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This note provides supplementary information for the main paper. It has three parts: a) the proof
for the marginalization property of our proposed model, b) detailed derivations for our inference, and
c) equations to show how the perplexity in the experiment was computed.

1 Proof for Marginalization Property (Theorem 4)

We start with a proposition on the marginalization result for DPM with the product measure then
move on the final proof for our proposed model.

1.1 Marginalization of DPM with product measure

Let H be a measure over some measurable space (Θ,Σ). Let P be the set of all measures over (Θ,Σ),
suitably endowed with some σ-algebra. Let G ∼ DP(αH) be a draw from a Dirichlet process.

Lemma 1. Let S1 . . . Sn be n measurable sets in Σ. We form a measurable partition of Θ, a collec-
tion of disjoint measurable sets, that generate S1, . . . , Sn as follows. If S is a set, let S1 = S and
S−1 = Θ\S. Then S∗ = {

⋂n
i=1 S

ci
i |ci ∈ {1,−1}} is a partition of Θ into a finite collection of disjoint

measurable sets with the property that any Si can be written as a union of some sets in S∗. Let the
element of S∗ be A1 . . . An∗ (note n∗ ≤ 2n). Then the expectation

E
G

[G (S1) , . . . , G (Sn)] =

ˆ n∏
i=1

G (Si) DP (dG | αH) (1)

depends only on α and H(Ai). In other words, the above expectation can be written as a function
En(α,H(A1), . . . H(An∗)).

It is easy to see that since Si can always be expressed as the sum of some disjoints Ai, G (Si)
can respectively be written as the sum of some G (Ai). Furthermore, by definition of a Dirich-
let process, the vector (G (A1) , . . . , G (An∗)) distributed according to a finite Dirichlet distribution
(αH (A1) , . . . , αH (An∗)), therefore the expectation E

G
[G (Si)] depends only on α and H (Ai) (s).

Definition 2. (DPM) A DPM is a probability measure over Θn 3 (θ1, . . . , θn) with the usual product
sigma algebra Σn such that for every collection of measurable sets {(S1, . . . , Sn) : Si ∈ Σ, i = 1, . . . , n}:

DPM(θ1 ∈ S1, . . . , θn ∈ Sn|α,H) =

ˆ
G

n∏
i=1

G (Si) DP (dG | αH) (2)
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Consider two measurable spaces (Θ1,Σ1) and (Θ2,Σ2) and let (Θ,Σ) be their product space where
Θ = Θ1 ×Θ2 and Σ = Σ1 ×Σ2. We present the general theorem that states the marginal result from
a product base measure.

Proposition 3. Let H∗ be a measure over the product space Θ = Θ1 × Θ2. Let H1 be the marginal
of H∗ over Θ1 in the sense that for any measurable set A ∈ Σ1, H1 (A) = H∗ (A×Θ2). Then:

DPM
(
θ

(1)
1 ∈ S1, . . . , θ

(1)
n ∈ Sn | α,H1

)
= DPM

((
θ

(1)
1 , θ

(2)
1

)
∈ S1 ×Θ2, . . . ,

(
θ(1)
n , θ(2)

n

)
∈ Sn ×Θ2 | α,H∗

)
for every collection of measurable sets {(S1, . . . , Sn) : Si ∈ Σ1, i = 1, . . . , n}.

Proof. Since {(S1, . . . , Sn) : Si ∈ Σ1, i = 1, . . . , n} are rectangles, expanding the RHS using Definition
2 gives:

RHS =

ˆ
G (S1 ×Θ2) . . . G (Sn ×Θ2) dDP(dG|α,H∗)

Let Ti = Si ×Θ2, the above expression is the expectation of
∏
iG(Ti) when G ∼ DP (αH∗). Forming

collection of the disjoint measurable sets T ∗ = (B1 . . . Bn∗) that generates Ti, then note that Bi = Ai×
Θ2, and S∗ = (A1 . . . An∗) generates Si. By definition of H1, H1(Ai) = H∗(Ai×Θ2) = H∗(Bi). Using
the Lemma 1 above, RHS = En(α,H∗(B1) . . . H∗(Bn∗)), while LHS = En(α,H1(A1) . . . H1(An∗))
and they are indeed the same.

We note that H∗ can be any arbitrary measure on Θ and, in general, we do not require H∗ to
factorize as product measure.

1.2 Marginalization result for our proposed model

Recall that we are considering a product base-measure of the form H∗ = H ×DP(vQ0) for the group-
level DP mixture. Drawing from a DP mixture with this base measure, each realization is a pair
(θj , Qj); θj is then used to generate the context xj and Qj is used to repeatedly generate the set of
content observations wji within the group j. Specifically,

U ∼ DP (α(H ×DP(vQ0))) where Q0 ∼ DP (ηS)

(θj , Qj)
iid∼ U for j = 1, . . . , J (3)

ϕji
iid∼ Qj , for each j and i = 1, . . . , Nj

In the above, H and S are respectively base measures for context and content parameters θj and ϕji.
We start with a definition for nested Dirichlet Process Mixture (nDPM) to proceed further.

Definition 4. (nested DP mixture) A nDPM is a probability measure over ΘJ×
∑J

j=1Nj equipped with
the usual product sigma algebra ΣN1 × . . . × ΣNJ such that for every collection of measurable sets
{(Sji) : Sji ∈ Σ, j = 1, . . . , J, i = 1 . . . , Nj}:

nDPM(ϕ11 ∈ S(1)
1 , . . . , ϕ1N1 ∈ S(1)

n1
, . . . , ϕJ1 ∈ S(J)

1 , . . . , ϕJNJ
∈ S(J)

NJ
|α, v, η, S)

=

ˆ 
J∏
j=1

ˆ Nj∏
i=1

Qj

(
S

(j)
i

)
U (dQj)

DP (dU | αDP (vQ0)) DP (dQ0 | η, S)

We now state the main marginalization result for our proposed model.

Theorem 5. Given α,H and α, v, η, S, let θ = (θj : ∀j) and ϕ = (ϕji : ∀j, i) be generated as in
Eq (3). Then, marginalizing out ϕ results in DPM (θ | α,H), whereas marginalizing out θ results in
nDPM (ϕ|α, v, η, S).

Proof. First we make observation that if we can show Proposition 3 still holds when H1 is random
with H2 is fixed and vice versa, then the proof required is an immediate corollary of Proposition 3 by
letting H∗ = H1 × H2 where we first let H1 = H, H2 = DP (vQ0) to obtain the proof for the first
result, and then swap the order H1 = DP (vQ0) , H2 = H to get the second result.
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To see that Proposition 3 still holds when H2 is a random measure and H1 is fixed, we let the
product base measure H∗ = H1 × H2 and further let µ be a prior probability measure for H2, i.e,
H2 ∼ µ (·). Consider the marginalization over H2:

ˆ
H2

DPM
((
θ

(1)
1 , θ

(2)
1

)
∈ S1 ×Θ2, . . . ,

(
θ(1)
n , θ(2)

n

)
∈ Sn ×Θ2 | α,H∗

)
µ (H2)

=

ˆ
Σ2

DPM
(
θ

(1)
1 ∈ S1, . . . , θ

(1)
n ∈ Sn | α,H1

)
︸ ︷︷ ︸

constant w.r.t H2

µ (H2)

= DPM
(
θ

(1)
1 ∈ S1, . . . , θ

(1)
n ∈ Sn | α,H1

)ˆ
Σ2

µ (H2)

= DPM
(
θ

(1)
1 ∈ S1, . . . , θ

(1)
n ∈ Sn | α,H1

)
When H1 is random and H2 is fixed. Let λ (·) be a prior probability measure for H1, ie., H1 ∼ λ (·).
It is clear that Proposition 3 holds for each draw H1 from λ (·). This complete our proof.

1.3 Additional result for correlation analysis in nDPM

We now consider the correlation between ϕik and ϕjk′ for arbitrary i, j, k and k′, i.e., we need to
evaluate:

P
(
ϕik ∈ A1, ϕjk′ ∈ A2 | α, η, v, S

)
for two measurable sets A1, A2 ∈ Σ by integrating out over all immediate random measures. We use
an explicit stick-breaking representation for U where U ∼ DP (αDP (vQ0)) as follows

U =
∞∑
k=1

πkδQ∗k (4)

where π ∼ GEM (α) and Q∗k
iid∼ DP (vQ0). We use the notation δQ∗k to denote the atomic measure on

measure, placing its mass at measure Q∗k.
For i = j, we have:

P
(
ϕik ∈ A1, ϕjk′ ∈ A2 | Q1, . . . , QJ

)
= Qi (A1)Qi (A2)

Sequentially take expectation over Qi and U :

ˆ
Qi

Qi (A1)Qi (A2) dU (Qi) =

ˆ
Qi

Qi (A1)Qi (A2) d

( ∞∑
k=1

πkδQ∗k

)
=
∑
k

πk [Q∗k (A1)Q∗k (A2)]

ˆ
U

∞∑
k=1

πk [Q∗k (A1)Q∗k (A2)] dDP (U | αDP (vQ0)) = E

{∑
k

πk [Q∗k (A1)Q∗k (A2)]

}
=
∑
k

E [πk]E [Q∗k (A1)Q∗k (A2)]

=
Q0 (A1 ∩A2) +Q0 (A1)Q0 (A2)

v (v + 1)

(∑
k

E [πk]

)

=
Q0 (A1 ∩A2) +Q0 (A1)Q0 (A2)

v (v + 1)

Integrating out Q0 ∼ DP (vS) we get:
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P
(
ϕik ∈ A1, ϕjk′ ∈ A2 | α, v, η, S

)
= E

Q0|η,S

[
Q0 (A1 ∩A2) +Q0 (A1)Q0 (A2)

v (v + 1)

]
=

1

v (v + 1)

{
S (A1 ∩A2) +

S (A1 ∩A2) + S (A1)S (A2)

η (η + 1)

}
=
S (A1 ∩A2)

v (v + 1)
+
S (A1 ∩A2) + S (A1)S (A2)

v (v + 1) η (η + 1)

For i 6= j, since Qi and Qj are conditionally independent given U , we get:

P
(
ϕik ∈ A1, ϕjk′ ∈ A2 | Q1, . . . , QJ

)
= Qi (A1)Qj (A2)

Let ak = Q∗k (A1) , bk = Q∗k (A2) and using Definition (4), integrating out U conditional on Q0 with
the stick-breaking representation in Eq (4):

P
(
ϕik ∈ A1, ϕjk′ ∈ A2 | vQ0

)
=

(ˆ
U
Qi (A1) dU

)(ˆ
U
Qj (A2) dU

)
= E

[∑
k

πkQ
∗
k (A1)

][∑
k′

πk′Q
∗
k′ (A2)

]
= E (π1a1 + π2a2 + . . .) (π1b1 + π2b2 + . . .)

= E

(∑
k

π2
kakbk

)
+ E

∑
k 6=k′

πkπk′akbk′


= AE

(∑
k

π2
k

)
+BE

∑
k 6=k′

πkπk′


= A

∑
k

E
[
π2
k

]
+B

(
1−

∑
k

E
[
π2
k

])

where

A = E [akbk] = E [Q∗k (A1)Q∗k (A2)] =
Q0 (A1 ∩A2) +Q0 (A1)Q0 (A2)

v (v + 1)

and since Q∗k (s) are iid draw from DP (vQ0) we have:

B = E [akbk′ ] = E [Q∗k (A1)Q∗k′ (A2)] = E [Q∗k (A1)]E [Q∗k′ (A2)]

= Q0 (A1)Q0 (A2)

Lastly, since (π1, π2, . . .) ∼ GEM (α), using the property of its stick-breaking representation
∑

k E
[
π2
k

]
=

1
1+α . Put things together we obtain the expression for the correlation of ϕik and ϕjk′ for i 6= j condi-
tional on Q0 as:

P
(
ϕik ∈ A1, ϕjk′ ∈ A2 | vQ0

)
=
Q0 (A1 ∩A2) +Q0 (A1)Q0 (A2)

(1 + α) v (v + 1)
+

α

1 + α
Q0 (A1)Q0 (A2)

=
Q0 (A1 ∩A2)

(1 + α) v (v + 1)
+

αv (v + 1) + 1

(1 + α) v (v + 1)
Q0 (A1)Q0 (A2)

Next, integrating out Q0 ∼ DP (vS) we get:

P
(
ϕik ∈ A1, ϕjk′ ∈ A2 | α, v, η, S

)
=

αv (v + 1) + 1

(1 + α) v (v + 1)
E [Q0 (A1)Q0 (A2)] +

E [Q0 (A1 ∩A2)]

(1 + α) v (v + 1)

=
αv (v + 1) + 1

(1 + α) v (v + 1)

S (A1 ∩A2) + S (A1)S (A2)

η (η + 1)
+

S (A1 ∩A2)

(1 + α) v (v + 1)
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Figure 1: Generative (left) and stick-breaking (right) views of the proposed model.

2 Model Inference Derivations

We provide detailed derivations for model inference with the graphical model displayed in Fig 1. The
variables φk, ψm, π, τk are integrated out due to conjugacy property. We need to sample these latent
variables z, l, ε and hyper parameters α, v, η. For convenience of notation, we denote z−j is a set of
latent context variable z in all documents excluding document j, lj∗ is all of hidden variables lji in
document j, and l−j∗ is all of l in other documents rather than document j-th.

Sampling z

Sampling context index zj needs to take into account the influence of the corresponding context topics:

p(zj = k | z−j , l,x, α,H) ∝ p (zj = k | z−j , α)︸ ︷︷ ︸
CRP for context topic

p (xj | zj = k, z−j ,x−j , H)︸ ︷︷ ︸
context predictive likelihood

(5)

× p (lj∗ | zj = k, l−j∗, z−j , ε, v)︸ ︷︷ ︸
content latent marginal likelihood

The first term can easily be recognized as a form of Chinese Restaurant Process (CRP):

p (zj = k | z−j , α) =


nk
−j

n∗−j+α if kis previously used

α
n∗−j+α if kis new

where nk−j is the number of data zj = k excluding zj , and n∗−j is the count of all z, except zj .
The second expression is the predictive likelihood from the context observations under the context

component φk. Specifically, let f (· | φ) and h (·) be respectively the density function for F (φ) and
H, the conjugacy between F and H allows us to integrate out the mixture component parameter φk
, leaving us the conditional density of xj under the mixture component k given all the context data
items exclude xj :

p (xj | zj = k, z−j ,x−j , H) =

´
φk
f (xj | φk)

∏
j′ 6=j,zj′=k

f
(
xj′ | φk

)
h (φk) dφk

´
φk

∏
j′ 6=j,zj′=k

f
(
xj′ | φk

)
h (φk) dφk

=f
−xj
k (xj)
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Finally, the last term is the contribution from the multiple latent variables of corresponding topics

to that context. Since lji | zj = k
iid∼ Mult (τ k) where τ k ∼ Dir (vε1, . . . , vεM , εnew), we shall attempt

to integrate out τ k . Using the Multinomial-Dirichlet conjugacy property we proceed to compute the
last term in Eq (5) as following:

p (lj∗ | zj = k, z−j , l−j∗, ε, v) =

ˆ
τk

p (lj∗ | τ k)× p
(
τ k |

{
lj′∗ | zj′ = k, j′ 6= j

}
, ε, v

)
dτ k (6)

Recognizing the term p
(
τ k |

{
lj′∗ | zj′ = k, j′ 6= j

}
, ε, v

)
is a posterior density, it is Dirichlet-distributed

with the updated parameters

p
(
τ k |

{
lj′∗ | zj′ = k, j′ 6= j

})
=Dir

(
vε1 + c−jk,1, . . . , vεM + c−jk,M , vεnew

)
(7)

where c−jk,m =
∑

j′ 6=j
∑Nj′

i=1 I
(
lj′i = m, zj′ = k

)
is the count of topic m being assigned to context k

excluding document j. Using this result, p (lj∗ | τ k) is a predictive likelihood for lj∗ under the posterior
Dirichlet parameters τ k in Eq 7 and therefore can be evaluated to be:

p (lj∗ | zj = k, z−j , l−j∗, ε, v) =

ˆ
τk

p (lj∗ | τ k)×Dir
(
vε1 + c−jk,1, . . . , vεM + c−jk,M , vεnew

)
dτ k

=

ˆ
τk

M∏
m=1

τ
cjk,m
k,m ×

Γ
(∑M

m=1

(
vεm + c−jk,m

))
∏M
m=1 Γ

(
vεm + c−jk,m

) ×
M∏
m=1

τ
vεm+c−j

k,m−1

k,m dτ k

=
Γ
(∑M

m=1

(
vεm + c−jk,m

))
∏M
m=1 Γ

(
vεm + c−jk,m

) ×
ˆ
τk

M∏
m=1

τ
vεm+c−j

k,m+cjk,m−1

k,m dτ k

=
Γ
(∑M

m=1

(
vεm + c−jk,m

))
∏M
m=1 Γ

(
vεm + c−jk,m

) ×

∏M
m=1 Γ

(
vεm + c−jk,m + cjk,m

)
Γ
(∑M

m=1

(
vεm + c−jk,m + cjk,m

))
=

Γ
(∑M

m=1

(
vεm + c−jk,m

))
Γ
(∑M

m=1

(
vεm + c−jk,m

)
+Nj

) × M∏
m=1

Γ
(
vεm + c−jk,m + cjk,m

)
Γ
(
vεm + c−jk,m

)
=


A =

Γ(
∑

m[vεm+c−j
k,m])

Γ(
∑

m[vεm+ck,m])

∏
m

Γ(vεm+ck,m)
Γ(vεm+c−j

k,m)
if k previously used

B =
Γ(

∑
m vεm)

Γ(
∑

m vεm+Nj)

∏
m

Γ(vεm+cjk,m)
Γ(vεm) if k = knew

note that ε = (ε1, ε2, ...εM , εnew), here ε1:M = (ε1, ε2, ...εM ), when sampling zj we only use M active
components from the previous iteration. In summary, the conditional distribution to sample zj is
given as:

p (zj = k | z−j , l,x, α,H) ∝

{
nk−j × f

−xj
k (xj)×A if k previousely used

α× f−xjiknew
(xji)×B if k = knew

Implementation note: to evaluate A and B, we make use of the marginal likelihood resulted from a
Multinomial-Dirichlet conjugacy.

Sampling l

Let w−ji be the same set as w excluding wji, i.e w−ji = {wuv : u 6= j ∩ v 6= i}, then we can write

p (lji = m | l−ji, zj = k, v, w, S) ∝ p (wji | w−ji, lji = m, ρ)︸ ︷︷ ︸
content predictive likelihood

× p (lji = m | l−ji, zj = k, εm, v)︸ ︷︷ ︸
CRF for content topic

(8)
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The first argument is computed as log likelihood predictive of the content with the component ψm

p (wji | w−ji, lji = m, ρ) =

´
λm

s (wji | λm)
[∏

u∈w−ji(m) y(u | λm)
]
s(λm)dλm

´
λm

[∏
u∈w−ji(m) y (u | λm)

]
s (λm) dλm

(9)

,=y
−wji
m (wji)

And the second term is inspired by Chinese Restaurant Franchise (CRF) as:

p (lji = m | l−ji, εm, v) =

{
ck,m + vεm if mis used previously

vεnew if m = mnew

(10)

where ck,m is the number of data point |{lji|lji = m, zj = k, 1 ≤ j ≤ J, 1 ≤ i ≤ Nj}|. The final form
to sample lji is given as:

p (lji = m | l−ji, zj = k,w, v, ε) ∝

{
(ck,m + vεm)× y−wji

m (wji) if mis used previously

vεnew × y
−wji
m (wji) if m = mnew

Sampling ε

Note that sampling ε require both z and l.

p (ε | l, z, v, η) ∝ p (l | ε, v, z, η)× p (ε | η) (11)

Isolating the content variables lkji generated by the same context zj = k into one group

lkj = {lji : 1 ≤ i ≤ Nj , zj = k} the first term of 11 can be expressed following:

p (l | ε, v, z, η) =

K∏
k=1

ˆ
τk

p
(
lk∗∗ | τk

)
p (τk | ε) dτk

=
K∏
k=1

Γ(v)

Γ (v + nk∗)

M∏
m=1

Γ(vεm + nkm)

Γ(vεm)

where nk∗ = |{wji | zj = k, i = 1, ...Nj}| and nkm = |{wji | zj = k, lji = m, 1 ≤ j ≤ J, 1 ≤ i ≤ Nj , }|.
Let ηr = η

R , ηnew = R−M
R η and recall that ε ∼ Dir (ηr, . . . , ηr, ηnew), the last term of Eq 11 is a

Dirichlet density:

p (ε | η) =Dir

η1, η2, ...ηM︸ ︷︷ ︸
M

, ηnew


=

Γ(M × ηr + ηnew)

[Γ(ηr)]Mηnew

M∏
m=1

εηr−1
m εηnew−1

new

Using the result:

Γ(vεm + nkm)

Γ(vεm)
=

nkm∑
okm=0

Stirl (okm, nkm) (vεm)okm

Thus, Eq 11 becomes:

7



p (ε | l, z, v, η) =εηnew−1
new

K∏
k=1

Γ(v)

Γ (v + nk∗)

M∏
m=1

εηm−1
m

nkm∑
okm=0

Stirl (okm, nkm) (vεm)okm

=εηnew−1
new

nkm∑
okm=0

K∏
k=1

Γ(v)

Γ (v + nk∗)

M∏
m=1

εηm−1
m Stirl (okm, nkm) (vεm)okm

p (ε,o | l, z, v, η) =εηnew−1
new

K∏
k=1

Γ(v)

Γ (v + nk∗)

M∏
m=1

εηm−1
m Stirl (okm, nkm) (vεm)okm

The probability of the auxiliary variable okm is computed as:

p(okm) =

nkm∑
okm=0

Stirl (okm, nkm) (vεm)okm

Now let o = (okm : ∀k,m) we derive the following joint distribution:

p (ε | o, l, z, v, η) = εηnew−1
new

M∏
m=1

ε
∑

K okm+ηm−1
m

As R→∞, we have

p (ε | o, l, z, v, η)
∞
= εη−1

new

M∏
m=1

ε
∑

K okm−1
m

Finally, we sample ε jointly with the auxiliary variable okm by:

p (okm = h | ·) ∝ Stirl (h, nkm) (vεm)
h, h = 0, 1, . . . , nkm

p(ε) ∝ εη−1
new

M∏
m=1

ε
∑

K okm−1
m

Sampling hyperparameters

In the proposed model, there are three hyper-parameters which need to be sampled : α, v and η.

Sampling η

Using similar strategy and using technique from Escobar and West [3], we have

p (M | η, u) = Stirl (M,u) ηM
Γ (η)

Γ (η + u)

where u =
∑

m um with um =
∑

K okm is in the previous sampling ε and M is the number of active
content atoms. Let η ∼ Gamma (η1, η2). Recall that:

Γ (η)

Γ (η + u)
=

ˆ 1

0
tη (1− t)u−1

(
1 +

u

η

)
dt

that we have just introduced an auxiliary variable t

8



p (t | η) ∝ tη (1− t)u−1 = Beta (η + 1, u)

Therefore,

p (η | t) ∝ ηη1−1+M exp {−ηη2} × tη (1− t)u−1

(
1 +

u

η

)
= ηη1−1+M × exp {−η(η2 − log t)} × (1− t)u−1 + ηη1−1+M−1 exp {−η(η2 − log t)} × (1− t)u−1 u

∝ ηη1−1+M exp {−η(η2 − log t)}+ uηη1−1+M−1 exp {−η(η2 − log t)}
= πtGamma (η1 +M,η2 − log t) + (1− πt) Gamma (η1 +M − 1, η2 − log t) (12)

where πt satisfies this following equation to make the above expression a proper mixture density:

πt
1− πt

=
η1 +M − 1

u (η2 − log t)
(13)

To re-sample η, we first sample t ∼ Beta (η + 1, u), compute πt as in equation 13, and then use πt to
select the correct Gamma distribution to sample η as in Eq. 12.

Sampling α

Again sampling α is similar to Escobar et al [3]. Assuming α ∼ Gamma (α1, α2) with the auxiliary
variable t:

p (t | α,K) ∝tα1 (1− t)J−1

p (t | α,K) ∝Beta (α1 + 1, J)

J : number of document

p (η | t,K) ∼πtGamma (α1 +K,α2 − log(t)) + (1− πt)Gamma (α1 +K − 1, α2 − log(t))

where c, d are prior parameter for sampling η following Gamma distribution and πt
1−πt = α1+K−1

J(α2−log t)

Sampling v

Sampling v is similar to sampling concentration parameter in HDP [6]. Denote ok∗ =
∑

m okm, where
okm is defined previously during the sampling step for ε, nk∗ =

∑
m nkm, where nkm is the count of

|{lji | zji = k, lji = m}|. Using similar technique in [6], we write:

p (o1∗, o2∗.., oK∗ | v, n1∗, ...nK∗) =

K∏
k=1

Stirl(nk∗, ok∗)α
ok∗
0

Γ(v)

Γ (v + nk∗)

where the last term can be expressed as

Γ(v)

Γ (v + nk∗)
=

1

Γ(nk∗)

ˆ 1

0
bvk (1− bk)nk∗−1

(
1 +

nk∗
v

)
dbk

Assuming v ∼ Gamma (v1, v2), define the auxiliary variables b = (bk | k = 1, . . . ,K) , bk ∈ [0, 1] and
t = (tk | k = 1, . . . ,K) , tk ∈ {0, 1} we have

q (v, b, t) ∝ vv1−1+
∑

kMk exp {−vv1}
K∏
k=1

bvk (1− bk)Mk−1

(
Mk

v

)tk

9



We will sample the auxiliary variables bk, tk in accordance with v that are defined below:

q(bk | v) =Beta (v + 1, ok∗)

q (tk | .) =Bernoulli

(
ok∗/v

1 + ok∗/v

)
q(v | .) =Gamma

(
v1 +

∑
k

(ok∗ − tk) , v2 −
∑
k

log bk

)

3 Relative Roles of Context and Content Data

Regarding the inference of the cluster index zj (Eq. 5), to obtain the marginal likelihood (the third
term in Eq. 5) one has to integrate out the words’ topic labels lji. In doing so, it can be shown that
the sufficient statistics coming from the content data toward the inference of the topic frequencies and
the clustering labels will just be the empirical word frequency from each document. As each document
becomes sufficiently long, the empirical word frequency quickly concentrates around its mean by the
central limit theorem (CLT), so as soon as the effect of CLT kicks in, increasing document length
further will do very little in improving this sufficient statistics.

Increasing the document length will probably not hurt, of course. But to what extent it contributes
relative to the number of documents awaits a longer and richer story to be told.

We confirm this argument by varying the document length and the number of documents in the
synthetic document and see how they affect the posterior of the clustering labels. Each experiment
is repeated 20 times. We record the mean and standard deviation of the clustering performance by
NMI score. As can be seen from Fig 2, using context observation makes the model more robust in
recovering the true document clusters.

4 Perplexity Evaluation

The standard perplexity proposed by Blei et al [2], used to evaluate the proposed model as following:

perplexity
(
wTest

)
= exp

−
∑JTest

j=1 log p
(
wTest
j

)
∑JTest

j=1 NTest
j


During individual sampling iteration t, we utilize the important sampling approach [5] to compute
p (wTest). The posterior estimation of ψm in a Multinomial-Dirichlet case is defined below, note that
it can be in other types of conjugacies [4] (e.g. Gaussian-Wishart, Binomial-Poisson):

ψtm,v =
ntm,v + smooth∑V

u=1 n
t
m,v + V × smooth

τ tk,m =
ck,m + vv × εm∑M

m=1 (ck,m + vv × εm)

where ntm,v is number of times a word v, v ∈ {1, ..., V } is assigned to context topic ψm in iteration
t, and ck,m is the count of the set {wji | zj = k, lji = m, 0 ≤ j ≤ J, 0 ≤ i ≤ Nj}. There is a constant
smooth parameter [1] that influence on the count, roughly set as 0.1. Supposed that we estimate

zTest
j = k and lTest

ji = m, then the probability p
(
wTest
j

)
is computed as:

p
(
wTest
j

)
=

NTest
j∏
i=1

1

T

T∑
t=1

τ tk,mψ
t
m,wTest

ji

where T is the number of collected Gibbs samples.
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J:  number of document.
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NMI: normalized mutual information.

Note:  Document clustering performance is evaluated on the estimated document cluster z_j vs their groundtruth. 
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Figure 2: Document clustering performance with different numbers of observed words and documents.
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