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Abstract
We present a Bayesian nonparametric framework
for multilevel clustering which utilizes group-
level context information to simultaneously dis-
cover low-dimensional structures of the group
contents and partitions groups into clusters. Us-
ing the Dirichlet process as the building block,
our model constructs a product base-measure
with a nested structure to accommodate content
and context observations at multiple levels. The
proposed model possesses properties that link the
nested Dirichlet processes (nDP) and the Dirich-
let process mixture models (DPM) in an interest-
ing way: integrating out all contents results in
the DPM over contexts, whereas integrating out
group-specific contexts results in the nDP mix-
ture over content variables. We provide a Polya-
urn view of the model and an efficient collapsed
Gibbs inference procedure. Extensive experi-
ments on real-world datasets demonstrate the ad-
vantage of utilizing context information via our
model in both text and image domains.

1. Introduction

In many situations, content data naturally present them-
selves in groups, e.g., students are grouped into classes,
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classes grouped into schools, words grouped into docu-
ments, etc. Furthermore, each content group can be asso-
ciated with additional context information (teachers of the
class, authors of the document, time and location stamps).
Dealing with grouped data, a setting known as multilevel
analysis (Hox, 2010; Diez-Roux, 2000), has diverse ap-
plication domains ranging from document modeling (Blei
et al., 2003) to public health (Leyland & Goldstein, 2001).

This paper considers specifically the multilevel clustering
problem in multilevel analysis: to jointly cluster both the
content data and their groups when there is group-level
context information. By context, we mean a secondary
data source attached to the group of primary content data.
An example is the problem of clustering documents, where
each document is a group of words associated with group-
level context information such as time-stamps, list of au-
thors, etc. Another example is image clustering where vi-
sual image features (e.g. SIFT) are the content and image
tags are the context.

To cluster groups together, it is often necessary to per-
form dimensionality reduction of the content data by form-
ing content topics, effectively performing clustering of the
content as well. For example, in document clustering, us-
ing bag-of-words directly as features is often problematic
due to the large vocabulary size and the sparsity of the
in-document word occurrences. Thus, a typical approach
is to first apply dimensionality reduction techniques such
as LDA (Blei et al., 2003) or HDP (Teh et al., 2006) to
find word topics (i.e., distributions on words), then per-
form document clustering using the word topics and the
document-level context information as features. In such a
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cascaded approach, the dimensionality reduction step (e.g.,
topic modeling) is not able to utilize the context informa-
tion. This limitation suggests that a better alternative is to
perform context-aware document clustering and topic mod-
eling jointly. With a joint model, one can expect to obtain
improved document clusters as well as context-guided con-
tent topics that are more predictive of the data.

Recent work has attempted to jointly capture word top-
ics and document clusters. Parametric approaches (Xie &
Xing, 2013) are extensions of the LDA (Blei et al., 2003)
and require specifying the number of topics and clusters
in advance. Bayesian nonparametric approaches including
the nested Dirichlet process (nDP) (Rodriguez et al., 2008)
and the multi-level clustering hierarchical Dirichlet Process
(MLC-HDP) (Wulsin et al., 2012) can automatically adjust
the number of clusters. We note that none of these methods
can utilize context data.

This paper propose the Multilevel Clustering with Context
(MC2), a Bayesian nonparametric model to jointly clus-
ter both content and groups while fully utilizing group-
level context. Using the Dirichlet process as the building
block, our model constructs a product base-measure with
a nested structure to accommodate both content and con-
text observations. The MC2 model possesses properties that
link the nested Dirichlet process (nDP) and the Dirichlet
process mixture model (DPM) in an interesting way: inte-
grating out all contents results in the DPM over contexts,
whereas integrating out group-level context results in the
nDP mixture over content variables. For inference, we pro-
vide an efficient collapsed Gibbs sampling procedure for
the model.

The advantages of our model are: (1) the model automat-
ically discovers the (unspecified) number of groups clus-
ters and the number of topics while fully utilizing the con-
text information; (2) content topic modeling is informed by
group-level context information, leading to more predictive
content topics; (3) the model is robust to partially missing
context information. In our experiments, we demonstrate
that our proposed model achieves better document cluster-
ing performances and more predictive word topics in real-
world datasets in both text and image domains.

2. Related Background

There have been extensive works on clustering documents
in the literature. Due to limited scope of the paper, we
only describe works closely related to probabilistic topic
models. We note that standard topic models such as LDA
(Blei et al., 2003) or its nonparametric Bayesian counter
part, HDP (Teh et al., 2006) exploits the group structure
for word clustering. However these models do not cluster
documents.

An approach to document clustering is to employ a two-
stage process. First, topic models (e.g. LDA or HDP) are
applied to extract the topics and their mixture proportion
for each document. Then, this is used as feature input to
another clustering algorithm. Some examples of this ap-
proach include the use of LDA+Kmeans for image cluster-
ing (Elango & Jayaraman, 2005) and HDP+Affinity Propa-
gation for clustering human activities (Nguyen et al., 2013).

A more elegant approach is to simultaneously cluster doc-
uments and discover topics. The first Bayesian nonpara-
metric model proposed for this task is the nested Dirichlet
Process (nDP) (Rodriguez et al., 2008) where documents in
a cluster share the same distribution over topic atoms. Al-
though the original nDP does not force the topic atoms to
be shared across document clusters, this can be achieved by
simply introducing a DP prior for the nDP base measure.
The same observation was also made by (Wulsin et al.,
2012) who introduced the MLC-HDP, a 3-level extension
to the nDP. This model thus can cluster words, documents
and document-corpora with shared topic atoms throughout
the group hierarchy. Xie et al (Xie & Xing, 2013) recently
introduced the Multi-Grain Clustering Topic Model which
allows mixing between global topics and document-cluster
topics. However, this is a parametric model which requires
fixing the number of topics in advance. More crucially, all
of these existing models do not attempt to utilize group-
level context information.

Modelling with Dirichlet Process

We provide a brief account of the Dirichlet process and its
variants. The literature on DP is vast and we refer to (Hjort
et al., 2010) for a comprehensive account. Here we focus
on DPM, HDP and nDP which are related to our work.

Dirichlet process (Ferguson, 1973) is a basic building block
in Bayesian nonparametrics. Let (Θ,B, H) be a probabil-
ity measure space, and γ is a positive number, a Dirichlet
process DP (γ,H) is a distribution over discrete random
probability measure G on (Θ,B). Sethuraman (Sethura-
man, 1994) provides an alternative constructive definition
which makes the discreteness property of a draw from a
Dirichlet process explicit via the stick-breaking representa-
tion: G =

∑∞
k=1 βkδφk

where φk
iid∼ H, k = 1, . . . ,∞

and β = (βk)
∞
k=1 are the weights constructed through

a ‘stick-breaking’ process βk = vk
∏
s<k (1− vs) with

vk
iid∼ Beta (1, γ). It can be shown that

∑∞
k=1 βk = 1 with

probability one, and as a convention (Pitman, 2002), we
hereafter write β ∼ GEM (γ).

Due to its discrete nature, Dirichlet process has been widely
used in Bayesian mixture models as the prior distribution
on the mixing measures, each is associated with an atom
φk in the stick-breaking representation of G above. A like-
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lihood kernel F (·) is used to generate data xi | φk
iid∼

F (· | φk), resulting in a model known as the Dirichlet pro-
cess mixture model (DPM), pioneered by the work of (An-
toniak, 1974) and subsequently developed by many others.
In section 3 we provide a precise definition for DPM.

While DPM models exchangeable data within a single
group, the Dirichlet process can also be constructed hi-
erarchically to provide prior distributions over multiple
exchangeable groups. Under this setting, each group is
modelled as a DPM and these models are ‘linked’ to-
gether to reflect the dependency among them – a formal-
ism which is generally known as dependent Dirichlet pro-
cesses (MacEachern, 1999). One particular attractive ap-
proach is the hierarchical Dirichlet processes (Teh et al.,
2006) which posits the dependency among the group-level
DPM by another Dirichlet process, i.e., Gj | α,G0 ∼
DP (α,G0) and G0 | γ,H ∼ DP (γ,H) where Gj is the
prior for the j-th group, linked together via a discrete mea-
sure G0 whose distribution is another DP.

Yet another way of using DP to model multiple groups is to
construct random measure in a nested structure in which the
DP base measure is itself another DP. This formalism is the
nested Dirichlet Process (Rodriguez et al., 2008), specifi-
cally Gj

iid∼ U where U ∼ DP (α× DP (γH)). Modeling
Gj (s) hierarchically as in HDP and nestedly as in nDP
yields different effects. HDP focuses on exploiting statis-
tical strength across groups via sharing atoms φk (s), but
it does not partition groups into clusters. This statement is
made precisely by noting that P (Gj = Gj′) = 0 in HDP.
Whereas, nDP emphasizes on inducing clusters on both ob-
servations and distributions, hence it partitions groups into
clusters. To be precise, the prior probability of two groups
being clustered together is P (Gj = Gj′) = 1

a+1 . Finally
we note that this original definition of nDP in (Rodriguez
et al., 2008) does not force the atoms to be shared across
clusters of groups, but this can be achieved by simply in-
troducing a DP prior for the nDP base measure, a modifi-
cation that we use in this paper. This is made clearly in our
definition for nDP mixture in section 3.

3. Multilevel Clustering with Contexts

3.1. Model description and stick-breaking

Consider data presented in a two-level group structure as
follows. Denote by J the number of groups; each group
j contains Nj exchangeable data points, represented by
wj =

{
wj1, wj2, . . . , wjNj

}
. For each group j, the group-

specific context data is denoted by xj . Assuming that the
groups are exchangeable, the overall data is {(xj ,wj)}Jj=1.
The collection {w1, . . . ,wJ} represents observations of
the group contents, and {x1, . . . , xJ} represents observa-

Figure 1. Graphical model representation for the proposed model.
Right figure illustrates a stick breaking representation.

tions of the group-level contexts.

We now describe the generative process of MC2 that gen-
erates a two-level clustering of this data. We use a group-
level DP mixture to generate an infinite cluster model for
groups. Each group cluster k is associated with an atom
having the form of a pair (φk, Q

∗
k) where φk is a parame-

ter that generates the group-level contexts within the clus-
ter and Q∗k is a measure that generates the group contents
within the same cluster.

To generate atomic pairs of context parameter and measure-
valued content parameter, we introduce a product base-
measure of the form H ×DP(vQ0) for the group-level DP
mixture. Drawing from a DP mixture with this base mea-
sure, each realization is a pair (θj , Qj); θj is then used to
generate the context xj and Qj is used to repeatedly pro-
duce the set of content observations wji within the group j.
Specifically,

U ∼ DP (α(H × DP(vQ0))) where Q0 ∼ DP (ηS)

(θj , Qj)
iid∼ U for each group j (1)

xj ∼ F (.|θj), ϕji
iid∼ Qj , wji ∼ Y (.|ϕji)

In the above, H and S are respectively base measures for
context and content parameters θj and ϕji. The context and
content observations are then generated via the likelihood
kernels F (· | θj) and Y (· | ϕji). To simplify inference, H
and S are assumed to be conjugate to F and Y respectively.
The generative process is illustrated in Figure 1.

STICK-BREAKING REPRESENTATION

We now derive the stick-breaking construction for MC2

where all the random discrete measures are specified by a
distribution over integers and a countable set of atoms. The
random measure U in Eq. (1) has the stick-breaking form:

U =

∞∑
k=1

πkδ(φk,Q∗k) (2)
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where π ∼ GEM (α) and (φk, Q
∗
k)

iid∼ H × DP (vQ0).
Equivalently, this means φk is drawn i.i.d. from H and Q∗k
drawn i.i.d. from DP (vQ0). Since Q0 ∼ DP (ηS), Q0 and
Q∗k have the standard HDP (Teh et al., 2006) stick-breaking

forms: Q0 =
∑∞
m=1 εmδψm

where ε ∼ GEM(η), ψm
iid∼ S;

Q∗k =
∑∞
m=1 τk,mδψm

where τ k = (τk1, τk2, . . .) ∼
DP (v, ε).

For each group j we sample the parameter pair (θj , Qj)
iid∼

U ; equivalently, this means drawing zj
iid∼ π and letting

θj = φzj and Qj = Q∗zj . For the i-th content data within

the group j, the content parameter ϕji is drawn iid∼ Qj =

Q∗zj ; equivalently, this means drawing lji
iid∼ τzj and letting

ϕji = ψlji . Figure 1 presents the graphical model of this
stick-breaking representation.

3.2. Inference and Polya Urn View

We use collapsed Gibbs sampling, integrating out φk(s),
ψm(s), π and τk (s). Latent variables z, l, ε and the hyper-
parameters α, v, η will be resampled. We only describe
the key inference steps in sampling z, l and ε here and re-
fer to the supplementary material (Nguyen et al., 2014) for
the rest of the details (including how to sample the hyper-
parameters).

Sampling z. The required conditional distribution is
p(zj = k | z−j , l,x, α,H) ∝

p (zj = k|z−j , α) p (xj |zj = k, z−j ,x−j , H)

× p (lj∗|zj = k, l−j∗, z−j , ε, v)

The first term can be recognized as a form of the Chinese
restaurant process (CRP). The second term is the predic-
tive likelihood for the context observations under the com-
ponent φk after integrating out φk. This can be evalu-
ated analytically due to conjugacy of F and H . The last
term is the predictive likelihood for the group content-index
lj∗ = {lji|i = 1 . . . Nj}. Since lji | zj = k

iid∼ Mult (τ k)
where τ k ∼ Dir (vε1, . . . , vεM , εnew), the last term can
also be evaluated analytically by integrating out τ k using
the Multinomial-Dirichlet conjugacy property.

Sampling l. Let w−ji be the same set as w exclud-
ing wji, let w−ji(m) = {wj′i′ |(j′i′) 6= (ji) ∧ lj′i′ = m}
and l−ij(k) = {lj′i′ |(j′i′) 6= (ji) ∧ zj′ = k}. Then
p (lji = m | l−ji, zj = k, z−j , v,w, ε, S) ∝

p(wji|l, w−ji, S) p(lji = m|l−ji, zj = k, z−j , ε, v)

=p (wji | w−ji(m), S) p (lji = m | l−ji(k), ε, v)

The first term is the predictive likelihood under mixture
component ψm after integrating out ψm, which can be eval-
uated analytically due to the conjugacy of Y and S. The

second term is in the form of a CRP similar to the one that
arises during inference for HDP (Teh et al., 2006).

Sampling ε. Sampling ε requires information from both z
and l.

p (ε | l, z, v, η) ∝ p (l | ε, v,z, η)× p (ε | η) (3)

Using a similar strategy in HDP, we introduce auxiliary
variables (okm), then alternatively sample together with ε:

p (okm = h | ·) ∝ Stirl (h, nkm) (vεm)h, h = 0, 1, . . . , nkm

p (ε | ·) ∝ εη−1new

M∏
m=1

ε
∑

k okm−1
m

where Stirl (h, nkm) is the Stirling number of the first kind,
nkm is the count of seeing the pair (zj = k, lji = m) :
∀i, j, and finally M is the current number of active con-
tent topics. It clear that okm can be sampled from a Multi-
nomial distribution and ε from an (M + 1)-dim Dirichlet
distribution.

POLYA URN VIEW

Our model exhibits a Polya-urn view using the analogy of
a fleet of buses, driving customers to restaurants. Each bus
represents a group and customers on the bus are data points
within the group. For each bus j, zj acts as the index to the
restaurant for its destination. Thus, buses form clusters at
their destination restaurants according to a CRP: a new bus
drives to an existing restaurant with the probability propor-
tional to the number of other buses that have arrived at that
restaurant, and with probability proportional to α, it goes
to a completely new restaurant.

Once all the buses have delivered customers to the restau-
rants, all customers at the restaurants start to behave in
the same manner as in a Chinese restaurant franchise
(CRF) process: customers are assigned tables accord-
ing to a restaurant-specific CRP; tables are assigned with
dishes ψm (representing the content topic atoms) accord-
ing to a global franchise CRP. In addition to the usual
CRF, at restaurant k, a single dessert φk (which represents
the context-generating atom, drawing iid∼ from H) will be
served to all the customers at that restaurant. Thus, ev-
ery customer on the same bus j will be served the same
dessert φzj . We observe three sub-CRPs, corresponding to
the three DP(s) in our model: the CRP at the dish level is
due to the DP (ηS), the CRP forming tables inside each
restaurant is due to the DP(vQ0), and the CRP aggregating
buses to restaurants is due to the DP (α(H × DP(vQ0))).

3.3. Marginalization property

We study marginalization property for our model when ei-
ther the content topics ϕji (s) or context topics θj (s) are
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marginalized out. Our main result is established in Theo-
rem 3 where we show an interesting link to nested DP and
DPM via our model.

Let H be a measure over some measurable spaces (Θ,Σ).
Let P be the set of all measures over (Θ,Σ), suitably
endowed with some σ-algebra. Let G ∼ DP(αH) and
θi

iid∼ G. The collection (θi) then follows the DP mixture
distribution which is defined formally below.

(DPM) A DPM is a probability measure over Θn 3
(θ1, . . . , θn) with the usual product sigma algebra
Σn such that for every collection of measurable sets
{(S1, . . . , Sn) : Si ∈ Σ, i = 1, . . . , n}:

DPM(θ1 ∈ S1, . . . , θn ∈ Sn|α,H)

=

∫ n∏
i=1

G (Si) DP (dG | αH)

We now state a result regarding marginalization of draws
from a DP mixture with a joint base measure. Consider two
measurable spaces (Θ1,Σ1) and (Θ2,Σ2) and let (Θ,Σ) be
their product space where Θ = Θ1×Θ2 and Σ = Σ1×Σ2.
Let H∗ be a measure over the product space Θ = Θ1×Θ2

and let H1 be the marginal of H∗ over Θ1 in the sense that
for any measurable set A ∈ Σ1, H1 (A) = H∗ (A×Θ2).
Then drawing (θ

(1)
i , θ

(2)
i ) from a DP mixture with base

measure αH and marginalizing out (θ
(2)
i ) is the same as

drawing (θ
(1)
i ) from a DP mixture with base measure H1.

Formally

Proposition 1. Denote by θi the pair
(
θ
(1)
i , θ

(2)
i

)
, there

holds

DPM
(
θ
(1)
1 ∈ S1, . . . , θ

(1)
n ∈ Sn | αH1

)
= DPM (θ1 ∈ S1 ×Θ2, . . . , θn ∈ Sn ×Θ2 | αH∗)

for every collection of measurable sets
{(S1, . . . , Sn) : Si ∈ Σ1, i = 1, . . . , n}.
Proof. see supplementary material (Nguyen et al., 2014).

Next we give a formal definition for the nDP mixture:
ϕji

iid∼ Qj , Qj
iid∼ U , U ∼ DP(αDP(vQ0)), Q0 ∼

DP (ηS).
Definition 2. (nested DP Mixture) An nDPM is a probabil-
ity measure over Θ

∑J
j=1Nj 3 (ϕ11, . . . , ϕ1N1

, . . . , ϕJNJ
)

equipped with the usual product sigma algebra ΣN1 ×
. . .×ΣNJ such that for every collection of measurable sets
{(Sji) : Sji ∈ Σ, j = 1, . . . , J, i = 1 . . . , Nj}:

nDPM(ϕji ∈ Sji,∀i, j|α, v, η, S)

=

∫ ∫ 
J∏
j=1

∫ Nj∏
i=1

Qj (Sji)U (dQj)


× DP (dU | αDP (vQ0)) DP (dQ0 | η, S)

We now have the sufficient formalism to state the marginal-
ization result for our model.

Theorem 3. Given α,H and α, v, η, S, let θ = (θj : ∀j)
and ϕ = (ϕji : ∀j, i) be generated as in Eq (1). Then,
marginalizing out ϕ results in DPM (θ | α,H), whereas
marginalizing out θ results in nDPM (ϕ|α, v, η, S).

Proof. We sketch the main steps, supplementary material
(Nguyen et al., 2014) provides more detail. LetH∗ = H1×
H2, we note that when eitherH1 orH2 are random, a result
similar to Proposition 1 still holds by taking the expectation
on both sides of the equality. Now let H1 = H and H2 =
DP (vQ0) where Q0 ∼ DP(ηS) yields the proof for the
marginalization of ϕ; let H1 = DP (vQ0) and H2 = H
yields the proof for the marginalization of θ.

4. Experiments

We first evaluate the model via simulation studies, then
demonstrate its applications on text and image modeling
using three real-world datasets. Throughout this section,
unless explicitly stated, discrete data is modeled by Multi-
nomial with Dirichlet prior, while continuous data is mod-
eled by Gaussian (unknown mean and unknown variance)
with Gaussian-Gamma prior.

4.1. Simulation studies

The main goal is to investigate the posterior consistency of
the model, i.e., its ability to recover the true group clus-
ters, context distribution and content topics. To synthesize
the data, we use M = 13 topics which are the 13 unique
letters in the ICML string “INTERNATIONAL CONFER-
ENCE MACHINE LEARNING”. Similar to (Griffiths &
Steyvers, 2004), each topic ψm is a distribution over 35
words (pixels) and visualized as a 7× 5 binary image. We
generate K = 4 clusters of 100 documents each. For each
cluster, we choose a set of topics corresponding to letters
in the each of 4 words in the ICML string. The topic mix-
ing distribution τk is an uniform distribution over the cho-
sen topic letters. Each cluster is also assigned a context-
generating univariate Gaussian distribution. These gener-
ating parameters are shown in Figure 2 (left). Altogether
we have J = 400 documents; for each document we sam-
ple Nj = 50 words and a context variable xj drawing from
the cluster-specific Gaussian.

We model the word wji with Multinomial and Gaussian
for context xj . After 100 Gibbs iterations, the number of
context and content topics (K = 4,M = 13) are recov-
ered correctly: the learned context atoms φk and topic ψm
are almost identical to the ground truth (Figure 2, right)
and the model successfully identifies the 4 clusters of doc-
uments with topics corresponding to the 4 words in the
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Figure 2. Results from simulation study. Left: illustration of data generation with ground truth for context atoms are 4 univariate
Gaussians centered at 2, 4, 6 and 8 respectively (different variances). Right: Our model recovers the correct 4 group clusters, their
context distributions and the set of shared topics. LDA and HDP are unable to recover the true content topics without using contexts.

ICML string.

To demonstrate the importance of context observation, we
then run LDA and HDP with only the word observations
(ignoring context) where the number of topic of LDA is set
to 13. As can be seen from Figure 2 (right), LDA and HDP
have problems in recovering the true topics. They cannot
distinguish small differences between the overlapping char-
acter topics (e.g M vs N, or I vs T). Further analysis of the
role of context in MC2 is provided in supplementary mate-
rial (Nguyen et al., 2014) due to lacking of space.

4.2. Experiments with Real-World Datasets

We use two standard NIPS and PNAS text datasets, and the
NUS-WIDE image dataset.

NIPS contains 1,740 documents with vocabulary size
13,649 (excluding stop words); timestamps (1987-1999),
authors (2,037) and title information are available and used
as group-level context. PNAS contains 79,800 documents,
vocab size = 36,782 with publication timestamp (915-
2005). For NUS-WIDE we use a subset of the 13-class ani-
mals 1 comprising of 3,411 images (2,054 images for train-
ing and 1357 images for testing) with off-the-shelf features
including 500-dim bag-of-word SIFT vector and 1000-dim
bag-of-tag annotation vector.

Text Modeling with Document-Level Contexts
We use NIPS and PNAS datasets with 90% for training and
10% for held-out perplexity evaluation. We compare the
perplexity with HDP (Teh et al., 2006) where no group-
level context can be used, and npTOT (Dubey et al., 2012)
where only timestamp information can be used. We note
that unlike our model, npTOT requires replication of docu-
ment timestamp for every word in the document, which is

1downloaded from http://www.ml-thu.net/˜jun/data/

somewhat unnatural.

We use perplexity score (Blei et al., 2003) on
held-out data as performance metric, defined as2

exp
{
−
∑J
j=1 log p

(
wtest
j | xtrain,wtrain

)
/
(∑

j N
test
j

)}
.

To ensure fairness and comparable evaluation, only words
in held-out data is used to compute the perplexity. We
use univariate Gaussian for timestamp and Multinomial
distributions for words, tags and authors. We ran collapsed
Gibbs for 500 iterations after 100 burn-in samples.

Table 1 shows the results where MC2 achieves signifi-
cant better performance. This shows that group-level con-
text information during training provide useful guidance
for the modelling tasks. Regarding the informative aspect
of group-level context, we achieve better perplexity with
timestamp information than with titles and authors. This
may be explained by the fact that 1361 authors (among
2037) show up only once in the data while title provides
little additional information than what already in that ab-
stracts. Interestingly, without the group-level context infor-
mation, our model still predicts the held-out words better
than HDP. This suggests that inducing partitions over doc-
uments simultaneously with topic modelling is beneficial.

Beyond the capacity of HDP and npTOT, our model can
induce clusters over documents (value of K in Table 1).
Figure 3 shows an example of one such document cluster
discovered from NIPS data with authors as context.

Our proposed model also allows flexibility in deriving use-
ful understanding into the data and to evaluate on its pre-
dictive capacity (e.g., who most likely wrote this article,
which authors work in the same research topic and so on).
Another possible usage is to obtain conditional distribu-

2Supplementary material (Nguyen et al., 2014) provides fur-
ther details on how to derive this score from our model
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Method
Perplexity (on words only)

Feature used
PNAS (K,M) NIPS (K,M)

HDP (Teh et al., 2006) 3027.5 (−, 86) 1922.1 (−, 108) words
npTOT (Dubey et al., 2012; Phung et al., 2012) 2491.5 (−, 145) 1855.33 (−, 94) words+timestamp

MC2 without context 1742.6 (40, 126) 1583.2 (19, 61) words
MC2 with titles – – 1393.4 (32, 80) words+title

MC2 with authors – – 1246.3 (8, 55) words+authors
MC2 with timestamp 895.3 (12, 117) 984.7 (15, 95) words+timestamp

Table 1. Perplexity evaluation on PNAS and NIPS datasets. (K,M) is (#cluster,#topic). (Note: missing results are due to title and author
information not available in PNAS dataset).

Jordan.M Ghahramani.Z

Jaakkola.T Cohn.D Wolpert.D Meila.M

On the use of evidence in neural networks [1993]

Supervised Learning from Incomplete Data via an EM [1994]

Fast Learning by Bounding Likelihoods in ... Networks [1996]

Factorial Hidden Markov Models [1997]

Estimating Dependency Structure as a Hidden Variable [1998]

Maximum Entropy Discrimination [1999]

recognition hidden likelihood trained

word data classifier propagation net em

data context recognition probability

state images models clustering hmm mlp

time methods approximation step

learning update bound convergence bayesian input

Figure 3. An example of document cluster from NIPS. Top: dis-
tribution over authors. Middle: examples of paper titles. Bottom:
examples of word topics in this cluster.

tions among context topics φk (s) and content topics ψm
(s). For example if the context information is timestamp,
the model immediately yields the distribution over time for
a topic, showing when the topic rises and falls. Figure 4
illustrates an example of a distribution over time for a con-
tent topic discovered from PNAS dataset where timestamp
was used as context. This topic appears to capture a con-
genital disorder known as Albinism. This distribution illus-
trates research attention to this condition over the past 100
years from PNAS data. To seek evidence for this result, we
search the term “Albinism” in Google Scholar, using the
top 50 searching results and plot the histogram over time in
the same figure. Surprisingly, we obtain a very close match
between our results and the results from Google Scholar as
evidenced in the figure.

Image Clustering with Image-Level Tags
We evaluate the clustering capacity of MC2 using contexts

albinism elution losses photoproducts

rubrum anaplasma coxsackievirus did distinguished don

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
0

0.02

0.04

Year

 

 

Google Scholar output
Our result

Figure 4. Topic Albinism discovered from PNAS dataset and its
conditional distribution over time using our model; plotted to-
gether with results independently searched from Google Scholar
using the top 50 hits.

Method Perplexity Feature used
HDP 175.62 SIFT

MC2 without context 162.74 SIFT
MC2 with context 152.32 Tags+SIFT

Table 2. NUS-WIDE dataset. Perplexity is evaluated on SIFT fea-
ture.

on an image clustering task. Our dataset is NUS-WIDE
described earlier. We use bag-of-word SIFT features from
each image for its content. Since each image in this dataset
comes with a set of tags, we exploit them as context infor-
mation, hence each context observation xj is a bag-of-tag
annotation vector.

First we perform the perplexity evaluation for this dataset
using a similar setting as in the previous section. Table
2 presents the results where our model again outperforms
HDP even when no context (tags) is used for training.

Next we evaluate the clustering quality of the model using
the provided 13 classes as ground truth. We report per-
formance on four well-known clustering evaluation met-
rics: Purity, Normalized Mutual Information (NMI), Rand-
Index (RI), and Fscore (detailed in (Rand, 1971; Cai et al.,
2011)). We use the following baselines for comparison:
• Kmeans and Non-negative Matrix Factorization

(NMF)(Lee & Seung, 1999). For these methods, we
need to specify the number of clusters in advance,
hence we vary this number from 10 to 40. We then
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Figure 5. Clustering performance measured in purity, NMI, Rand-
Index and F-score using NUS-WIDE dataset.
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Figure 6. Projecting 7 discovered clusters (among 28) on 2D us-
ing t-SNE (Van der Maaten & Hinton, 2008).

report the min, max, mean and standard deviation.

• Affinity Propagation (AP) (Frey & Dueck, 2007): AP
requires a similarity score between two documents
and we use the Euclidean distance for this purpose.

• Hierarchical Dirichlet Process (HDP) + AP: we first
run HDP using content observations, and then ap-
ply Affinity Propagation with similarity score derived
from the symmetric KL divergence between the mix-
ture proportions from two documents.

Figure 5 shows the result in which our model consistently
delivers highest performance across all four metrics. For
purity and NMI, our model beats all by a wide margin.

To gain some understanding on the clusters of images in-
duced by our model, we run t-SNE (Van der Maaten & Hin-
ton, 2008), projecting the feature vectors (both content and
context) onto a 2D space. For visual clarity, we randomly
select 7 out of 28 clusters and display in Figure 6 where it
can be seen that they are reasonably well separated.

Effect of partially observed and missing data

Missing and unlabelled data is commonly encountered in
practical applications. Here we examine the effect of con-
text observability on document clustering performance. To
do so, we again use the NUS-WIDE 13-animal subset
as described previously, then vary the amount of observ-
ing context observation xj with missing proportion ranges
from 0% to 100%.

Missing (%) Purity NMI RI F-score
0 % 0.407 0.298 0.901 0.157
25 % 0.338 0.245 0.892 0.149
50 % 0.320 0.236 0.883 0.137
75 % 0.313 0.187 0.860 0.112

100 % 0.306 0.188 0.867 0.119

Table 3. Clustering performance with different missing propor-
tion of context observation xj .

Table 3 reports the result. We make two observations: a)
utilizing context results in a big performance gain as evi-
denced in the difference between the top and bottom row
of the table, and b) as the proportion of missing context
starts to increase, the performance degrades gracefully up
to 50% missing. This demonstrates the robustness of model
against the possibility of missing context data.

5. Conclusion

We have introduced an approach for multilevel clustering
when there are group-level context information. Our MC2

provides a single joint model for utilizing group-level con-
texts to form group clusters while discovering the shared
topics of the group contents at the same time. We provide a
collapsed Gibbs sampling procedure and perform extensive
experiments on three real-world datasets in both text and
image domains. The experimental results using our model
demonstrate the importance of utilizing context informa-
tion in clustering both at the content and at the group level.
Since similar types of contexts (time, tags, locations, ages,
genres) are commonly encountered in many real-world data
sources, we expect that our model will also be further ap-
plicable in other domains.

Our model contains a novel ingredient in DP-based
Bayesian nonparametric modeling: we propose to use
a base measure in the form of a product between a
context-generating prior H and a content-generating prior
DP(vQ0). Doing this results in a new model with one
marginal being the DPM and another marginal being the
nDP mixture, thus establishing an interesting bridge be-
tween the DPM and the nDP. Our product base measure
construction can be generalized to yield new models suit-
able for data presenting in more complicated nested group
structures (e.g., more than 2-level deep).
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