may assume that batch
data is given and we therefore know the maximal number
of objects that have been appearing in this data. We may
choose C as this constant superset for all t. Propositional-
izing the data we could try to learn transition models and
use standard POMDP planners. However, assuming that
the state is represented by a set of predicates P , the state
and observation spaces are very large, O(2(|P||C|)2), with
the assumption of maximally 2-ary predicates. The num-

ber of entries to store T and O is O(2(|P||C|)22
) each. One

of our experiments will neglect the learning problem (as-
sume that the correct propositional POMDP is given) and
compare the optimal POMDP policy with our approach.

However, the propositional POMDP formulation does not
generalize easily to relational settings, let alone efficiently
learning transition models in relational RL settings. Our
approach below will introduce uncertainty predicates that
bridge between NDRs and the POMDP formulation.

4.2. Uncertainty Predicates

First, we introduce an auxiliary binary-valued predicate
Exists(X) that indicates certain existence or non-existence
of an object. It will play a necessary role in deictic refer-
ence resolution in the NDRs and the learning of these rules,
as described below.

Further, for every predicate that may not be observable by
the robot we introduce an uncertainty counterpart: In our
example domain the potential non-observed predicates are
Exists(X), block(X), box(X), contains(X,Y), · · · , for
which we introduce the uncertainty predicates ucExist(X),
ucBox(X), ucBlock(X), ucContain(X,Y), · · · (where uc
abbreviates uncertain). In comparison to (Sagiv et al.,
2002), a true uncertainty predicate corresponds to the 1/2
logic value, where a false uncertainty predicate together
with the values of the original predicates (Exists(X) and
contains(X,Y)) represent the 0 or 1 logical values of (Sa-
giv et al., 2002).

To give an example, after augmenting the data with the in-
troduced uncertainty predicates (discussed in detail below),
the above transition might look like (y0, open(02), y1),
where
y0 = {table(01), box(02), on(02, 01), closed(02),Exists(01),

Exists(02), ucContain(02, 03), ucExist(03), ucBox(03),
ucBlock(03), ucTable(03)}

y1 = {table(01), box(02), block(03), on(02, 01),Exists(01),
Exists(02),Exists(03), contains(03, 02),¬ucContain(02, 03),
¬ucBox(03),¬ucBlock(03),¬ucTable(03),¬closed(02)}

which is in a new introduced form of dynamics representa-
tion as in Eq. (4).

ar(Xa) : Φr(X ,Xnew)→ Φ′r(X ,Xnew) (4)

where Xnew is a new set of constants appearing at next
time slice. We expect that the learned rule explaining this

experience might look like

open(X) : box(X), closed(X), ucContain(X,Y), ucExist(Y)

→
{

1.0 : Exists(Y), block(Y), contains(X,Y),
¬closed(X),¬ucContain(X,Y),¬ucExist(Y)

The only feasible substitution is σ = {X = 02, Y = 03}
and therefore this rule uniquely covers (y0, a). When there
is more than one object appearing the learned rule has
two new skolem constants in its outcomes. For instance,
in the case of two appearing objects the learnt rule’s
context contains two similar predicates ucExist(Y) and
ucExist(Z).

open(X) : box(X), closed(X), ucContain(X,Y),
ucContain(X,Z), ucExist(Y), ucExist(Z)

→

1.0 : Exists(Y), block(Y), contains(X,Y),
Exists(Z), block(Z), contains(X,Z),
¬closed(X),¬ucContain(X,Y),
¬ucContain(X,Z),¬ucExist(Y),
¬ucExist(Z)

with the augmented data as

y0 ={table(01), box(02), on(02, 01), closed(02),Exists(01),
Exists(02), ucContain(02, 03), ucContain(02, 04),
ucExist(03), ucExist(04), · · · }

It has two substitutions {X = 02, Y = 03, Z = 04}
and {X = 02, Y = 04, Z = 03}. As we can see, the
difference of two substitutions is at the double substitution
of new appearing objects. Therefore, if in a learning
algorithm we could check the substitution with respect
to appearing objects, then the unique covering problem
can be handled. We will make this change explicitly in
the learning algorithm of (Pasula et al., 2007) how to
handle the multiple substitutions related to new appearing
constants.

5. Learning State and Belief Transitions
In this section, we describe how to extend the learning al-
gorithm of Pasual et. al. (Pasula et al., 2007) which can
not handle the multiple substitutions related to new appear-
ing constants. There are two significant changes. First, we
introduce a preprocessing step, called belief augmentation,
which augments each data point having new appearing ob-
jects by adding uncertainty predicates to the previous state:
e.g. Exists, ucExist, ucContain, ucBox, ucBlock, · · · . Sec-
ond, we need a major change in the learning algorithm of
Pasual et. al. (Pasula et al., 2007) in how to handle the mul-
tiple substitutions related to new appearing constants.

5.1. Belief Augmentation of the Data

Belief Augmentation denotes a preprocessing step where
we add uncertainty predicates to the observed data as de-
scribed in Algorithm 1. Starting with a data set D =
{(yt, at, yt+1)}N−1

t=0 , for each data point, the algorithm
checks if there are new objects appearing (Xnew 6= ∅). To

Model-based Relational RL with Uncertainty Predicates

allow for a deictic reference to potentially appearing ob-
jects in the rule context, uncertainty predicates are added
to the previous state: ucP(c), where ucP are all uncer-
tainty predicates of constants c if c ∧ Xnew 6= ∅. Af-
ter Belief Augmentation we have an augmented dataset
D = {(yaug

t , at, yt+1)}N−1
t=0 .

Algorithm 1 beliefAugmentation Algorithm
Input: dataset D = {(yt, at, yt+1)t}N−1

t=0

for t = 0 to N − 1 do
% calculate the set of objects appearing.
Calculate X t

new = X t+1 \ X t

if X t
new 6= ∅ then

for each c ∈ X t
new do

Add ucExist(c) to Φt(X t)
end for
for each ucP predicates and c ∧ X t

new 6= ∅ do
Add ucContain(c) to Φt(X t)

end for
end if

end for

Note that in the augmented data, within each data point
(yaug
t , at, yt+1), yt+1 and yaug

t have the same set of con-
stants Ct+1. This means that any predicates having new
appearing objects in their list of arguments are considered
as uncertain or unobserved in the previous state. However,
yt and yaug

t (as well as their respective data triplets) have
different sets of constants C. This inherently requires a first
order learning method to deal with the augmented data.

5.2. Learning

The original algorithm of Pasula et. al. (Pasula et al., 2007)
requires that there is a unique covering of rule contexts.
However, in our case the choice of constants c that we
associate with an appearing object (or multiple appearing
objects) is fully arbitrary: we can assign any constant to
the appearing objects. Therefore, the deictic reference to
a ucExist(X) in a context can never be uniquely covered.
However, as any choice of covering is exactly equivalent
we may arbitrarily choose a covering, e.g. the next small-
est not yet used constants. To realize this in the greedy rule
learning algorithm we need to modify each search operator.

Theorem 1 proves that the model learnt by UPRL encodes
the belief updates of the general POMDP formulation.

Theorem 1 The learnt model of UPRL approximates the
belief transition in the POMDP formulation for the prob-
lem of uncertainty over existence of objects.
Proof: For a sketch, we compute the next state and belief
update of both methods, then compare them.

Step 1: In the POMDP formulation the belief over ob-
served predicates has value 1.0 and over unobserved pred-
icates is 0.5. The belief b(p(c)) has a value of 1.0 (0.0 for
negative value of c) if c is the set of constants previously

observed. b(p(c)) = 0.5 if c contains at least one unob-
served constant. The belief update is in general

b′(p(c)) ∝ Z(o|s′, a)
∑

s(p(c))
T (s′|s, a)b(p(c))

+
∑

s(¬p(c))
T (s′|s, a)b(¬p(c))

where s(p(c)) means all states consisting of positive pred-
icates p(c). We investigate two cases:

(a.) In the case of previously non-appeared predicates

b′(p(c)) ∝ Z(o|s′, a)
∑

s(p(c))
T (s′|s, a)× 0.5

+
∑

s(¬p(c))
T (s′|s, a)× 0.5

= 0.5×Z(o|s′, a)
∑

s∈S
T (s′|s, a)

There are two possibilities:

(a.1) From non-appeared → appeared:
Z
(
o(p(c))|s′, a

)
= 1.0, then b′(p(c)) = 1.0,

b′(¬p(c)) = 0.0 after normalizing.

(a.2) From non-appeared → non-appeared:
Z
(
o(p(c))|s′, a

)
= 0.0, then b′(p(c)) = b′(¬p(c)) = 0.0

after normalizing which are still considered as uniform
probability.

(b.) The belief update of already appeared objects is deter-
ministic as (assuming that b(p(c)) = 1.0)

b′(p(c)) ∝ Z(o|s′, a)
∑

s(p(c))
T (s′|s, a)× 1.0

+
∑

s(¬p(c))
T (s′|s, a)× 0.0

= Z(o|s′, a)
∑

s(p(c))
T (s′|s, a)

There are two possibilities:

(b.1) From appeared→ appeared: Z
(
o(p(c))|s′, a

)
= 1.0,

then b′(p(c)) ,b′(¬p(c)) = 0.0 after normalizing.

(b.2) From appeared→ disappeared: Z
(
o(p(c))|s′, a

)
=

0.0, then b′(p(c)) = b′(¬p(c)) = 0.0 after normalizing
which are again considered as uniform probability.

Step 2: Assuming that we have learned NDRs successfully
in the sense that every state-action pair has one unique cov-
ering rule. We study its outcomes in four corresponding
cases as in the POMDP formulation:

– From non-appeared → appeared: The predicates
ucExist and other uncertainty predicates of the appear-
ing objects become false, and all predicates of the ap-
pearing objects have values (true or false) with probabil-
ity one. This corresponds to the case (a.1).

– From non-appeared→ non-appeared: The rule does not
affect neither non-appearing objects nor their uncertainty
predicates. Therefore, it corresponds to the case (a.2).

Model-based Relational RL with Uncertainty Predicates

– From appeared → appeared: The predicate’s value
changes as in conventional NDRs. This is exactly rep-
resenting the deterministic belief transition of the corre-
sponding case (b.1).

– From appeared → disappeared: The predicates
ucExist, and other uncertainty predicates of the appear-
ing objects become true, all predicates of this appearing
objects are back to false. This represents the transition of
certainty to uncertainty in case (b.2).

Comparing two methods, we receive the identical match
between POMDP’s belief update and the learnt NDR’s ap-
proximate belief transition. �

6. Planning Using the Learned Models
In this section, we propose general modifications appli-
cable to planning algorithms such as PRADA (Lang &
Toussaint, 2010), UCT (Kocsis & Szepesvári, 2006), SST
(Kearns et al., 2002) to enable planning with our learnt
model. First we clarify how to convert the learnt NDR rules
to DBNs, for which we assume to have the superset of all
constants C.

Given the state s, we can compute the probability of each
rule context,

P (φ|s) =

K∏
i=1

P (φi|sπ(φi)) , (5)

where the function π(φi) gives a set of predicates in s con-
tained in the context of φi. Similarly to the unique cov-
ering issue detailed above, the binary random variables of
several rule contexts (referring to different constants) hav-
ing ucExist predicates might hold true. However, by con-
struction of the DBN in (Lang & Toussaint, 2010), the ran-
dom variable R would choose only one covering rule. We
therefore propose to modify Eq. (16) in (Lang & Toussaint,
2010) to choose the first of them as in Eq. (6),

P (R = r|a, φ) =I
(
r ∈ Γ(a) ∧ r = Γ∗0(a) ∧ Φr = 1∧

r′∈Γ(a)\Γ∗(a)

Φr′ = 0
) (6)

where Γ∗(a) ⊂ Γ(a) is the set of coverings which might be
multiple with respect to the ucExist predicates, and Γ∗0(a)
is its first element. If that is the action having no ucExist in
its context, then Γ∗(a) = r which yields the original prob-
ability in Eq. (16) in (Lang & Toussaint, 2010). This ex-
tended PRADA basically mitigates multiple coverings with
respect to uncertainty predicates.

As PRADA is an action sampling technique, it cannot deal
with uncertainty of observation. We propose an online
planning algorithm UPRL+P, which uses our extended
PRADA technique as a search daemon in UCT. For each
state, we run our extended PRADA to find the best action.

UCT, SST can also be applied directly on our learnt NDRs,
the needed change which is similar to PRADA is to choose
one representative rule if there are more than one covering
rule having different ucExist(c) predicates.

7. Experiments
The first two experiments are toy domains to test the opti-
mality of policies derived from the learned rule sets and the
power of UPRL to learn complex dynamics of appearing
and disappearing entities. The third and fourth experiment
concern more challenging robotic domains.

7.1. Illustrative Example: POMDP vs. uncertainty
predicates

Here we first consider a propositional example to illustrate
how UPRL does belief approximation and how the policy
derived from a learned model compares to the optimal pol-
icy for the true propositional POMDP model. We use the
true model to generate data, then UPRL learns a NDR set
using 20 training examples generated from the true model
and does planning on the learned model.

The domain consists of two closed boxes b1 and b2 and
one block c which might reside in one of the two boxes.
We use the following six predicates: box(X), block(X),
closed(X), empty(X), contains(X,Y), and two action
predicates: open(X), grab(X). The task is to find
the object, then grab it, and conceptually similar to the
Tiger Problem. The state space is given by the set of
the nine grounded predicates, P =

{
box(b1), box(b2),

block(c), closed(b1), closed(b2), empty(b1), empty(b2),
contains(b1, c), contains(b2, c)

}
; the action space by

three grounded action predicates,A = open(b1), open(b2),
grab(c). The robot’s starting observation is

y0 =
{
box(b1), box(b2), closed(b1), closed(b2)

}
The unobservable predicates are block(X), empty(X),
contains(X,Y), for each of which uncertainty predicates
are introduced.

We use SARSOP (Kurniawati et al., 2008) to find an opti-
mal policy for the propositional POMDP formulation. The
reported time of SARSOP includes offline planning and on-
line evaluation.

In contrast to the POMDP, UPRL learns a model of the en-
vironment as well as of the approximate belief transitions
from data. We found that with sufficient data UPRL will
reliably learn three correct rules for the open action that
distinguish three situations: opening a box when being un-
certain about the box’s content, opening a box being certain
that it contains an object, opening a box when being certain
it is empty.

The results for UPRL+SST, UPRL+UCT and UPRL+P

Model-based Relational RL with Uncertainty Predicates

Table 1. Two box problem: The number of actions needed have
the block in the hand, and the trial time in each episode. The
results are averaged over 40 runs. The standard deviation of the
average value is reported.

Algorithm Actions Trial Time (s)
SARSOP 2.50 ± 0.037 < 0.01
UPRL+SST 2.57 ± 0.105 3.94 ±0.154
UPRL+UCT 2.51 ± 0.071 0.09 ±0.002
UPRL+P 2.50 ± 0.069 0.07 ±0.002

are reported in Table 1. All three planners use the UPRL-
learned rules and lead to optimal policies. The trial time
subsumes the time required to re-plan the next action in
each step.

7.2. Learning Rule Sets for Complex Appearance and
Disappearance Dynamics

In order to test the generality of UPRL we considered
a more complex domain of stochastically appearing and
disappearing entities and test whether UPRL can learn the
correct dependencies of object (dis-)appearance, which
was previously described in (Vien & Toussaint, 2013).
To make it more illustrative we describe this process
as an evolution of bacteria: Every bacteria has one of
three colors (black, red, blue) which can change with
a probability of pc uniformly to a different color. Two
bacteria can make a pair with a probability δ if their colors
are blue. If a pair is established, they can spawn a new
bacteria with a probability ps. Every bacteria can die
with a probability of pd. The evolution starts with a set of
random bacteria. At each time step of evolution, bacteria
can change colors, die, create pairs, and spawn. We show
that our proposed learning algorithm, UPRL, can correctly
learn such a relational rule model. The predicates used for
state representation are: Black(X), Red(X), Blue(X)
for bacteria colors, Pair(X,Y) to tell whether
two bacteria make a pair, Exist(X). The pro-
cess events are represented as action predicates
eColor(X), eDeath(X), ePair(X,Y), eSpawn(X,Y),
which evolve the color, the kill a bacteria, decide whether
to make a pair, and spawn an offspring.

We use the true model with a setting
{δ, pc, pd, ps}={0.7, 0.2, 0.3, 0.7} to generate training data
of variable size and evaluate the learnt rule set by measur-
ing the variational distance between the true model P and
the learnt model P̃ , δ(P, P̃) = 1

|E|
∑
e∈E |P (e) − P̃ (e)|.

We compare three learning methods: UPRL, propositional
UPRL (where rules have only constants), and the original
learning algorithm of Pasula et. al. (Pasula et al., 2007)
using data without BeliefAugmentation. The performance
of UPRL compared to others is given in Fig. 1, which
significantly shows the importance of using both the
variable abstractions and the uncertainty predicates in

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 100 200 300 400 500 600 700 800 900 1000

V
ar

ia
tio

na
l D

is
ta

nc
e

Training Data Size

UPRL
Pasula et.al. method

Propositional

Figure 1. Variational distance between the learned model P̃ and
the true model P for varying training data size. The results are
averaged over 10 trials and include very small error bars. The test
data set is of size 500. The propositional method runs with more
than 400 training examples have not stopped after 1 day.

order to capture the innate uncertainty over existence of
objects. The learnt rules of Pasula’s method could not
explain data points having new appearing constants and
therefore learned to predict noise outcomes, explaining the
large distance to the true probability. The propositional
method was too slow to test for large training data.

7.3. Simulated Robot Manipulation

We use the simulator of Lang and Toussaint (Lang & Tou-
ssaint, 2010) (using the physics simulation ODE inter-
nally) to simulate realistic behaviour of the objects. We
define four actions: open(X), close(X), grab(X) and
puton(X). All actions have only one argument to specify
which object to be manipulated. The environment’s state
is represented with predicates on(X,Y), contains(X,Y),
closed(X), inhand(X), block(X), box(X) and table(X)
which are primitive concepts. To evaluate the UPRL-
learned action model, we use the three planners as above.

Using UPRL, the NDR set is learnt from a training set of
200 experience triples (y, a, y′), generated in a world of
two boxes containing two cubes each, two boxes having
only one cube each and two empty boxes by performing
random actions with a small bias to build high stacks. This
would yield a uniform probability of maximally two ob-
jects able to appear. Initially all boxes are closed.

We investigate two task variants in this domain: high tow-
ers and magic box, as described below. In both variants
URPL+P uses a horizon d = 4 and N = 200 sample ac-
tion sequences in PRADA. The settings of SST are: the
horizon d = 3, and the branching factor b = 2. For SST,
we tried increasing both d and b, however the simulation
did not finish after two days. The settings of UCT are: the
horizon d = 4, the bias parameter c = 1.0 is the best choice
among those we have experimentally tested and the num-
ber of sampling is N = 200. All three algorithms use a
discount factor γ = 0.95.

Model-based Relational RL with Uncertainty Predicates

Table 2. High Towers. Success rates, actions and taken time for
each trial are averaged over 50 runs different random seeds and
environments. The error is the standard deviation of the mean
estimator itself.

Rew. Alg. Succ. Actions Time (s)
10 UPRL+SST 1.0 20.2 ± 0.6 3754 ± 23.6
10 UPRL+UCT 1.0 18.4 ± 0.5 204 ± 15.0
10 UPRL+P 0.94 31.8 ± 0.6 275 ± 11.1
14 UPRL+SST 1.0 29.6 ± 1.4 4314 ± 24.7
14 UPRL+UCT 0.86 30.1 ± 1.6 378 ± 16.9
14 UPRL+P 0.82 32.3 ± 1.2 392 ± 12.3

Table 3. The reported number of success rates, actions and taken
time for each trial are averaged over 50 runs (20 runs in office
environment).

Prob. Alg. Succ. Actions Time (s)
Magic UPRL+SST 0.0 50.0 ±0.0 ∼2 hours
Magic UPRL+UCT 1.0 30.9 ± 0.9 165 ± 6.79
Magic UPRL+P 1.0 30.9 ± 1.0 195 ± 6.29
Office UPRL+SST 0.0 60.0 ± 0.0 > 1 hour
Office UPRL+UCT 0.34 52.0 ± 4.24 599 ± 58.7
Office UPRL+P 1.0 23.1 ± 2.97 251 ± 32.4

7.3.1. HIGH TOWERS

In the high towers domain, described in (Pasula et al.,
2007), the reward is the average height of objects. We con-
sidered six closed boxes, each of which contains either two
objects, one object, or is empty. This was an easy planning
problem if the robot knew where the blocks are, because
there are many possible policies able to achieve the high
reward. We use two reward thresholds to stop online plan-
ning: 10 and 14. To achieve reward 10, the robot would
not need to open all boxes, 4 to 5 blocks (depending on
whether they fall down) is sufficient to achieve this reward.
To achieve reward 14, the robot needs to discover almost
all possible objects in six boxes. The performance of three
algorithms is reported in Table 2.

The high success rates and the reasonably small number
of needed actions tell that all three algorithms not only
can disambiguate uncertainty to discover objects, but also
quickly select important initial actions (open closed boxes).
As expected, the computation time of SST is much higher
than for the others.

7.3.2. STACKING WITH MAGIC BOXES

This task rewards building a pile of blocks of a specific
height, but additionally assumes some boxes which are
magic: Whenever the robot opens a closed magic box, new
objects might spawn. We show that UPRL can still learn
a correct model of the environment. We consider an envi-
ronment with three boxes (one is empty, one has one block,
and one has magic property), while the robot has to build a
4-block pile. The results are shown in Table 3. Only SST
failed in discovering the magic box.

7.4. Office Environment

Finally we consider an office environment in which the
robot needs to find a hammer and nails. Objects reside in
different closets and at different locations. Therefore, this
task has many interesting uncertainties: uncertainty over
types, locations and existence of objects. In addition to
all the predicates described in the blockworld domain, we
have two more predicates: the action goto(X) brings the
robot near to a desired object with a probability of 0.8,
and stays unmoved with probability of 0.2; the predicate
locatedAt(X) indicates whether the robot is near an ob-
ject X . Closets are represented exactly as boxes above and
isHammer and isNail are additional predicates.

Learning setting: We put six closets in an office: one is
empty, one has only one hammer, one has two hammers,
one has a hammer and a nail, one has two nails, and one has
only one nail. This setting is consistent with the uniform
initial belief of the robot over all possibilities, subject to a
maximum two objects within a closet.

Planning setting: We test the learnt model by creating an
environment consisting of four closets: a closet of a ham-
mer, an empty closet, a closet of two nails and a closet of
one nail. The task of the robot is to look for a hammer
and a nail and put them on the table. SST has settings of
b = 2, d = 3. UCT and UPRL+P has a horizon d = 6 and
the number of sampling is N = 1000. The performance
of three algorithms are reported in Table 3. As the goal is
reached by not many possible policies in such case UCT
often has bad performance, UPRL+UCT turns out to be
much worse than UPRL+P.

8. Conclusion
We have proposed UPRL+P, a framework for model-based
relational RL when object existence in only partially ob-
servable and objects may appear or disappear. By intro-
ducing uncertainty predicates we can represent a belief ap-
proximation of the respective relational POMDP. Our be-
lief augmentation of the observed data allows for learning
probabilistic rules that predict action effects depending on
the belief state (including predictive probabilities of object
appearance/disappearance and their properties/relations) as
well as the belief dynamics itself. A crucial technical detail
was to relax the unique covering assumption made by pre-
vious learning and planning methods. We also compared
UPRL+P with optimal POMDP models and policies in a
propositional setting. The experiments confirmed the ef-
ficiency of the approach to deal with complex stochastic
processes of appearing and disappearing entities, as well
as manipulation domains that require searching for hidden
objects.

Acknowledgments: This work is funded by the DFG (German
Research Foundation) within SPP 1527, Autonomous Learning.

Model-based Relational RL with Uncertainty Predicates

References
Amir, Eyal. Learning partially observable deterministic ac-

tion models. In IJCAI, pp. 1433–1439, 2005.

Blum, Avrim and Langford, John. Probabilistic planning in
the graphplan framework. In ECP, pp. 319–332, 1999.

Carbonetto, Peter, Kisynski, Jacek, de Freitas, Nando, and
Poole, David. Nonparametric Bayesian logic. In UAI,
pp. 85–93, 2005.

Dietterich, Thomas G., Domingos, Pedro, Getoor, Lise,
Muggleton, Stephen, and Tadepalli, Prasad. Structured
machine learning: the next ten years. Machine Learning,
73(1):3–23, 2008.

Goodman, Noah D., Mansinghka, Vikash K., Roy,
Daniel M., Bonawitz, Keith, and Tenenbaum, Joshua B.
Church: a language for generative models. In UAI, pp.
220–229, 2008.

Kearns, Michael J., Mansour, Yishay, and Ng, Andrew Y.
A sparse sampling algorithm for near-optimal planning
in large markov decision processes. Machine Learning,
49(2-3):193–208, 2002.

Kocsis, Levente and Szepesvári, Csaba. Bandit based
monte-carlo planning. In ECML, pp. 282–293, 2006.

Kurniawati, Hanna, Hsu, David, and Lee, Wee Sun. Sarsop:
Efficient point-based pomdp planning by approximating
optimally reachable belief spaces. In Robotics: Science
and Systems, 2008.

Lang, Tobias and Toussaint, Marc. Planning with noisy
probabilistic relational rules. Journal of Artificial Intel-
ligence Research, 39:1–49, 2010.

Milch, Brian, Marthi, Bhaskara, Russell, Stuart J., Sontag,
David, Ong, Daniel L., and Kolobov, Andrey. BLOG:
Probabilistic models with unknown objects. In IJCAI,
pp. 1352–1359, 2005.

Pasula, Hanna M., Zettlemoyer, Luke S., and Kaelbling,
Leslie Pack. Learning symbolic models of stochastic do-
mains. J. Artif. Intell. Res. (JAIR), 29:309–352, 2007.

Sagiv, Shmuel, Reps, Thomas W., and Wilhelm, Rein-
hard. Parametric shape analysis via 3-valued logic. ACM
Trans. Program. Lang. Syst., 24(3):217–298, 2002.

Sanner, Scott and Kersting, Kristian. Symbolic dynamic
programming for first-order pomdps. In AAAI, 2010.

Smallwood, Richard D. and Sondik, Edward J. The Opti-
mal Control of Partially Observable Markov Processes
Over a Finite Horizon. Operations Research, 21(5):
1071–1088, 1973.

Srivastava, Siddharth, Immerman, Neil, and Zilberstein,
Shlomo. Abstract planning with unknown object quanti-
ties and properties. In SARA, 2009.

Vien, Ngo Anh and Toussaint, Marc. Reasoning with un-
certainties over existence of objects. In AAAI Fall Sym-
posium: How Should Intelligence Be Abstracted in AI
Research?, 2013.

Walsh, Thomas J. Efficient learning of relational models
for sequential decision making. PhD thesis, The State
University of New Jersey, 2010.

Wang, Chenggang and Khardon, Roni. Relational partially
observable mdps. In AAAI, 2010.

