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Abstract

Support Vector Machines (SVM) is among the
most popular classification techniques in ma-
chine learning, hence designing fast primal SVM
algorithms for large-scale datasets is a hot topic
in recent years. This paper presents a new L2-
norm regularized primal SVM solver using Aug-
mented Lagrange Multipliers, with linear com-
putational cost for Lp-norm loss functions. The
most computationally intensive steps (that de-
termine the algorithmic complexity) of the pro-
posed algorithm is purely and simply matrix-by-
vector multiplication, which can be easily paral-
lelized on a multi-core server for parallel com-
puting. We implement and integrate our algo-
rithm into the interfaces and framework of the
well-known LibLinear software toolbox. Experi-
ments show that our algorithm is with stable per-
formance and on average faster than the state-
of-the-art solvers such as SVMperf , Pegasos and
the LibLinear that integrates the TRON, PCD and
DCD algorithms.

1. Introduction

Because most areas of science, simulations and experi-
ments are flooded with big data, there is an urgent need
to develop large-scale data classification techniques. As
one of the most widely used classification methods, the
fast algorithm to solve Support Vector Machines (SVM)
is desired. Givenn instance-label pairs (xi, yi), 1≤i≤n,
xi ∈ ℜd, yi ∈ {−1,+1}, the L2-norm regularized SVM
in the primal form aims to optimize the following uncon-
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strained problem:

min
w,b

1

2
wTw + C

n
∑

i=1

loss
(

wTxi + b, yi
)

(1)

where the support vectorw ∈ ℜd and the intercept (i.e. bias
term) b ∈ ℜ are the variables;loss (u, v) is a loss func-
tion measuring the difference between two scalarsu ∈ ℜ
and v ∈ ℜ; C ∈ ℜ is the weight adjusting the impor-
tance between the regularization termwTw and the loss

term
n
∑

i=1

loss
(

wTxi + b, yi
)

.

If the loss function is selected to be the hinge loss function
loss (u, v) = max(1 − uv, 0), the problem becomes the
L2-norm regularized L1-norm loss primal SVM, a.k.a L1-
primal SVM in some literature:

min
w,b

1

2
wTw + C

n
∑

i=1

(

1− (wTxi + b)yi
)

+
, (2)

where the operator(u)+
def
=max(u, 0) returns the input

scalaru ∈ ℜ unchanged ifu is non-negative, and zero oth-
erwise. Such notation is for better readability.

If the loss function is selected to be the squared hinge loss
function loss (u, v) = max(1 − uv, 0)2, the problem be-
comes the L2-norm regularized L2-norm loss primal SVM,
a.k.a L2-primal SVM:

min
w,b

1

2
wTw + C

n
∑

i=1

(

1− (wTxi + b)yi
)2

+
. (3)

Primal SVM is attractive, partly due to the fact that it as-
sures a continuous decrease in the primal objective function
(Keerthi & DeCoste, 2005). Designing fast primal SVM
solvers for large-scale datasets is a hot and important topic
in recent years: The method in (Mangasarian & Musicant,
2001) was proposed, but it need compute the inverse of a
matrix with size of(d+1)∗ (d+1) and is slower than later
proposed solvers. (Mangasarian, 2002) and (Keerthi & De-
Coste, 2005) proposed modified Newton methods to train
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L2-primal SVM. As Eq.(3) is not 2nd order differentiable,
to obtain the Newton direction, they have to use the gen-
eralized Hessian matrix (i.e. generalized 2nd order deriva-
tive), which is not efficient enough. To overcome this limi-
tation, a Trust RegiOn Newton method (TRON) (Lin et al.,
2008) was proposed to solve L2-primal SVM and logistic
regression. The toolbox SVMperf (Joachims, 2006) used
a cutting plane technique to solve L1-primal SVM. (Smola
et al., 2008) applied bundle methods, and viewed SVMperf

as a special case. (Zhang, 2004) proposed a Stochastic Gra-
dient Descent (SGD) method for primal SVM with any type
of loss functions; Pegasos (Shalev-Shwartz et al., 2007) ex-
tended Zhang’s work and developed an algorithm which al-
ternates between stochastic gradient descent steps and pro-
jection steps with better performance than SVMperf . An-
other stochastic gradient implementation similar to Pega-
sos was published in (Bottou, 2007). More recently the
L2-primal SVM is solved by the PCD (Primal Coordinate
Descent) algorithm (Chang et al., 2008) with coordinate de-
scent methods.

All algorithms discussed above are iterative, which update
w at each iteration. Based on this understanding, it is nat-
urally to find that, there is a tradeoff between the compu-
tational cost spent in each iteration and the number of it-
erations needed (Lin et al., 2008). Pegasos randomly sub-
samples a few instances at a time, so its cost per iteration
is low, but the number of iterations is high. Contrastively,
Newton methods such as the TRON method spends con-
siderable amount of time per iteration, but converges at
fast rates. The DCD (Dual Coordinate Descent) algorithm
(Hsieh et al., 2008) bypasses the operation to maintain gra-
dients at each iteration in the PCD (Chang et al., 2008),
and lowers the algorithmic complexity per iteration from
O(nd̄) to O(d̄) in linear SVM cases, wherēd is the aver-
age number of nonzero elements per instance. However,
such reduction in complexity does not apply for nonlinear
SVM with kernels. Moreover, as shown in our experiments
(see§4), the convergence of the DCD may be extremely
lengthy for some datasets. In large-scale scenarios, usu-
ally an approximate solution of the optimization problem is
enough to produce a good model (Lin et al., 2008; Chang
et al., 2008; Hsieh et al., 2008). Thus, methods with a low-
cost iteration are preferred as they can quickly generate a
reasonable model. However, if one specifies an unsuitable
stopping condition, such methods may fall into the situa-
tion of lengthy iterations. To address these issues, we pro-
pose a new SVM solver using Augmented Lagrange Multi-
pliers (ALM) with simple matrix-by-vector multiplication
per iteration, linear computational cost, and provable con-
vergence.

The rest of the manuscript is organized as follows: Section
2 presents our proposed algorithm; Section 3 analyzes its
optimality and convergence; experimental results are given

in Section 4; Section 5 contains the concluding remarks.

2. Proposed Algorithm

For ease of notation and better extensibility, we first unify
Eq.(2) and Eq.(3), and generalize them to minimize the ob-
jective function of the Lp-primal SVM:

obj(w, b) =
1

2
wTw + C

n
∑

i=1

(

1−(wT xi+b)yi
)p

+
, (4)

wherep ∈ ℜ is a constant and typically 1≤p≤2 for be-
ing meaningful. A fundamental difficulty in both L2- and
L1-primal SVM is that, their loss functions (i.e. hinge
loss and squared hinge loss) is piecewise. With this ob-
servation and the trick 1−(wTxi + b)yi = yiyi−(wTxi +
b)yi = yi(yi−(wTxi + b)), we introduce auxiliary vari-
ablesei=yi−(wTxi + b), 1≤i≤n, and the minimization of
Eq.(4) becomes:

min
w,b,ei=yi−(wTxi+b)

1

2
wTw + C

n
∑

i=1

(yiei)
p
+ . (5)

Based on ALM (Gill & Robinson, 2012), Eq.(5) is turned
into an unconstrained optimization problem by studying
the Lagrangian function of Eq.(5) below:

L(w, b, e, λ)=
1

2
w

T
w+C

n∑

i=1

(yiei)
p

++λ
T (XT

w+1b−y+e)

(6)
where Xd×n=[x1,x2,..., xn], 1n×1=[1,1,..., 1]T , yn×1=
[y1,y2,...,yn]T , en×1=[e1,e2,...,en]T . The last term is the
pointwise multiplication of the amount of violation of the
n constraints(wTxi+b)−yi+ei=0 with the vectorλ ∈ ℜn

consisting ofn Lagrangian multipliers.

ALM adds µ
2

∥

∥XTw + 1b− y + e
∥

∥

2
(supplemental term)

to Eq.(6): asµ “augments” to infinity, this term forces the
n constraints to be satisfied. So the augmented Lagrangian
function of Eq.(5) is defined as:

AL(w, b, e, λ, µ) = 1
2w

Tw + C
n
∑

i=1

(yiei)
p
++

λT (XTw+1b−y+e) + µ
2 ||X

Tw+1b−y+e||2 .
(7)

Arranging the last two terms in Eq.(7) into a quadratic form
leads to:

AL(w, b, e, λ, µ) = 1
2w

Tw + C
n
∑

i=1

(yiei)
p
+

+µ
2 ||X

Tw + 1b− y + e+ λ
µ
||2 .

(8)

Note that from Eq.(7) to Eq.(8), we add a termλ
2

2µ that re-
mains constant when performing optimization via the vari-
ablesw, b ande within a single iteration. Asµ → ∞, this
term is very close to zero and thus negligible eventually.

At the k-th iteration, similar to the Iterative Thresholding
(IT) method (Wright et al., 2009), the amount of violation
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of then constraints is used to update the Lagrangian multi-
plier vectorλ:

λ(k) = λ(k−1) + µ(k)(X
Tw + 1b− y + e) . (9)

The augmented penalty parameterµ is monotonically non-
decreasing over the iterative process. How to determine the
augmented penalty parameter seriesµ(k) for every iteration
k will be discussed in§3. We omit the bracketed subscript
k when there is no risk to cause any confusion, and actu-
ally we only need a single variable (or array) to store these
scalars (or vectors) for algorithmic implementation. Note
that the symbols of subscripts and bracketed subscripts re-
fer to quite different meanings in this paper.

Remarks: A merit of the ALM is that the optimal step size
to update λ is proven to be the chosen penalty parameter
µ(k), making the parameter tuning much easier than that
of the IT (Gill & Robinson, 2012).

Now at each iteration, we can split the updating ofw, b, e
into two independent portions: minimizinge with w, b
fixed and minimizingw, b with e fixed.

Whenw, b are fixed, the termwTw is constant and Eq.(8)
can be decomposed inton independent single-variable
minimization problems w.r.t.ei:

ei = argmin
ei

Fi(ei)

= argmin
ei

C (yiei)
p
+ +

µ

2
||ei−(yi−wTxi−b−

λi

µ
)||2

= argmin
ei

γ (yiei)
p
+ +

1

2
(ei − ti)

2 , (10)

whereγ = C
µ

, λi is thei-th element ofλ, ti=yi−wTxi−b−
λi

µ
is a constant. Solving Eq.(10) is easy asei is the min-

imizer for the single-variable 2-piece piecewise function
Fi(ei), so we just need to find its minima whenei≤0 and
ei>0 separately and pick the smaller one. Whenyiei≤0,
(yiei≤0)p+=0, so we only need to pick the smaller between
Fi(0) andFi(ti). Whenyiei>0, we need to solve the equa-
tion:

∂Fi

∂ei
= pγ(yiei)

p−1 + ei − ti = 0 . (11)

For arbitrary givenp andγ, solving Eq.(11) is difficult. But
fortunately in our scenario, it is always thatp≥1,γ>0. So
∂Fi

∂ei
is monotonically increasing w.r.t.ei, and we can use

the well-known binary search method to narrow the possi-
ble range ofei by half via each operation, and obtain anε-
accurate solution inO(log 1/ε) time. Particularly, we can
write the explicit solution straightforwardly whenp=1 or 2.

For L1-primal SVM (p=1),yi = ±1:

ei = ti − yiγ whenyiti > γ; ei = 0 when0 ≤ yiti ≤ γ;

ei = ti whenyiti < 0 . (12)

For L2-primal SVM (p=2),yi = ±1:

ei = ti/(1 + 2γ) whenyiti > 0; ei = ti whenyiti ≤ 0
(13)

When e is fixed, the term
∑n

i=1 (yiei)
p
+ is constant, and

Eq.(8) becomes an L2-norm regularized Least Square Re-
gression (LSR) problem:

G(w, b) = min
w,b

µ−1wTw +
∥

∥XTw + 1b− z
∥

∥

2
, (14)

wherez = y − e − µ−1λ is a constant vector. Eq.(14) can
be turned into a standard LSR problem as below, if we set

v =

[

w
b

]

, A =

[

XT
1

µ− 1
2 I 0

]

andd =

[

z
0

]

G(w, b) = G(z) = min
z

‖Az − d‖2 , (15)

which can be resolved by many standard libraries such as
the default LSQR function in MATLAB.

Hereby we finish the illustration of the proposed exact
SVM-ALM algorithm and summarize details in Algorithm
1. To be compatible with the existing methods such as (Fan
et al., 2008; Chang et al., 2008; Hsieh et al., 2008; Lin et al.,
2008), the stopping condition is set to be‖∇obj(w, b)‖ ≤
ǫ, where the user-specified parameterǫ is 0.01 by default,
and∇obj(w, b) is the gradients ofobj(w, b) w.r.t. w.

However, the LSQR used here costsO(nd̄2) whered̄ is the
average number of nonzero elements per instance, which is
as costly as computing matrix inverse. This is too expen-
sive as we need to afford such computation every iteration.
Driven by this consideration and the tradeoff between cost
per iteration and the number of iterations as discussed in the
introduction, we use an optimal step-size gradient method
to updatew andb at each iteration.

The gradients ofG(w, b) w.r.t. w andb are as below:

wg =
∂G

∂w
= X(XTw + 1b− z) + µ−1w ,

bg =
∂G

∂b
= nb+ 1

T (XTw − z) . (16)

Finding the optimal step-sizes is a single-variable
quadratic function minimization problem:

min
s

µ
−1(w−swg)

T (w−swg)+‖XT (w−swg)+1(b−sbg)−z‖2

(17)
which has the explicit solution

s =
(XTwg+1bg)

T (XTw+1b−z)+µ−1wT
g w

(XTwg+1bg)T (XTwg+1bg)+µ−1wT
g wg

=
wT

g wg+bTg bg

(XTwg+1bg)T (XTwg+1bg)+µ−1wT
g wg

. (18)

The last equality is just to simplify the computation ofs,
and can be verified via substitutingwg andbg in two de-
nominators with Eq.(16). We prefer the simplified formula,
because it saves two matrix-by-vector multiplications.
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Algorithm 1 Exact SVM-ALM for Lp-primal SVM
Input: p,X, y, µ(1), µ(2), ..., µ(∞)

Initializew = 1, b = 0, λ = 0.
repeat

1. Updatee with Eq.(11) or Eq.(12) or Eq.(13).
2. Updatew, b using the LSQR with Eq.(15).
3. Updateλ with Eq.(9).

until ‖∇obj(w, b)‖ ≤ ǫ

Algorithm 2 Inexact SVM-ALM for Lp-primal SVM
Input: p,X, y, µ(1), µ(2), ..., µ(∞)

Initializew = 1, b = 0, λ = 0.
repeat

1. Updatee with Eq.(11) or Eq.(12) or Eq.(13).
2. Updatew byw − swg, updateb by b − sbg, where
wg, bg, s are computed with Eq.(16) and Eq.(18), re-
spectively.
3. Updateλ with Eq.(9).

until ‖∇obj(w, b)‖ ≤ ǫ

We summarize the proposed inexact SVM-ALM algorithm
in Algorithm 2. At each iteration, Algorithm 2 only
needs three matrix-by-vector multiplications with com-
plexity O(nd̄), whered̄ is the average number of nonzero
elements per instance. The several pointwise addition and
multiplication between two vectors are with complexity
eitherO(d) or O(n), and can be neglected compared to
O(nd̄). In large-scale data classifications, the high dimen-
sional features are always reduced by the prescreening pro-
cedure, hencēd is not large. Our new algorithm has linear
computational costw.r.t. the number of data instancesn.

3. Convergence and Optimality

We first prove some lemmas.

Lemma 1 Let H be a real Hilbert space endowed with an
inner product <·, ·> and a corresponding norm ‖·‖, and
v ∈ ∂‖u‖, where ∂f(u) is the subgradient of f(u). Then
‖v‖∗=1 if u 6=0, and ‖v‖∗≤1 if u=0, where ‖·‖∗ is the dual
norm of ‖·‖.

Proof: Becausev ∈ ∂‖u‖,

‖d‖ − ‖u‖ ≥ <v, d−u>, ∀d ∈ H (19)

If u 6=0, settingd = 0, 2u leads to

‖u‖ = <v, u> ≤ ‖u‖‖v‖∗ (20)

Thus we have‖v‖∗ ≥ 1. On the other side, we have

‖d− u‖ ≥ ‖d‖ − ‖u‖ ≥ <v, d−u>, ∀d ∈ H (21)

which leads to

<v,
d− u

‖d− u‖
> ≤ 1, ∀d 6= u (22)

So‖v‖∗ ≤ 1. Then it can be concluded that‖v‖∗ = 1.

If u = 0, then Eq.(19) is equivalent to

<v, d> ≤ 1, ∀‖d‖ = 1 (23)

So‖v‖∗ ≤ 1 by the definition of the dual norm.

Lemma 2 The sequence {λ(k)} in either Algorithm 1 or
Algorithm 2 is bounded.

Proof: From w(k)=argmin
w,b

AL(w, b, e(k), λ(k−1), µ(k)),

b(k)=argmin
w,b

AL(w, b, e(k), λ(k−1), µ(k)), e(k) =

argmin
e

AL(w(k−1), b(k−1), e, λ(k−1), µ(k)), we have:

0 ∈ ∂wAL(w(k), b(k), e(k), λ(k−1), µ(k))
0 ∈ ∂bAL(w(k), b(k), e(k), λ(k−1), µ(k))
0 ∈ ∂eAL(w(k), b(k), e(k), λ(k−1), µ(k))

(24)

which indicate:

0 ∈ ∂‖w(k)‖
2−λ(k−1)−µ(k)(X

Tw+1b−y+e) (25)

0 ∈ ∂‖C(yT e(k))+‖
p−λ(k−1)−µ(k)(X

Tw+1b−y+e)

Therefore

λ(k) ∈ ∂‖w(k)‖
2, λ(k) ∈ ∂‖C(yT e(k))+‖

p . (26)

According to Lemma 1, the sequence{λ(k)} in Algorithm
1 is bounded, because of the fact that, the dual norms of
‖·‖2 and‖·‖p are‖·‖2 and‖·‖

p
p−1 (Lin et al., 2009), re-

spectively. The boundedness of{λ(k)} in Algorithm 2 can
be proved in the same way.

Lemma 3 The sequences {w(k)},{b(k)},{e(k)} in ei-
ther Algorithm 1 or Algorithm 2 are all bounded, if
‖w(k+1)‖

2+‖C(yT e(k+1))+‖
p +0.5µ(k+1)‖X

Tw(k+1) +
1b(k+1) − y + e(k+1)‖

2 ≤ ‖w(k)‖
2+‖C(yT e(k))+‖

p +
0.5µ(k)‖X

Tw(k) +1b(k)− y+ e(k)‖
2 for every k > 0 and

∞
∑

k=1

µ(k+1)

µ2
(k)

< ∞.

Proof: As‖w‖2+‖C(yT e)+‖
p+0.5µ‖XTw+1b−y+e‖2

is non-increasing as Algorithm 1 iterates, it can be verified
that,

AL(w(k), b(k), e(k), λ(k−1), µ(k))

≤AL(w(k−1), b(k−1), e(k−1), λ(k−2), µ(k−1))+

0.5µ−2
(k−1)(µ(k−1) + µ(k))‖λ(k−1) − λ(k−2)‖

2 (27)

The above inequality can be derived via sub-
stituting with Eq.(9) to eliminate λ(k−1). So
{AL(w(k), b(k), e(k), λ(k−1), µ(k))} is upper bounded,

owing to the boundedness of{λ(k)} and
∞
∑

k=1

µ(k)+µ(k+1)

µ2
(k)

≤

∞
∑

k=1

2µ(k+1)

µ2
(k)

< ∞.
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Thus, we have

‖w(k)‖
2+‖C(yT e(k))+‖

p

=AL(w(k), b(k), e(k), λ(k−1), µ(k))−
‖λ(k)‖

2

2µ(k)
(28)

as upper bounded. Therefore{w(k)},{e(k)} in Algorithm
1 are both bounded, which leads to the boundedness of
{b(k)}, asXTw+1b−y+e = 0.

It can be verified that, exactly the same properties hold in
Algorithm 2.

The non-increasing requirement of‖w‖2+‖C(yT e)+‖
p

+0.5µ‖XTw+ 1b− y + e‖2 in Lemma 3 also implies the
way to generate the sequence{µ(k)} by setting the upper
limit of µ(k):

µ(k+1) =(0.5µ(k)‖X
T
w(k) + 1b(k) − y + e(k)‖

2 + ‖w(k)‖
2

−‖w(k+1)‖
2+‖C(yT

e(k))+‖
p − ‖C(yT

e(k+1))+‖
p)

÷(0.5‖XT
w(k+1) + 1b(k+1) − y + e(k+1)‖

2) (29)

Because of Eqs.(10,14), we have

AL(w(k), b(k), e(k), λ(k−1), µ(k))

≤AL(w(k−1), b(k−1), e(k), λ(k−1), µ(k))

≤AL(w(k−1), b(k−1), e(k−1), λ(k−1), µ(k))

which ensures that{µ(k)} is non-decreasing.

Owing to precision limit, µ cannot increase to infin-
ity in practical implementations of both Algorithm 1
and Algorithm 2, otherwise the significant digits of

the terms 1
2w

Tw and C
n
∑

i=1

(yiei)
p
+ in AL(w, b, e, λ, µ)

would be squeezed out by the extremely large term
µ
2 ‖X

Tw + 1b− y + e+ λ
µ
‖2. More specifically,µ has a

upper limit of 105 as an implementation detail. We fol-
low the convention of most existing work by using double-
precision floating-point numbers. Using single precision
e.g. (Bottou, 2007) may reduce the computational time in
some situations, but this setting may cause numerical in-
accuracy (Chang et al., 2008). An advantage of the ALM
is that it converges to the exact optimal solution beforeµ
augments to infinity (Gill & Robinson, 2012). In contrast,
strictly speaking the IT (Wright et al., 2009) only finds ap-
proximate solutions.

Now we have come to the main results of this sec-
tion. Theorem 1 The solution consisting of the limit of
the sequences {w(k)},{b(k)},{e(k)} in Algorithm 1 with
Eq.(29) for updating µ, say (w(∞),b(∞),e(∞)), is an op-
timal solution to the Lp-primal SVM problem and the
convergence rate is at least O(µ−1

(k)) in the sense that

|‖w(k)‖
2+‖C(yT e(k))+‖

p − obj∗|=O(µ−1
(k)), where obj∗

is the minimal value of obj in Eq.(4).

Proof: As the vital natural property of an ALM algorithm,
the following is true:

AL(w(k),b(k),e(k),λ(k−1),µ(k))= min
w,b,e

AL(w,b,e,λ(k−1),µ(k))

≤ min
w,b,e,XT w+1b−y+e=0

AL(w,b,e,λ(k−1),µ(k))

= min
w,b,e,XT w+1b−y+e=0

‖w‖2+‖C(yT e)+‖
p +

‖λ(k−1)‖
2

2µ(k)

= min
w,b

‖w‖2+‖C(1− (XTw + 1b)y)+‖
p +

‖λ(k−1)‖
2

2µ(k)

= obj∗ +
‖λ(k−1)‖

2

2µ(k)

(30)

The first equality and second inequality are obvious; the
third equality is because of the fact that, when the con-
straints w.r.t the auxiliary variablese is satisfied, the last
term in Eq.(8) degenerates to||λ(k−1)||

2/2µ(k); the fourth
equality is obtained just by substituting the constraints,
similar to the conversion from Eq.(5) to Eq.(4); the fifth
equality is according to the definition in Eq.(4).

In Algorithm 1, it can be verified that,

‖w(k)‖
2+‖C(yT e(k))+‖

p=

AL(w(k), b(k), e(k), λ(k−1), µ(k))−
‖λ(k)‖

2

2µ(k)

(31)

Based on Eq.(30) we have

‖w(k)‖
2+‖C(yT e(k))+‖

p ≤ obj∗ +
‖λ(k−1)‖

2

2µ(k)
−

‖λ(k)‖
2

2µ(k)

The proved boundedness of{λ(k)} in Lemma 2 leads to:

obj∗−O(µ−1
(k)) ≤ ‖w(k)‖

2+‖C(yT e(k))+‖
p ≤ obj∗+O(µ−1

(k))

Note that the range [obj∗ − O(µ−1
(k)), obj

∗ + O(µ−1
(k))] is

derived, as the termO(µ−1
(k)) may be either positive or neg-

ative. Hereby the convergence rate is proved.

Whenk → ∞, O(µ−1
(k)) is negligible, so

‖w(∞)‖
2+‖C(yT e(∞))+‖

p ≤ obj∗ (32)

According to Eq.(9), the constraintsXTw(k)+1b(k)−y+

e(k) = µ−1
(k)(λ(k) − λ(k−1)) are satisfied whenk → ∞:

XTw(∞) + 1b(∞) − y + e(∞) = 0 (33)

Therefore,(w(∞),b(∞),e(∞)) is an optimal solution to the
Lp-primal SVM problem.

Theorem 2 The solution consisting of the limit of the se-
quences {w(k)},{b(k)},{e(k)} in Algorithm 2 with Eq.(29)
for updating µ, say (w(∞),b(∞),e(∞)), is an optimal solu-

tion to the Lp-primal SVM problem, if
∞
∑

k=1

µ(k+1)

µ2
(k)

< ∞ and

lim
k→∞

µ(k)(e(k+1) − e(k)) = 0.

Note that, unlike Theorem 1 for the exact ALM method,
the above statement only guarantees convergence but does
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not specify the rate of convergence for the inexact ALM
method. Although the exact convergence rate of the inex-
act ALM method is difficult to obtain in theory, extensive
numerical experiments have shown that for geometrically
increasingµ, it still converges Q-linearly (Gill & Robin-
son, 2012; Lin et al., 2009).

Proof: Our proof here is based on Theorem 1 by compar-
ing the difference of{w(k)},{b(k)},{e(k)} and {λ(k)} in
Algorithm 1 and Algorithm 2. For distinction purpose, we
denote{w(k)},{b(k)},{e(k)} and{λ(k)} in Algorithm 1 as

{ŵ(k)},{b̂(k)},{ê(k)} and{λ̂(k)} respectively, in this proof.

According toXTw(k) + 1b(k) − y + e(k) = µ−1
(k)(λ(k) −

λ(k−1)) from Eq.(9) and the boundedness of{λ(k)}, we
have

lim
k→∞

XTw(k) + 1b(k) − y + e(k) = 0 (34)

So (w(k), b(k), e(k)) approaches a feasible solution. Fur-

ther, the boundedness of{λ(k)} and{λ̂(k)} leads to:

‖e(k+1) − e(k)‖ = O(µ−1
(k)‖λ̂(k+1) − λ(k+1)‖) = O(µ−1

(k))

Since
∞
∑

k=1

µ−1
(k) ≤

∞
∑

k=1

µ(k)+µ(k+1)

µ2
(k)

≤
∞
∑

k=1

2µ(k+1)

µ2
(k)

< ∞,

e(k) is a Cauchy sequence, and has a limite(∞). Then with
Eq.(34),w(k) andb(k) also have their corresponding limits
w(∞) andb(∞). So (w(∞), b(∞), e(∞)) is a feasible solu-
tion. On the other side, we have the optimality condition:

λ(k) ∈ ∂‖w(k)‖
2, λ(k) ∈ ∂‖(yT e(k))+‖

p . (35)

Thus, by the convexity of norms (for 1≤p≤2) we have:

‖w(k)‖
2+||C(yT e(k))+||

p

≤ obj∗−<λ̂(k),ŵ(k)−w(k)>−<λ(k),ê(k)−e(k)>

= obj∗−µ−1
(k)<λ(k),λ(k) − λ(k−1)>+µ−1

(k)<λ(k),λ̂(k)

− λ̂(k−1)>−<µ(k)(e(k) − e(k−1)),ŵ(k)−w(k)> (36)

The second and third terms approach to zero due to the
boundedness of{λ(k)} and {λ̂(k)}. The last term tends
to vanish due to the boundedness of{w(k)} and {ŵ(k)}
together with the assumptionlim

k→∞
µ(k)(e(k+1)−e(k)) = 0.

So whenk → ∞, Eq.(36) becomes

‖w(∞)‖
2+‖C(yT e(∞))+‖

p ≤ obj∗ . (37)

So (w(∞), b(∞), e(∞)) is an optimal solution to the Lp-
primal SVM problem.

4. Experiments

This paper follows the concepts of reproducible research.
All results presented in the manuscript are reproducible
using the code and public datasets available online at

https://sites.google.com/site/svmalm. All experimentsare
conducted on an 8-core Intel Xeon X5460 3.16GHz (12M
Cache, 1333 MHz FSB) Linux server with 32G memory.
For all experiments except in§4.3, we use the default value
ǫ=0.01 as in LibLinear. We terminate the algorithms when
the objectives’ changes are less than10−4. In our method,
we empirically set the maximum iteration number as 100,
because in all our experiments our algorithm converges
within 100 iterations.

We use 7 popularly adopted benchmark datasets from var-
ious sources for performance evaluations:UCI Forest
(Collobert et al., 2002) (n = 581, 012, d = 54), ijcnn1
(Chang & Lin, 2001) (n = 191, 681, d = 22), Webpage
(Platt, 1999) (n = 64, 700, d = 300), UCI Connect-
4 (Frank & Asuncion, 2010) (n = 67, 557, d = 126),
SensIT Vehicle (acoustic/seismic)(Duarte & Hu, 2004)
(bothn = 98, 528, d = 50), Shuttle (Hsu & Lin, 2002)
(n = 58, 000, d = 9), UCI Poker (Frank & Asuncion,
2010) (n = 1, 025, 010, d = 10), Epsilon (Sonnenburg
et al., 2008) (n = 500, 000, d = 2000). The Epsilon
dataset has very dense features and was used in many pre-
vious large-scale data classifications. The five-fold cross
validation is conducted (except in§4.3 when all samples
are used for training) as in (Chang et al., 2008).

For multi-class classification, we follow the default one-
versus-the-rest strategy in (Chang & Lin, 2011) and (Fan
et al., 2008), and simply rely on the existing modules in the
LibLinear software toolbox. The average training time is
reported.

4.1. How Does Training Time Varies withn?

Fig. 1 shows log-log plots of how the CPU-time used for
training increases with respect ton, the number of training
samples. Because whenn is small the training time is too
short to be measured accurately, we run each test for 10
times and report the total training time in Fig. 1.

Lines in a log-log plot correspond to polynomial growth
O(nl), wherel corresponds to the slope of the line. It is
seen from Fig. 1 that, the training time of both the exact
SVM-ALM and the inexact SVM-ALM is roughly linear
with respect ton, since the slopes of the lines represent-
ing various datasets are very close to 1. Together with the
theoretical analysis in§2 that one iteration of the inexact
SVM-ALM algorithm costsO(nd̄), Algorithm 2 is shown
to be a linear computational cost solver for the Lp-primal
SVM.

Note that an advantage of our algorithms is that, the train-
ing time (and obviously the testing time as well) is com-
pletely irrelevant with weightC and normp.
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Figure 1.Training time of the proposed exact SVM-ALM (Algorithm 1) and inexact SVM-ALM (Algorithm 2) as a function ofn.

4.2. Prediction Accuracy Comparison between Exact
and Inexact SVM-ALM Algorithms

A natural drawback of the Inexact SVM-ALM Algorithm
is that it still requiresµ augments to infinity for obtain-
ing the exact optimal solution, as analyzed in the proof of
Theorem 2. This property is similar to the IT algorithms
(Wright et al., 2009). However, owing to precision limit
as discussed in§2, µ cannot increase to infinity in practi-
cal implementations of the Inexact SVM-ALM Algorithm
2. So a potential concern is that the speedup of the Inexact
SVM-ALM over the Exact SVM-ALM comes at the ex-
pense of prediction accuracies, but this is not the case in
fact, as verified experimentally in this subsection.

Fig. 2 shows the difference in terms of prediction accuracy
between the classification models produced by the inexact
SVM-ALM and the exact SVM-ALM. For better readabil-
ity, the axis ofC is plotted in log-scale, and the difference
is shown in terms of percentage points. A positive value
indicates that the inexact SVM-ALM has higher prediction
accuracy, while a negative value indicates that the exact
SVM-ALM performs better. For almost all values ofC
both algorithms perform almost identically. In particular,
there is no indication that the models learned by the inex-
act SVM-ALM are less accurate. Contrarily, the prediction
accuracy of the inexact SVM-ALM may be slightly better
than that of the exact SVM-ALM, and such phenomena is
reasonable because it has been reported that some imple-
mentations of SVM solvers achieve higher accuracy before
the objective function reaches its minimal (Chang et al.,
2008).

4.3. Training Time Comparison

The proposed Algorithm 2 is compared with the state of the
art solvers SVMperf , Pegasos, BMRM (Bundle Method for
Regularized Risk Minimization) (Teo et al., 2010) and the
LibLinear that integrates the TRON, PCD and DCD algo-
rithms.

The L1-primal SVM cannot be solved by the PCD (Chang
et al., 2008), because its objective function Eq.(2) is non-
differentiable. Thus the PCD is missing from the test for

the L1-primal SVM. As a convention (Joachims, 2006)
(Shalev-Shwartz et al., 2007) (Chang et al., 2008) (Hsieh
et al., 2008) (Lin et al., 2008), SVMperf , Pegasos and the
TRON method are typically only tested for the L1-primal
SVM.

Because the TRON, PCD and DCD algorithms do not sup-
port the bias termb, we extend each instance by an ad-
ditional dimension with a large constantT = 103, as in-
structed in (Hsieh et al., 2008; Lin et al., 2008). As long
as the constantT in the additional dimension is sufficiently
large, such conversion is equivalent to supporting the train-
ing of the bias termb.

With the same settings as in (Chang et al., 2008) (Hsieh
et al., 2008) we compare the L1-SVM and L2-SVM solvers
in term of the training time to reduce the objective function
obj(·) such that the relative difference ofobj to the opti-
mum obj∗, (obj − obj∗)/|obj∗|, is within 0.01. In order
to obtain the reference solutions, we run TRON with the
stopping condition∇obj(w) ≤ 0.01. Since the objective
functions are stable under such strict stopping conditions,
these solutions are seen to be very close to the ground-truth
optima. The results are listed in Tables 2 and 3, from which
it is seen that, the proposed algorithm is with stable perfor-
mance and on average faster than its competitors. The ad-
vantage of the propose algorithm is more obvious for large
datasets, such as the UCI Forest, SensIT Vehicle, and UCI
Poker datasets. The DCD algorithm is not stable, as it may
get stuck at some testcases but converges extremely fast at
other testcases. When the dimensionality of features in-
creases to 2000 as the Epsilon data, our algorithm still per-
forms well, and is the fastest solver for L1-SVM and the
second fastest solver for L2-SVM.

4.4. The Optimalp for L p-Primal SVM

A natural advantage of our proposed algorithms is that, it
can solve the primal SVM with Lp-norm loss functions for
any p≥1. It is not difficult to understand the fact that,
it should be coincidental for eitherp=1 or p=2 to make
the prediction accuracy of the Lp-primal SVM the highest
among all possiblep values.
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Figure 2.Prediction accuracy difference between the inexact SVM-ALM (Algorithm 2) and the exact SVM-ALM (Algorithm 1) for
L1-primal and L2-primal SVMs as a function ofC.

Table 1.The training time (seconds) for an L1-SVM solver to re-
duceobj(·) to within 1% of the optimal value. Though the train-
ing time of the proposed algorithms is irrelevant withC, the train-
ing time of SVMperf , TRON, PCD and DCD may be affected by
C. Following (Chang et al., 2008) and (Hsieh et al., 2008), we
setC = 1 for fair comparison. The training time is measured and
averaged over 10 runs. The solver with the shortest running time
is boldfaced.

DATASET OUR PEGASOS SVMperf DCD BMRM
FOREST 4.1 74.1 139.2 >500 51.8
IJCNN1 3.2 87.9 105.6 7.8 63.5
WEBPAGE 4.6 38.3 62.1 3.6 30.2
CONNECT-4 2.6 54.2 122.6 >500 42.9
SENSIT (A) 3.9 128.7 399.8 17.0 102.5
SENSIT (S) 3.9 109.3 335.9 11.1 85.2
SHUTTLE 1.2 29.6 66.6 2.2 20.6
POKER 4.9 107.4 303.1 >500 80.6
EPSILON 31.1 396.4 >500 93.2 315.2

Thus we conduct an interesting experiment showing this
phenomenon. Because existing SVM solvers cannot solve
the Lp-primal SVM for p 6=1 or 2, we believe that we are
the first to report such results in Table 3.

5. Conclusion

This paper proposed a novel linear computational cost pri-
mal SVM solver using the ALM algorithm for both the L1-
norm and the L2-norm loss functions. To avoid the diffi-
culty of dealing with piecewise loss functions, an auxiliary
vector is introduced such that in each iteration, the auxiliary
vector and the support vector are alternatively optimized
with the direction of Lagrange multipliers. In extensive
experiments, our approach is consistently faster than other
state-of-the-art solvers. From the methodological perspec-
tive, the proposed algorithm is novel and totally different
from existing literatures.

Table 2.The training time (seconds) for an L2-SVM solver to re-
duceobj(·) to within 1% of the optimal value whenC = 1, the
same as in Table 1. The training time is measured and averaged
over 10 runs. The solver with the shortest running time is bold-
faced.

DATASET OUR TRON PCD DCD BMRM
FOREST 3.9 92.3 10.0 >500 50.6
IJCNN1 3.2 7.7 3.4 7.5 64.2
WEBPAGE 4.4 2.2 0.9 3.9 32.1
CONNECT-4 2.7 10.4 3.9 >500 39.7
SENSIT (A) 3.9 27.7 5.3 17.5 99.8
SENSIT (S) 3.7 28.1 4.9 10.9 86.1
SHUTTLE 1.2 3.6 0.9 2.4 21.1
POKER 5.1 59.7 7.1 >500 79.8
EPSILON 32.6 241.9 16.9 83.2 329.2

Table 3.Prediction accuracy of L1-SVM, L2-SVM and Lp-SVM,
wherep is tuned by trying the parameter set{1, 1.1, 1.2, 1.3, 1.4,
1.5, 1.6, 1.7, 1.8, 1.9, 2}.

DATASET L1-SVM L2-SVM Lp-SVM p
FOREST 68.1% 65.3% 71.0% 1.3
IJCNN1 67.3% 74.2% 74.6% 1.9
WEBPAGE 57.3% 59.7% 63.4% 1.6
CONNECT-4 49.3% 44.9% 51.8% 1.2
SENSIT (A) 43.5% 45.9% 47.3% 1.8
SENSIT (S) 41.6% 42.4% 46.8% 1.6
SHUTTLE 35.9% 29.7% 36.1% 1.1
POKER 31.5% 33.8% 36.9% 1.7
EPSILON 42.9% 40.3% 44.6% 1.4
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