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Abstract
We propose a scalable nonparametric Bayesian
regression model based on a mixture of Gaussian
process (GP) experts and the inducing points for-
malism underpinning sparse GP approximations.
Each expert is augmented with a set of inducing
points, and the allocation of data points to experts
is defined probabilistically based on their prox-
imity to the experts. This allocation mechanism
enables a fast variational inference procedure for
learning of the inducing inputs and hyperparam-
eters of the experts. When using K experts,
our method can run K2 times faster and use K2

times less memory than popular sparse methods
such as the FITC approximation. Furthermore, it
is easy to parallelize and handles non-stationarity
straightforwardly. Our experiments show that on
medium-sized datasets (of around 104 training
points) it trains up to 5 times faster than FITC
while achieving comparable accuracy. On a large
dataset of 105 training points, our method sig-
nificantly outperforms six competitive baselines
while requiring only a few hours of training.

1. Introduction
Gaussian processes (GPs) have become the prior of choice
in nonparametric Bayesian regression approaches not only
in the standard setting of iid Gaussian noise but also
in more realistic scenarios that include heteroscedastic-
ity (Kersting et al., 2007), non-stationarity (Paciorek &
Schervish, 2004) and multi-task learning (Bonilla et al.,
2008). However, the high computational cost in time and
memory of GP-based methods, usuallyO(N3) andO(N2)
for N training data points respectively, have hindered their
applicability to large scale problems.
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Consequently, a vast amount of research has tried to over-
come these computational difficulties via the so-called
sparse approximations (Lawrence et al., 2002; Seeger,
2003; Seeger et al., 2003; Smola & Bartlett, 2001; Snelson
& Ghahramani, 2006; Williams & Seeger, 2001). In partic-
ular, the seminal work of Quiñonero-Candela & Rasmussen
(2005) has provided the machine learning community with
a better understanding of what these approximation meth-
ods are actually doing. The key insight of that work is that
most GP approximations can be formulated within a sin-
gle probabilistic framework, where the training data is aug-
mented with inducing points, which are generated by the
same latent function being learned. Conditioned on those
points, the outputs become statistically independent. This
leads to a lower complexity of O(NB2) in computation
and O(NB) in memory when B � N inducing points are
used.

Despite this encouraging progress to scale GPs via
sparse approximations, time and memory complexities
of O(NB2) and O(NB) are still too costly to handle
large datasets. Recent developments in stochastic varia-
tional inference for GPs under the inducing-point formal-
ism (GPSVI, Hensman et al., 2013) have shown that these
costs can be reduced further to O(B3) and O(B2) respec-
tively. While these methods have made possible the appli-
cation of GPs to large datasets, their main assumption of
having global inducing points can be insufficient to cap-
ture the dependencies between the observations. In fact, as
we shall see in our experiments in section 4, such an as-
sumption comes at the expense of significant performance
degradation, especially in high-dimensional spaces.

We believe that, as argued by Rasmussen & Ghahramani
(2002), modeling large (and possibly high dimensional)
datasets with a single GP is simply undesirable given that
critical issues such as non-stationarity and locality become
difficult to handle when having a small set of global in-
ducing points. To address these issues, mixture-of-experts
architectures (see e.g. Gramacy & Lee, 2008; Kim et al.,
2005; Meeds & Osindero, 2006; Rasmussen & Ghahra-
mani, 2002) have been proposed in the literature. In these
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approaches, the data is partitioned into local regions which
are modeled by independent GP experts with their own hy-
perparameters. The functions generated by the experts can
exhibit different smoothness properties, thereby allowing
non-stationarity in the outputs to be captured.

However, a common drawback of these models is that the
expert assignments must often be carried out via intensive
MCMC sampling. As a result, although mixture of GP ex-
perts may be able to deal with non-stationarity, their poor
scalability precludes any application on even moderate-
sized problems. In fact, to the best of our knowledge, the
largest experiment using the existing GP mixture models
has been performed with no more than 2,000 data points
(Kim et al., 2005).

In this paper we propose a scalable nonparametric
Bayesian regression model based on a mixture of GP ex-
perts that leverages on the inducing points formalism un-
derpinning sparse GP models. In the model, data points
closer to the underlying inducing points of an expert are
given higher probabilities to be assigned to that expert.
This novel allocation allows each local input region to be
accounted for by a different expert with its distinct local
inducing set. This makes the model more powerful and
flexible than traditional sparse methods whose global set of
inducing points may fail to support some parts of the input
space.

We derive a variational inference algorithm for this model
and, by exploiting the locality generated by the expert al-
location, we obtain a fast optimization-based algorithm
to learn the inducing inputs and hyperparameters of the
experts. When using K experts, each with M inducing
points, the inference requires only O(NM2) in computa-
tion and O(NM/K) in memory. This is a factor of K2

improvement in time and storage complexity compared to
the traditional sparse methods if the same total number of
inducing points is used in both models, i.e. B = M ×K.
Thus, our model can work with large datasets even on the
moderate resources of a single desktop computer. Further-
more, our algorithm can be parallelized easily with multi-
core or distributed computing.

Our experiments investigate non-stationarity on a small
dataset where the model shows consistent behavior as
seen in previous approaches. More importantly, empiri-
cal evaluation on 3 medium-sized datasets (of around 104

training points) confirms the K2 speed-up factor by our
method compared to traditional sparse GPs such as the
FITC approximation (Quiñonero-Candela & Rasmussen,
2005), while achieving comparable accuracy. On the Mil-
lion Song Dataset (Bertin-Mahieux et al., 2011) with 105

training points, our method significantly outperforms six
competitive baselines, while requiring only a few hours
of full training including learning of inducing inputs and
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Figure 1. Graphical representation of the model where shaded
nodes represent observed variables. Our model can be seen as
a local mixture of sparse GP experts, where the expert assignment
zn is determined by the inducing inputs U.

hyper-parameters. Our results encourage the use and devel-
opment of multiple experts model when dealing with very
large datasets, which may not be adequately represented by
a traditional global model or function.

2. Model Specification
Let the data be a set of N observations: X = {xn}Nn=1

and y = {yn}Nn=1, where xn ∈ Rd is a vector of d
input features and yn ∈ R. The graphical represen-
tation of the model is shown in Figure 1. There are
K independent experts in the model, each consists of
a latent function fk(x) ∼ GP(0, κ(x,x′;θk)), where
κ(x,x′;θk) is the kernel function of expert k which is pa-
rameterized by the hyperparameters θk

1. Each expert is
also augmented with a set of M inducing inputs Uk =
{uk1, . . . ,ukM}, whose latent values are denoted by gk =
(fk(uk1), . . . , fk(ukM ))T , which we shall refer to as the
inducing points. We assume that each observation xn

and yn is associated with only one expert identified by
the indicator zn. Under the standard Gaussian likelihood
model, the output is yn = fzn(xn) + εn, i.e. the latent
value at xn by expert zn corrupted by independent noise
εn ∼ N (0, σ2

zn). Note that the inducing inputs Uk lie in
the same input space as X and the inducing points gk are
from the same output space as the latent function fk(x).

We denote by z, g, f ,U,θ, and σ the set of all zn,
gk, fk,Uk,θk, and σk, respectively. The following aux-
iliary subsets of variables are defined for a given configu-
ration assignment of experts:

fk = {fk(xn)|zn = k}, Xk = {xn|zn = k},
and yk = {yn|zn = k}. (1)

It is instructive to emphasize that fk,Xk,yk are defined
given a particular configuration of z.

1Here and henceforth we reserve the subscript k = 1, . . . ,K
to indicate associations with the expert k.
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The full joint distribution of the model is given by:

p(y, z, f ,g|U,θ,σ,X) =

p(y|f ,σ)p(f |z,g,U,θ,X)p(g|U,θ)p(z|U,X), (2)

where

p(y|f ,σ) =

K∏
k=1

N (yk; fk, σ
2
kI), (3)

p(g|U,θ) =

K∏
k=1

N (gk; 0,K(Uk,Uk)), (4)

p(z|U,X) =

N∏
n=1

p(zn|xn,U), (5)

p(f |z,g,U,θ,X) =

K∏
k=1

N
(
fk; f̄k(Xk),Λk(Xk)

)
, (6)

with:

f̄k(Xk) = K(Xk,Uk)K(Uk,Uk)−1gk, and (7)

Λk(Xk) = diag
(
K(Xk,Xk)−

K(Xk,Uk)K(Uk,Uk)−1K(Uk,Xk)
)
. (8)

Here we have defined K(Xk,Uk) to be the covariance ma-
trix evaluated at all pairs of points in Xk and Uk and sim-
ilarly for the other covariance matrices. Additionally, the
covariance matrices containing subscript k are parameter-
ized by the kernel hyperparameters θk of expert k.

Equation 3 trivially follows from the standard Gaussian
likelihood as described above. Equation 4 is due to the in-
dependent GP priors over the experts. Equation 6 follows
primarily from the locality of the experts, which means
each expert only acts on the set of points assigned to it (by
the indicators z). This is similar to having multiple datasets
each accounted for by one expert, although in our setting
the assignment of points to experts is latent. Equation 6
also follows from the sparsity enforcement by each expert:
the latent values are independent given the inducing points
and for any xi ∈ Xk we have that:

p(fk(xi)|xi,gk,Uk,θk) = N (fk(xi); f̄k(xi),Λk(xi)),

where:

f̄k(xi) = κ(xi,Uk)K(Uk,Uk)−1gk, and

Λk(xi) = κ(xi,xi)− κ(xi,Uk)K(Uk,Uk)−1κ(Uk,xi).

Notice that this is exactly the predictive distribution of
fk(xi) given the inducing points gk and effectively corre-
sponds to the fully independent training conditional (FITC,
Quiñonero-Candela & Rasmussen, 2005).

We now turn the attention to the prior over the expert indi-
cator variable zn, which we define as

p(zn = k|xn,U) =
N (xn; mk,V)∑K
j=1N (xn; mj ,V)

, (9)

where each mean mk is termed the centroid of expert k and
the covariance V = diag(v1, . . . , vd). These are given by:

mk =
1

M

M∑
m=1

ukm,

vj =
1

K(M − 1)

K∑
k=1

M∑
m=1

(ukmj −mkj)
2. (10)

This novel allocation of a data point xn to the experts
based on its proximity to their centroids is reasonable since
the closer the data point to the expert centroid, the more
similar xn is to its inducing inputs. Additionally, the for-
mulation of the allocation probability as proportional to a
Gaussian distribution is crucial to make learning analyti-
cally tractable via variational inference. Intuitively, one can
imagine that Uk are generated byK multivariate Gaussians
sharing a common covariance, in which case mk is the em-
pirical mean and V is the pooled empirical variance. Then
Equation 9 can be interpreted as a probabilistic assignment
of data point xn to one of K clusters.

3. Inference
Our inference task is to compute the posterior distribution
over the latent variables, p(f ,g, z|y,X,U,θ,σ). We treat
{U,θ,σ} as hyperparameters and learn their point esti-
mates using maximum marginal likelihood. To this end,
we use variational EM which iteratively optimizes one of
the variational parameters and the hyperparameters while
keeping the others fixed. We omit the hyperparameters
from the conditioning set of the posterior (when unneces-
sary) for conciseness.

We begin by noticing that the latent values f can be inte-
grated out from the full joint distribution in Equation 2 to
give:

p(y, z,g|U,X) = p(g|U,θ)p(z|U,X)

K∏
k=1

p(yk|gk),

(11)
where p(yk|gk) = N (yk; f̄k,Λk(Xk) + σ2

kI). Further-
more, the posterior p(f |y) can always be retrieved by inte-
grating over g: p(f |y) =

∫
p(f |g)p(g|y)dg. It turns out

that working with g directly is more convenient so we take
this approach.
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3.1. Variational Inference

We use variational inference to approximate the true pos-
terior p(g, z|y) with a tractable family of distributions
q(g, z) that factorizes over gk and zn:

q(g, z) =

K∏
k=1

q(gk)

N∏
n=1

q(zn). (12)

Here we temporarily change the representation of zn to the
1-of-K encoding, zn = [zn1 . . . znK ]T where znk is binary
and

∑K
k=1 znk = 1, and correspondingly for z.

By minimizing the Kullback-Leibler divergence KL[q||p]
between q(g, z) and p(g, z|y) we obtain the optimal distri-
bution q(z) as

q(z) =

N∏
n=1

K∏
k=1

rznk

nk , (13)

where rnk = ρnk/
∑K

j=1 ρnj is the responsibility of expert
k to the point xn, and

ln ρnk = const + lnN (xn; mk,V)

+ lnN (yn;κ(xn,Uk)(K(k)
u,u)−1E[gk],Λk(xn) + σ2

k),
(14)

where K
(k)
u,u = K(Uk,Uk) and the expectation is over

q(gk). The optimal distribution q(gk) is given by:

q(gk) = N
(
gk; K(k)

u,uΨ−1k K(Uk,X)Γky,K(k)
u,uΨ−1k K(k)

u,u

)
(15)

where

Ψk = K(k)
u,u + K(Uk,X)ΓkK(X,Uk), (16)

Γk = diag(rk) • (Λk(X) + σ2
kI)−1, (17)

the symbol • denotes the Hadamard product; and rk =
[r1k, . . . , rNk]T .

Since the mean and covariance of the posterior q(gk) are
completely determined by the responsibilities rk, there is
no need to explicitly parameterize them during inference.
This is very helpful as otherwise O(KM2) parameters of
covariance matrices must be optimized and stored.

The computational and memory demands to compute
the responsibilities in Equation 14 are O(NM2K) and
O(NM) respectively, due to the computation of Ψk. For
largeN (sayN ≥ 105), such complexity is still prohibitive.
To make inference feasible for large datasets, we use the
maximum a posteriori (MAP) assignment as described in
the following section.

3.2. Approximate Inference with the MAP Assignment

To motivate the use of the MAP assignment, let us come
back to the philosophy underlying this model. The experts
are independent and specialize in disjoint subsets of the
inputs, which encourages each data point to be explained
mostly by one expert. Therefore, we can assign each point
to only the expert of highest responsibility, which corre-
sponds to the MAP assignment. That is we use:

z̃n = argmax
k

rnk. (18)

Note that the responsibilities are now rnk = 1 if and only
if z̃n = k.

Once the data points are allocated to experts using the MAP
assignment, the posterior of the inducing points become
q(gk) = N (gk;µk,Σk) where

µk = K(k)
u,uΨ−1k K(Uk,Xk)

(
Λk(Xk) + σ2

kI
)−1

yk,
(19)

Σk = K(k)
u,uΨ−1k K(k)

u,u, (20)

with Xk = {xn|z̃n = k}, yk = {yn|z̃n = k} and
Ψk = K

(k)
u,u+K(Uk,Xk)(Λk(Xk)+σ2

kI)−1K(Xk,Uk).
Compared to Equation 16, any point not belonging to ex-
pert k has disappeared from the kernel matrices; this is
propagated from Γk (Equation 17) where many of rnk are
now zero.

The noise free predictive distribution for an unseen data
point x∗ is

p(f∗|x∗,y,U) ≈ p(f∗|x∗, z̃,y,U)

∝
K∑

z∗=k

p(f∗|x∗, z∗,yk,Uk)p(z∗|x∗,U),

(21)

where we used the approximation based on z̃. The predic-
tion by expert k is

p(f∗|x∗, z∗ = k,yk,Uk) = N (f∗;µ∗, σ
2
∗), where

µ∗ = κ(x∗,Uk)Ψ−1k K(Uk,Xk)(Λk(Xk) + σ2
kI)−1yk,

σ2
∗ = κ(x∗,x∗)− κ(x∗,Uk)

(
(K(k)

u,u)−1 −Ψ−1k

)
κ(Uk,x∗).

In practice, we find that the prediction by the nearest expert
is better than the weighted prediction. This is reflective of
the way we train the model: since we use MAP assignment
of data points to experts, most experts are ignorant of the
points not assigned to them. Hence prediction should be
made by the localized experts to eliminate the poor contri-
bution from the remote experts.
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The MAP assignment is also used to compute the approxi-
mate log marginal likelihood:

log p(y|z̃,U,θ,σ) =

− 1

2

K∑
k=1

log |Qk + Λk(Xk) + σ2
kI|

− 1

2

K∑
k=1

yT
k

(
Qk + Λk(Xk) + σ2

kI
)−1

yk, (22)

where Qk = κ(Xk,Uk)(K
(k)
u,u)−1κ(Uk,Xk).

The optimization proceeds iteratively as follows. In the E-
step, we calculate the MAP assignment z̃ based on Equa-
tion 14 and 18 using the new posterior mean E[gk] = µk.
The cost of this operation is O(NM2S) in computation
and O(NM/S) in memory, where we divide the dataset
into S batches to fit in the memory (typically S = K).
In the M-step, we optimize the log marginal likelihood
wrt the hyperparameters using gradient-based methods. If
each expert is assigned O(N/K) data points, this step re-
quires O(K × N

KM
2) = O(NM2) in computation and

O(NM/K) in memory.

3.3. Fast Allocation for Large-scale Inference

The O(NM2K) and O(NM/K) (taking S = K) com-
plexity of the above inference procedure arises from the
computation of the MAP assignment. However, observe
that ln ρnk (Equation 14) comprises two terms which be-
come larger as xn gets closer to the expert centroid mk.
The first term lnN (xn; mk,V) increases as the (Maha-
lanobis) distance between xn and mk decreases. The sec-
ond term measures the quality of prediction by expert k;
this is better when xn is similar to the inducing inputs of
the expert (which is more likely when xn is near mk). This
motivates us to assign points to experts based on the induc-
ing inputs, which means the MAP assignment z̃ is replaced
by:

ẑn = argmin
k

(xn −mk)TV−1(xn −mk). (23)

As we shall see in our experiments in section 4, this seem-
ingly coarse approximation works well in practice. One
explanation is that the inducing inputs are optimized to in-
crease the marginal likelihood in the M-step; thus, infor-
mation from the likelihood is effectively propagated into
the allocation step via the inducing inputs.

Using this assignment, we no longer need to compute the
right-hand side term that dominates the computation of the
MAP assignment in Equation 14. The time and memory
complexity is thus reduced to O(NM2) and O(NM/K)
respectively. Compared to traditional sparse GPs with the
same number of inducing points, i.e., B = M × K, our

model can potentially run K2 times faster using K2 times
less memory. Indeed, our experiments in Section 4.2 empir-
ically show that the model achieves the K2 or higher com-
putational speed-up while obtaining comparable predictive
performance. The fast allocation enables the model to scale
to very large datasets, such as the one we used in our exper-
iments where N = 105 training points. By setting K = 20
and M = 300, a total number of 6,000 inducing points is
easily afforded even on a standard desktop computer. In
contrast, it is simply impossible to run either standard or
traditional sparse GPs on problems of this size.

A further advantage of this approximation is the ease with
which parallel or distributed computations can be imple-
mented. This is because each term in the objective function
(Equation 22 with ẑ replacing z̃) can be computed indepen-
dently without the need for communication or synchroniza-
tion per iteration. We give an example of the computational
speed-up obtained with parallelization in Section 4.3.

4. Experiments
We perform three different sets of experiments with
datasets of varying size to demonstrate different aspects of
the model. Our main focus, however, will be on the util-
ity of this model when applied to large datasets. We use
the squared exponential (SE) covariance function with au-
tomatic relevance determination (ARD) in all experiments.
No transformation of the inputs and outputs is performed
(except for the large dataset which we detail in Section 4.3).
The initial inducing locations are randomly selected from
the inputs and the hyperparameters are initialized based on
the scale of the input features. The experiments are exe-
cuted on an Intel(R) Core(TM) i7-2600 3.40GHz CPU with
8GB of RAM using Matlab R2012a. We measure the train-
ing time as the time to learn the hyperparameters and induc-
ing inputs after initialization. Other costs such as initializa-
tion or prediction are negligible compared to the training
time. We optimize the hyperparameters using the conju-
gate gradients code in the GPML package (Rasmussen &
Nickisch, 2010) and limit the maximum number of func-
tion evaluations to 1000. The code for this paper is avail-
able at http://trungngv.github.io/fagpe/.

4.1. Toy dataset

First we evaluate the ability of the model to handle non-
stationarity in the motorcycle dataset (Silverman, 1985).
The dataset (Figure 2) contains 133 data points with input-
dependent noise. We set K = 2 experts with M = 20
inducing inputs per expert. We run the experiment 5 times
and select the configuration with the best (training) objec-
tive value. Our result is similar to that of Rasmussen &
Ghahramani (2002) (also included in Figure 2) and Yuan
& Neubauer (2009) at inputs ≤ 30. At inputs > 35, the
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Figure 2. The left hand plot shows the training data (red crosses) and the predictive mean by the model (solid black line). The right hand
plot is taken from Rasmussen & Ghahramani (2002) for comparison. The blue dots in both figures are samples (jittered for visibility) of
the noise free predictive distribution evaluated at intervals of 1ms (100 samples per point). The two red lines in the right hand plot are
the ± 2 std error confidence interval of prediction by a stationary GP.

result of Rasmussen & Ghahramani (2002) underestimates
the noise, whereas our result and that of Yuan & Neubauer
(2009) both capture the artifacts in that region. Training
time for this dataset took 30 seconds, compared to one hour
by Gibbs sampling in Rasmussen & Ghahramani (2002).

4.2. Medium-size Datasets

Next we evaluate the predictive performance and training
time of our method on three datasets: kin40k (8 dimen-
sions, 10000 training, 30000 testing), pumadyn-32nm (32
dimensions, 7168 training, 1024 testing), and pole telecom
(26 dimensions, 10000 training, 5000 testing). We use the
exact split as in Lázaro-Gredilla et al. (2010) and Snelson
& Ghahramani (2006).

Our first baseline is the FITC approximation (Quiñonero-
Candela & Rasmussen, 2005). Note that for K = 1, our
model is identical to FITC. Our second baseline is local
FITC which divides the training points into K clusters and
runs FITC on each separate cluster. Various methods can be
used to partition the dataset; here we employ k-means and
random clustering, which we refer to as the kmeans and
random method. We run each method 5 times with differ-
ent initializations and select the best configuration accord-
ing to the marginal likelihood to avoid bad local optima.
For local FITC, the objective value is approximated as the
sum of the marginals of all clusters. The total number of
inducing inputs in all experiments is 1500. We set K = 2
experts and correspondingly M = 750 inducing inputs per
expert (or cluster) for our method and also for local FITC.

The predictive performance and training time of all meth-
ods are shown in Figure 3. First we compare our method
with global FITC and see that a speed-up factor of around
K2 = 4 is indeed achieved by our method. More impor-
tantly, this significant gain comes with comparable predic-

tive performance. For the pole dataset, a small loss in accu-
racy is reversed by our method being more confident about
its prediction. Here it may be instructive to remind that our
model is equivalent to FITC when K = 1. When work-
ing at small or medium scales, we can use model selec-
tion to choose the best configuration (i.e. in terms of the
number of experts and inducing inputs) given a dataset. In
fact, the optimal setting based on the best marginal likeli-
hood is K = 1 except for pumadyn-32nm, which has many
bad local optima. However, when the computational bud-
get is limited or the dataset is too big for global FITC to
handle, the model we propose is valuable as it allows scal-
ability and efficiency while achieving good performance.
Other methods (kmeans and random) have their computa-
tional advantage over FITC countered by their prediction
loss (see Figure 3). Our model is more accurate and faster
than local FITCs because it sensibly assigns data points to
the experts, based on their inducing points, which makes
learning easier and also more effective.

4.3. Large-scale Experiments

In this section, we evaluate our model on the Million Song
Dataset (Bertin-Mahieux et al., 2011). We extract the first
105 songs from this dataset for training and keep the origi-
nal set of 51630 songs for testing. The goal is to predict the
years in which songs are released based on their 90 acoustic
features. We transform the outputs to have zero mean for all
experiments. We set K = 20 experts and M = 300 induc-
ing inputs per expert 2. Initially the data points are assigned
to experts uniformly at random or using recursive projec-
tion clustering (RPC), a clustering technique proposed in

2This choice is directed by the physical memory limit of the
benchmark computer, which we expect to be the case when deal-
ing with large datasets on a single machine.
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Figure 3. Predictive performance and training time of our method compared to FITC and local FITC with kmeans and random clustering.
The standardized mean square error (SMSE) and negative log predictive density (NLPD) averaged across all test points are reported;
smaller is better.

Chalupka et al. (2012) that is more efficient than k-means
and tends to give more balanced cluster sizes. We denote
our model with the random and RPC initialization as FGP-
RANDOM and FGP-RPC method respectively.

We evaluate our model against six other competitive base-
lines. The first baseline is the local FITC model described
in the previous section, with random or RPC assignments
of the data points to clusters. Analogous to our model, we
refer to them as FITC-RANDOM and FITC-RPC. The second
baseline (GPSVI2000) is FITC with stochastic variational
inference (Hensman et al., 2013) training using B = 2000
inducing points. Note that GPSVI has quadratic storage
complexity O(B2) which limits the total number of induc-
ing points that can be used. Unlike our model and local
FITC, the inducing locations cannot be learned and must
be selected on some ad hoc basis. In addition to random
selection, we also clustered the dataset into partitions using
RPC and k-means and used the centroids as the inducing
inputs. We obtained essentially identical results with k-
means selection so its results are reported here. The third
baseline (SOD2000) is the standard GP regression model
where a subset of 2000 data points is randomly sampled for
training and the rest is discarded. For all of these GP-based
methods, we repeat the experiments 5 times with different
initialization of parameters in the corresponding models.
We thus report their performance with means and standard
deviations over the 5 runs.

The remaining baselines include CONSTANT, which pre-
dicts the mean of the outputs; nearest neighbors with k = 1
(NN1) and k = 50 (NN50) neighbors; and linear re-
gression (LR) – these were used in Bertin-Mahieux et al.
(2011). Table 1 shows the results of all methods in terms
of the predictive accuracy (SMSE and MAE) and confi-
dence (NLPD). The CONSTANT method (mean of the out-
puts is 1998) is quite effective, but uninteresting, due to the
fact that a large portion of the the songs were released in
the recent years. The nearest neighbors methods perform

Table 1. Test performance of the models on the Million Song
Dataset. MAE is the mean absolute error and SMSE and NLPD
are as defined previously. All GP-based methods are reported with
standard deviation over 5 runs. Our method (FGP-RANDOM and
FGP-RPC) significantly outperforms all other baselines.

METHOD SMSE MAE NLPD

FGP-RANDOM 0.715 ± 0.003 6.47 ± 0.02 3.59 ± 0.01
FGP-RPC 0.723 ± 0.003 6.48 ± 0.02 3.58 ± 0.01

FITC-RANDOM 0.761 ± 0.009 6.74 ± 0.07 3.63 ± 0.03
FITC-RPC 0.832 ± 0.027 7.11 ± 0.23 3.73 ± 0.07

GPSVI2000 0.724 ± 0.005 6.53 ± 0.04 3.64 ± 0.01
SOD2000 0.794 ± 0.011 6.94 ± 0.08 3.69 ± 0.01

LR 0.770 6.846 NA
CONSTANT 1.000 8.195 NA

NN1 1.683 9.900 NA
NN50 1.332 8.208 NA

even worse than prediction using the constant mean. Lin-
ear regression does only slightly better than two of the GP-
based methods namely FITC-RPC and SOD2000. Overall
our model is significantly better than all of the competing
methods. In particular, it is more accurate (for e.g. in terms
of MAE) than all but GPSVI2000 by at least 0.27 year per
song on average. This amounts to approximately 14,000
years in total, which is clearly a meaningful improvement.
Furthermore there is noticeable difference in the log pre-
dictive density of FGP-RANDOM and FGP-RPC compared to
the rest, which can be attributed to our model having local-
ized experts. This encouraging result suggests the benefits
of our model when dealing with very large datasets com-
pared to a global function or model (like linear regression
or FITC), which may not realistically capture the charac-
teristics of the output space.

It is also interesting to discuss the trade-off between time
and accuracy of the non-trivial methods. The training time
for linear regression is only 5 seconds – embarrassingly su-
perior to the rest. Although both FGP-RANDOM and FGP-
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RPC take around 8.5 hours to train, the performance gain
is significant enough that it is worth the trade-off. Simpler
methods such as FITC-RANDOM, FITC-RPC, and SOD2000
take 19.1, 8.8, and 3.7 hours respectively despite offering
no improvement over linear regression. GPSVI2000 takes
1.6 hours to train but its predictive power is inferior to that
of our method.

Finally, we remark the small variability in performance of
both FGP-RANDOM and FGP-RPC as well as other FITC-
based methods. This demonstrates the stability of this kind
of models even under the presence of local optima. Expe-
rience tells us that local optima is generally not an issue
when the data is abundant, as is the case with this large
dataset.

4.3.1. COMPUTATIONAL SPEED-UP WITH A
MULTICORE IMPLEMENTATION

We have also implemented a parallel version for compu-
tation of the marginal likelihood and its derivatives, using
the freely available multicore package3. Note that this par-
allelization package is crude: it distributes the computation
of the objective and its derivatives of each expert to a local
MATLAB session and the sessions communicate by writ-
ing to and reading from local disks. Preliminary experi-
ments using 4 sessions (corresponding to 4 cores) give a
speed-up factor of 1.5 to 2. The speed-up factor should in-
crease if a better library/framework such as the MATLAB
Parallel Toolbox (which unfortunately requires additional
license) is used or if higher number of cores is available.

5. Related Work
Most related work has been described in the Introduction.
Here we provide further details. We first discuss the exist-
ing mixture of GP experts models (Gramacy & Lee, 2008;
Kim et al., 2005; Meeds & Osindero, 2006; Rasmussen
& Ghahramani, 2002; Tresp, 2001; Yuan & Neubauer,
2009) and their computational limits. Common to these
work is the assumption that individual experts are inde-
pendent standard GP regression models, except for Yuan &
Neubauer (2009) where each expert is a linear model that
parameterizes a GP. In Gramacy & Lee (2008); Kim et al.
(2005); Meeds & Osindero (2006); Rasmussen & Ghahra-
mani (2002) the gating networks divide the data into dis-
joint subsets and each expert is responsible for only one
subset. This constraint is also used in our model and it has
the benefit of reducing the computation for each expert to
depend only on the data points assigned to it. However,
inference in these models is burdened by the intractabil-
ity of the posterior of the latent assignments and learning
of the hyperparameters. Most of these methods use inten-

3http://mathworks.com/matlabcentral/fileexchange/13775

sive MCMC sampling which costs at least O(N2) per iter-
ation to obtain a sample. Thus, mixture of GP experts have
largely been run on small problems to demonstrate the abil-
ity to capture non-stationarity rather than scalability.

The sparse approximations for GP regression (Lawrence
et al., 2002; Seeger, 2003; Seeger et al., 2003; Smola &
Bartlett, 2001; Snelson & Ghahramani, 2006; Williams &
Seeger, 2001) are quite different from the mixture mod-
els in their philosophy. In particular, the inducing points
give rise to the statistical independence in the data, directly
determining the accuracy of the approximation. As such,
the cardinality of the inducing set must grow with the size
and dimension of the problems. However, due to the high
time and storage complexity of traditional sparse GPs and
stochastic variational inference (Hensman et al., 2013) as
a function of the number of inducing points, the inducing
set cardinality is very limited. Thus, when the data dimen-
sion grows, most data points will be supported by only a
few or even no inducing points; in other words, most in-
ducing points are irrelevant and thus wasteful to the ob-
servations remote from their neighborhoods. We call this
phenomenon the curse of inducing cardinality. On the con-
trary, our model employs localized experts, each with its
distinct set of inducing points, thereby ensuring that the
data points in different local regions are sufficiently sup-
ported. This preserves the statistical independence assump-
tion that is integral to the predictive performance of the ap-
proximation.

6. Discussion
We have presented a model underpinned by the mixture of
experts and the inducing points frameworks. However, in-
ference in our model is radically different from its mixture
counterpart, as it can handle much larger datasets. It is also
more flexible than traditional sparse GPs thanks to the lo-
calized experts in its composition that allow more complex
patterns to be represented. The effectiveness of the model
and its learning algorithm was empirically verified on 3 dif-
ferent sets of experiments, which demonstrated its scalabil-
ity and predictive power. Our results encourage the use and
development of multiple experts architectures when deal-
ing with very large datasets, which may not be adequately
modeled with a global function or process.
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