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Abstract strained problem:

n
Support Vector Machines (SVM) is among the min %wTw +C Y loss (w'zi + b, y;) 1)
most popular classification techniques in ma- “ i=1
chine learning, hence designing fast primal SVM
algorithms for large-scale datasets is a hot topic
in recent years. This paper presents a new L2-
norm regularized primal SVM solver using Aug-
mented Lagrange Multipliers, with linear com-
putational cost for p-norm loss functions. The
most computationally intensive steps (that de-
termine the algorithmic complexity) of the pro-

where the support vectar € %¢ and the intercept f. bias
term)b € R are the variablesioss (u,v) is a loss func-
tion measuring the difference between two scalars R
andv € R; C € R is the weight adjusting the impor-
tance between the regularization tetmiw and the loss
n
term > loss (wT:vi + b, yl)
=1

K3

posed algorithm is purely and simply matrix-by-
vector multiplication, which can be easily paral-
lelized on a multi-core server for parallel com-
puting. We implement and integrate our algo-

If the loss function is selected to be the hinge loss function
loss (u,v) = max(l — uv,0), the problem becomes the
L2-norm regularized L1-norm loss primal SVM, a.k.a L1-
primal SVM in some literature:

rithm into the interfaces and framework of the n
well-known LibLinear software toolbox. Experi- min lew + OZ (1 _ (wTIi + b)yi) , 2)
ments show that our algorithm is with stable per- wb 2 o +
formance and on average faster than the state-
of-the-art solvers such as SV¥/, Pegasos and
the LibLinear that integrates the TRON, PCD and
DCD algorithms.

where the operato(u)erifmax(u,O) returns the input
scalaru € ® unchanged if; is non-negative, and zero oth-
erwise. Such notation is for better readability.

If the loss function is selected to be the squared hinge loss
functionloss (u,v) = maz(1 — uv,0)?, the problem be-
comes the L2-norm regularized L2-norm loss primal SVM,
a.k.a L2-primal SVM:

Because most areas of science, simulations and experi- "
ments are flooded with big data, there is an urgent need min lew + OZ (1 — (wTx; + b)yi)Q ) ()
to develop large-scale data classification techniques. As wb 2 i—1 *

one of the most widely used classification methods, th
fast algorithm to solve Support Vector Machines (SVM)
is desired. Givem instance-label pairse(, y;), 1<i<n,

z; € R y; € {—1,+1}, the L2-norm regularized SVM
in the primal form aims to optimize the following uncon-

1. Introduction

%rimal SVM is attractive, partly due to the fact that it as-
sures a continuous decrease in the primal objective fumctio
(Keerthi & DeCoste, 2005). Designing fast primal SVM
solvers for large-scale datasets is a hot and importart topi
in recent years: The method in (Mangasarian & Musicant,
2001) was proposed, but it need compute the inverse of a
Proceedings of the 37°* International Conference on Machine  matrix with size of(d + 1) * (d + 1) and is slower than later
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy- proposed solvers. (Mangasarian, 2002) and (Keerthi & De-
right 2014 by the author(s). Coste, 2005) proposed modified Newton methods to train
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L2-primal SVM. As Eq.(3) is not 2nd order differentiable, in Section 4; Section 5 contains the concluding remarks.
to obtain the Newton direction, they have to use the gen-

eralized Hessian matrix.é. generalized 2nd order deriva- 2. Proposed Algorithm

tive), which is not efficient enough. To overcome this limi-
tation, a Trust RegiOn Newton method (TRON) (Lin et al., For ease of notation and better extensibility, we first unify
2008) was proposed to solve L2-primal SVM and logisticEq.(2) and Eq.(3), and generalize them to minimize the ob-
regression. The toolbox SVAI'/ (Joachims, 2006) used jective function of the lp-primal SVM:

a cutting plane technique to solve L1-primal SVM. (Smola n

et al., 2008) applied bundle methods, and viewed SVK/ obj(w,b) = lew +C Z (1—(wT:vi+b)yi)p )

as a special case. (Zhang, 2004) proposed a Stochastic Gra- 2 =1 M

dient Descent (SGD) method for primal SVM with any type wherep € R is a constant and typically<lp<2 for be-

of loss functions; Pegasos (Shalev-Shwartz et al., 20067) e)fng meaningful. A fundamental difficulty in both L2- and

tended Zhang’s work and developed an algorithm which al'Ll-primaI SVM s that, their loss functions.¢ hinge

ternates between stochastic gradient descent steps and p 9

[@ss and squared hinge loss) is piecewise. With this ob-
jection steps with better performance than S¥M. An- servation a?]d the trickgil(wTa:)- 4 bF;y- — yii—(wTz; +
other stochastic gradient implementation similar to Pegal-))y} = yi(yi—(w s + b)) we intrbaucezaijxiliary vari-
sos was published in (Bottou, 2007). More recently theablzese:yz}_l(wa. —;b) 1<’i<n and the minimization of
L2-primal SVM is solved by the PCD (Primal Coordinate Eq (4)Zbeéome3' LT
Descent) algorithm (Chang et al., 2008) with coordinate de- '

scent methods. 1 =
min inw +C Z (yies)' . (5)
All algorithms discussed above are iterative, which update wbei=yi—(whzi+b) i=1

w at each iteration. Based on this understanding, it is natgysed on ALM (Gill & Robinson, 2012), Eq.(5) is turned
urally to find that, there is a tradeoff between the compusnig an unconstrained optimization problem by studying
tational cost spent in each iteration and the number of ity,o Lagrangian function of Eq.(5) below:

erations needed (Lin et al., 2008). Pegasos randomly sub- .
gamples a few instances at a time, so its cost per |t¢rat|onL(w7 be, /\):leuH_CZ (yien)? +AT (XTw-1b—y-+e)
is low, but the number of iterations is high. Contrastively, 2 pr

Newton methods such as the TRON method spends con- (6)
siderable amount of time per iteration, but converges at'Nere Xaxn=[r1,22,... xn], 1nx1=[L.1,.., 17, Ynx1=
fast rates. The DCD (Dual Coordinate Descent) algorithn{yljy%-_--'yn]T' ?n_xlz_[el’e%-"ven]T- The last term is the
(Hsieh et al., 2008) bypasses the operation to maintain gr20intwise multiplication of the amount of violation of the
dients at each iteration in the PCD (Chang et al., 2008)"* constraintgw” z; +b) —y;+e;=0 with the vecton € ®"
and lowers the algorithmic complexity per iteration from cOnsisting of» Lagrangian multipliers.

O(nd) to O(d) in linear SVM cases, wheré s the aver-  z| M add
age number of nonzero elements per instance. Howevey, Eq.(6):
such reduction in complexity does not apply for nonlinear,, .,nstraints to be satisfied. So the augmented Lagrangian
SVM with kernels. Moreover, as shown in our experimentsg n ~tion of Eq.(5) is defined as:

(sees4), the convergence of the DCD may be extremely

lengthy for some datasets. In large-scale scenarios, USU- AT (w, b, e, A, ) = LwTw+C 2”: (gies)? +
ally an approximate solution of the optimization problem is i=1

enough to produce a good model (Lin et al., 2008; Chang A’ (X w+1b—y+e) + 5[ XTw+1b—y+e|f*.
etal., 2008; Hsieh et al., 2008). Thus, methods with a low-arranging the last two terms in Eq.(7) into a quadratic form
cost iteration are preferred as they can quickly generate gads to:

reasonable model. However, if one specifies an unsuitable "
stopping condition, such methods may fall into the situa- AL(w,b,e, X\, pn) = swlw+ C Y (yie))}
tion of lengthy iterations. To address these issues, we pro-
pose a new SVM solver using Augmented Lagrange Multi-

pller_s (AL.M) \l’\."th simple matrlx-bly-vector rgultlphcgluon Note that from Eq.(7) to Eq.(8), we add a te%% that re-
per iteration, linear computational cost, and provable-Con y4ing constant when performing optimization via the vari-
vergence. ablesw, b ande within a single iteration. Ag — oo, this

The rest of the manuscript is organized as follows: Sectiorierm is very close to zero and thus negligible eventually.

2 presents our proposed algorithm; Section 3 analyzes itg; yhe 1. th iteration, similar to the Iterative Thresholding
optimality and convergence; experimental results arerg|ve(|-|-) method (Wright et al., 2009), the amount of violation

shlXTw+1b—y+ e||2 (supplemental term)
asu “augments” to infinity, this term forces the

()

i=1 (8)
+4|IXTw+1b—y+e+ ;ATHQ
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of then constraints is used to update the Lagrangian multi+or L2-primal SVM (=2),y; = +1:

plier vector: e; = t; /(14 2v) wheny;t; > 0; e¢; = t; wheny;t; <0

Ak = Ae—1) T (X Tw+ 10—y +e).  (9) (13)
Whene is fixed, the termy_" | (y:e;)", is constant, and
The augmented penalty parametds monotonically non-  Eq.(8) becomes an L2-norm regularized Least Square Re-
decreasing over the iterative process. How to determine thgression (LSR) problem:
augmented penalty parameter sefigg for every iteration
k will be discussed ir§3. We omit the bracketed subscript

k when there is no risk to cause any confusion, and actuz ... _ y— e — u~'\is a constant vector. Eq.(14) can

ally we only need a single variable (or array) to store thes%e turned into a standard LSR problem as below, if we set
scalars (or vectors) for algorithmic implementation. Note '

. . w XT 1 z
that the symbols of subscripts and bracketed subscripts re-= VA= _1 andd =

T . o b uwzl 0 0
fer to quite different meanings in this paper.

— . 3 _ 2
Remarks: A merit of the ALM is that the optimal step size Gw,b) = G(z) = i 14z —d||”, (15)
to update \ is proven to be the chosen penalty parameter  which can be resolved by many standard libraries such as

(k) making the parameter tuning much easier thanthat  the default LSQR function in MATLAB.
of the IT (Gill & Robinson, 2012).

G(w,b) = min i~ 0 w + [ XTw+ 10— 2]*, (14)

Hereby we finish the illustration of the proposed exact
Now at each iteration, we can split the updatingob,e  SVM-ALM algorithm and summarize details in Algorithm
into two independent portions: minimizing with w,b 1. To be compatible with the existing methods such as (Fan
fixed and minimizingw, b with e fixed. etal., 2008; Chang et al., 2008; Hsieh et al., 2008; Lin et al.
2008), the stopping condition is set to p&obj(w, b)|| <
¢, where the user-specified parametés 0.01 by default,
andVobj(w, b) is the gradients ofbj(w, b) w.r.t. w.

B . However, the LSQR used here coétgd?) whered is the
e; = argminF;(e;) . L
s average number of nonzero elements per instance, which is
) b B " A, &S costly as computing matrix inverse. This is too expen-
= argminC (y;e;)y + §||€i—(yi—w Ii—b—g)ﬂ sive as we need to afford such computation every iteration.
“ 1 Driven by this consideration and the tradeoff between cost
= argmin~y (yse;)’ + §(ei —t;)?, (10) periteration and the number of iterations as discusseatin th
e introduction, we use an optimal step-size gradient method
to updatew andb at each iteration.

Whenw, b are fixed, the termw” w is constant and Eq.(8)
can be decomposed into independent single-variable
minimization problems w.r.te;:

wherey = % )\, is thei-th element o\, t;=y; —w” z;—b—
2+ is a constant. Solving Eq.(10) is easyeass the min- ~ The gradients ot (w, b) w.r.t. w andb are as below:

imizer for the single-variable 2-piece piecewise function 0G T .
Fi(e;), so we just need to find its minima whep<0 and We =35 " XX w+1b—2)+p w,
e;>0 separately and pick the smaller one. Whe# <0, oG P
(yie;<0)% =0, so we only need to pick the smaller between by = e nb+ 17 (X w —z). (16)
fi(q) andFi(t;). Wheny;e;>0, we need to solve the equa- Finding the optimal step-sizes is a single-variable
1on: OF; . guadratic function minimization problem:

=py(yiei)’ +e —1; =0. (11) 1 T T 2

de; min g~ (w—swg)” (w—swg)+[| X" (w—swg)+1(b—sby)—z|

For arbitrary giverp and~, solving Eq.(11) is difficult. But ° (17)
fortunately in our scenario, it is always that1,y>0. So  which has the explicit solution
% is monotonically increasing w.r.tz;, and we can use (Xng+1bg)T(XTw+1b_Z)+M—lwg"w

the well-known binary search method to narrow the possi- s =
ble range ok, by half via each operation, and obtainan

(XTwy+1bg) T (X Twy+1by)+p~twlw,

accurate solution i (log 1/¢) time. Particularly, we can B whwy+bl b, 18
write the explicit solution straightforwardly wher1 or 2. - (XTwy+1by)T (X Twy+1by)+p~wlw, (18)
For L1-primal SVM (=1),y; = £1: The last equality is just to simplify the computation of

and can be verified via substituting, andb, in two de-
nominators with Eq.(16). We prefer the simplified formula,
because it saves two matrix-by-vector multiplications.

e; = t; —yiy wheny,t; > v; e; = 0 when0 < y;t; <;
e, =1t; Whenyiti <0. (12)
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Algorithm 1 Exact SVM-ALM for Lp-primal SVM So||v||* < 1. Then it can be concluded thit||* = 1.

INPUL: p, X, y, f1(1), H(2)5 -3 Fi(o0) If uw = 0, then Eq.(19) is equivalent to
Initialize w = 1,b =0, = 0.

repeat <v,d><1V|d| =1 (23)
1. Updatee with Eq.(11) or Eq.(12) or Eq.(13).
2. Updatew, b using the LSQR with Eg.(15). So||v||* < 1 by the definition of the dual norm.J
3. Update\ with Eq.(9). o .
until ||[Vobj(w,b)| < e Lemma 2 T_he sequence { A} in either Algorithm 1 or
Algorithm 2 is bounded.

Algorithm 2 Inexact SVM-ALM for Lp-primal SVM Proof: From w)=arg Iilin AL(w, b, e(kys Ak—1)» (k) )»
InpUt: vavymu(l)v/'L(?)v'“vﬂ(oo) biy=a in AL bw.’ A —
Initializew = 1,b =0, A = 0. *) rif?m (w6, €0 Ae—1): 1019 )» €0t
repeat argmin AL(w(x—1), b(k—1), € Ak—1), H(k) ), WE have:

1. Updatee with Eq.(11) or Eq.(12) or Eq.(13). ¢
2. Updatew by w — swy, u_pdateb by b — sby, where 0 € OwAL(w(), by €(k)s A—1)» (k)
wy, by, s are computed with Eq.(16) and Eq.(18), re- 0 € O AL(w(k), bky €(k)s AM—1)» (k) ) (24)
spectively. 0 € O AL(W(r), b(kys €(k)s A(k—1)5 H(k))
3. Update\ with Eq.(9). o _
until ||[Vobj(w,b)|| < e which indicate:

0 € Olway P —A—1)— ) (X Tw+1b—y+e) (25)

T T

We summarize the proposed inexact SVM-ALM algorithm 0 € 9IC (Y™ (i) + P =Ak—1) —p() (X7 w+1b—y+e)
in Algorithm 2. At each iteration, Algorithm 2 only

: S : Therefore
needs three matrix-by-vector multiplications with com-
plexity O(nd),_whered is the average ngmb.er of nonzero Ay € 3”“’(1@)”2, A € 3||C'(yT€(k))+Hp- (26)
elements per instance. The several pointwise addition and ) ) )
multiplication between two vectors are with complexity According to Lemma 1, the sequenk, } in Algorithm
either O(d) or O(n), and can be neglected compared tol is bounded, because of thepfact that, the dual norms of
O(nd). In large-scale data classifications, the high dimen|* and||-[|” are||-|* and||-||>* (Lin et al., 2009), re-
sional features are always reduced by the prescreening prgpectlvely..The boundedness{oX;) } in Algorithm 2 can
cedure, hencd is not large. Our new algorithm has linear be proved in the same wayL]

computational cosw.r.t. the number of data instances Lemma 3 The sequences {w},{bx}{ew} in -

. . ther Algorithm 1 or Algorithm 2 are all bounded, if
3. Convergence and Optimality Hw(kH)|\2+||C(9T€(k+1))+||p + 0-5M(k+1)”XTw(k+1) +
We first prove some lemmas. i) — ¥ + el < Jlwe PHIC(Y ewy)+ 1P +

0.5 XTwy + 1bgy —y + e ||? for every k > 0 and
Lemma 1Let 7# beareal Hilbert space endowed with an oolu(k)” " () ~y el Y

inner product <-,-> and a corresponding norm ||-||, and > HL’%—:) < 00.
v € O||u||, where 0 f (u) is the subgradient of f(u). Then =t
[|v]|*=1if u£0, and ||v||*<1 if u=0, where||-||* isthedual ~ Proof: As||w||?+[|C(y"e) ¢ [[P40.5ul| X Tw+1b—y-+e|?

normof |-||. is non-increasing as Algorithm 1 iterates, it can be verified
that,
Proof: Because € 9||u]|,
ldl| = lul| > <v,d—u>,Vd € # (19) jigw(k)ab(kgae(k)a)\(kl)af(k)) |
S W(k—1)» —1)s €(k—1), —2)s M(k— +
If u0, settingd = 0, 2u leads to 7;’6 PP B Ak D 5
. 0.5, 1) ((e—1) + 1) I A—1) = A2 I (27)
Jul] = <v,u> < [|ulll|v] (20) e ab _ i e derived v ]
. ) e above inequality can be derived via sub-
Thus we havélv||* > 1. On the other side, we have stituting  with Eq.(9) to eliminate Aj,_y). So
Id—ull > [|d|| — [|u]| > <v,d—u>¥Yd e # (21) {AL(w), by er), Ak—1)s Hky)} IS upper bounded,
which leads to owing to the boundedness p ;) } and % <
k=1 (k)
d—u s}
— > <1,vd 22 28041y
<v7||d_u||>_ ’ #u ( ) Z 5 < 00.

k=1 Mo
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Thus, we have

lway IP+1C Y e ) +1P
H)‘(k)”
lu(k)

=AL(wW(ky, by, €y » Ah—1)» (k) — (28)

as upper bounded. Therefofey;)},{ex)} in Algorithm

1 are both bounded, which leads to the boundedness of=

{bay}, asXTw+1b—y+e = 0.

It can be verified that, exactly the same properties hold in

Algorithm 2. O

The non-increasing requirement @fv||?+||C(ye). ||
+0.5u]| XTw + 1b — y + ¢||? in Lemma 3 also implies the
way to generate the sequenge )} by setting the upper
limit of H(k)*

pirn) =050 | X wiry + Loy — y + el” + w1
—Jwny IPHIC ewy)+1I” = ICH " egry)+17)
(0.5 X wr1) + Wby —y +eqrnl®)  (29)

Because of Egs.(10,14), we have

AL(wky, by €(k)> Ak—1)» H(k))
SAL(W(k=1), ble—1)s €(k)> Ah—1) 5 (k)
SAL(W(k=1), bk—1)s €(k=1)» Ak—1)» H(k))

which ensures thatu i } is non-decreasing.

Owing to precision limit, x cannot increase to infin-
ity in practical implementations of both Algorithm 1
and Algorithm 2, otherwise the significant digits of

Proof: As the vital natural property of an ALM algorithm,
the following is true:

AL(w iy ,b (k)€ (k) s A (k—1) s (k) )=

< min AL(w,b,e,)\(k,l),u(k))

w,b,e, X Tw4+1b—y+e=0

’Lnég AL(w7bye7A(k71)7,u‘(k))

IN_1yll?
— min w|P+||C(yTe)4||P + =
w,b,e, X Tw+1b— y+e= || H || (y )+|| 2H(k)
IXe—pII?
min w]*+|C(1 - (XTw+lb)y)+||p +
— obj* 4+ [Age—nyII?
=0 20 (k)
(30)

The first equality and second inequality are obvious; the
third equality is because of the fact that, when the con-
straints w.r.t the auxiliary variablesis satisfied, the last
term in Eq.(8) degenerates o\ ,_1)||?/2ux); the fourth
equality is obtained just by substituting the constraints,
similar to the conversion from Eq.(5) to Eq.(4); the fifth
equality is according to the definition in Eq.(4).

In Algorithm 1, it can be verified that,

lweey 12+1C (T ey +11P=

Aewm |12 (32)
AL(wy, by (ks Ale—1) H(k)) — —ngil)l
Based on Eq.(30) we have
-y lI> Awll?
Wiy [[“+HIC (Y e P <obj* + —
ey IP+1C (G e)+ T

The proved boundedness X } in Lemma 2 leads to:
0bj* =O(ugy) < wa IPHIC (W er))+ [P < 0bj*+O0(ugs)

Note that the rangenp;* — O(u I, )) obj* + O( )] is

T p
the terms;w"w and C Z(yzel)+ in AL{w,b,€, A, 1) derived, as the term (s, )) may be either posmve or neg-
would be squeezed out by the extremely large termative. Hereby the convergence rate is proved.
LIXTw+1b—y+e+2 ||2 More specifically,u has a
upper limit of 105 as an |mplementat|0n detail. We fol-
low the convention of most existing work by using double-
precision floating-point numbers. Using single precision
e.g. (Bottou, 2007) may reduce the computational time inAccording to Eq.(9), the constrain®&” w ) + 1b) —
some situations, but this setting may cause numerical ine(;) = M(}l)(/\(k) — A(x—1)) are satisfied wheh — oc:
accuracy (Chang et al., 2008). An advantage of the ALM
is that it converges to the exact optimal solution before
augments to infinity (Gill & Robinson, 2012). In contrast, Therefore
strictly speaking the IT (Wright et al., 2009) only finds ap-
proximate solutions.

Whenk — oo, O(M(})) is negligible, so

l[w(oo) P+ C (" e(o0y) 1P < 0bj* (32)

XTU)(OO) + ]-b(oo) — Y+ €)= 0 (33)

{(W(se):b(sc)+€(oc)) IS @n optimal solution to the
Lp-primal SVM problem. O

Theorem 2 The solution consisting of the limit of the se-

quences {wk) },{bk) }.{e } in Algorithm 2 with Eq.(29)
for updating 1, SY (w(s0),b(s0),€(s0) ), 1S @N optimal solu-

tion to the Lp-primal SYM problem, if >° % < oo and
k=1 ")

Now we have come to the main results of this sec-
tion. Theorem 1 The solution consisting of the limit of
the sequences {w) }.{bx} {e} in Algorithm 1 with
Eq.(29) for updating 1, sy (w(oe):b(s0):€(sc)), IS @N Op-
timal solution to the Lp-primal SYM problem and the
convergence rate is at least O(N(jj)) in the sense that

|||w(k)||2+|\C(yT8(k))+|\p - Obj*|:0(ﬂ_kl)' where obj*
(k)
isthe minimal value of obj in EQ.(4).

e (eqern) —ewy) = 0.

Note that, unlike Theorem 1 for the exact ALM method,
the above statement only guarantees convergence but does



Linear Computational Cost Solver for Primal SVM

not specify the rate of convergence for the inexact ALM https://sites.google.com/site/svmalm. All experimearis
method. Although the exact convergence rate of the inexeonducted on an 8-core Intel Xeon X5460 3.16GHz (12M
act ALM method is difficult to obtain in theory, extensive Cache, 1333 MHz FSB) Linux server with 32G memory.
numerical experiments have shown that for geometricallyFor all experiments except .3, we use the default value

increasingy, it still converges Q-linearly (Gill & Robin-
son, 2012; Lin et al., 2009).

Proof: Our proof here is based on Theorem 1 by compar-

ing the difference offw) }.{bk)}.{e} and {Ax} in
Algorithm 1 and Algorithm 2. For distinction purpose, we
denote{w) },{bk) } Ler) } and{ A, } in Algorithm 1 as
{w(k)},{f)(k)},{é(k)} and{;\(k)} respectively, in this proof.

According toX Twy) + by — y + ey = u(‘kl) Ay —
A(k—1y) from Eq.(9) and the boundedness {of;) }, we
have

lim XTw(k) + 10y —y+ew =0

So (w(ky, bk, e(ry) approaches a feasible solution. Fur-

ther, the boundedness{)f\ (k) and{\ (k) leads to:

lew+1) — emll = O(M(kl) A1) = Ay ) = O(M(}l))

thE+1) o 2H(ki1)
Since EWThGR+D < PEED < oo,
Z T Z o S kzl Wh

e(k) 1S a Cauchy sequence and has a liepit). Then with
Eq.(34),w() andb) also have their corresponding limits
W(oo) andb(oo) So (w(oo),b(oo),e(oo)) is a feasible solu-
tion. On the other side, we have the optimality condition:

Ay € Ollway |12, Axy € Oll(y" ery)+ P - (35)

Thus, by the convexity of norms (folp<2) we have:

lwey [IP+HC (YT ewy)+ 117
< 0bj* = <A (k)W) —W(k) > —<A(k) 1€ (k) —€(k) >
=obj*

— 1y A AB) = A1) > <A A k)

— A1) > =<ty (k) — e(h—1)) (k) —wry > (36)

€=0.01 as in LibLinear. We terminate the algorithms when
the objectives’ changes are less tham*. In our method,

we empirically set the maximum iteration number as 100,
because in all our experiments our algorithm converges
within 100 iterations.

We use 7 popularly adopted benchmark datasets from var-
ious sources for performance evaluationdCl Forest
(Collobert et al., 2002)7( = 581,012,d = 54), ijcnnl
(Chang & Lin, 2001) ¢ = 191,681,d = 22), Webpage
(Platt, 1999) ¢ = 64,700,d = 300), UCI Connect-

4 (Frank & Asuncion, 2010)1{ = 67,557,d = 126),
SensIT Vehicle (acoustic/seismicjDuarte & Hu, 2004)
(bothn = 98,528,d = 50), Shuttle (Hsu & Lin, 2002)

(n = 58,000,d = 9), UCI Poker (Frank & Asuncion,
2010) @ = 1,025,010,d = 10), Epsilon (Sonnenburg

et al., 2008) ¢ = 500,000,d = 2000). The Epsilon
dataset has very dense features and was used in many pre-
vious large-scale data classifications. The five-fold cross
validation is conducted (except §#.3 when all samples
are used for training) as in (Chang et al., 2008).

For multi-class classification, we follow the default one-
versus-the-rest strategy in (Chang & Lin, 2011) and (Fan
et al., 2008), and simply rely on the existing modules in the
LibLinear software toolbox. The average training time is
reported.

4.1. How Does Training Time Varies withn?

Fig. 1 shows log-log plots of how the CPU-time used for
training increases with respectitgthe number of training
samples. Because whernis small the training time is too
short to be measured accurately, we run each test for 10
times and report the total training time in Fig. 1.

Lines in a log-log plot correspond to polynomial growth

The second and third terms approach to zero due to the(n'), wherel corresponds to the slope of the line. It is

boundedness of \(;)} and {f\(k)}. The last term tends

to vanish due to the boundedness{af;)} and {w )}

together with the assumpti%hm iy (k1) —€(ry) = 0.
—00

So whenk — oo, EQ.(36) becomes
[w(oe) IP+IC (YT e (o) )+ 1P < 0™ . 37)

S0 (W(s0) b(x0), €(s0)) IS @N optimal solution to the z-
primal SVM problem. O

4. Experiments

seen from Fig. 1 that, the training time of both the exact
SVM-ALM and the inexact SVM-ALM is roughly linear
with respect ton, since the slopes of the lines represent-
ing various datasets are very close to 1. Together with the
theoretical analysis ifj2 that one iteration of the inexact
SVM-ALM algorithm costsO(nd), Algorithm 2 is shown

to be a linear computational cost solver for the-frimal
SVM.

Note that an advantage of our algorithms is that, the train-
ing time (and obviously the testing time as well) is com-
pletely irrelevant with weigh€ and normp.

This paper follows the concepts of reproducible research.
All results presented in the manuscript are reproducible
using the code and public datasets available online at
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Solving L1-primal SVM by the Inexact SVM-ALM Solving L1-primal SVM by the Exact SYM-ALM Solving L2-primal SVM by the Inexact SVM-ALM Solving L2-primal SVM by the Exact SVM-ALM

Training Time (Seconds)
Training Time (Seconds)
Training Time (Seconds)

10 10'
Number of Training Samples

Figure 1.Training time of the proposed exact SVM-ALM (Algorithm 1)cmexact SVM-ALM (Algorithm 2) as a function of.

4.2. Prediction Accuracy Comparison between Exact the L1-primal SVM. As a convention (Joachims, 2006)
and Inexact SVM-ALM Algorithms (Shalev-Shwartz et al., 2007) (Chang et al., 2008) (Hsieh

. i
A natural drawback of the Inexact SVM-ALM Algorithm etal., 2008) (Lin et aI.,_ 2008), SVM'7, Pegasos and _the

; o . e . TRON method are typically only tested for the L1-primal
is that it still requiresy augments to infinity for obtain-

. . . . VM.

ing the exact optimal solution, as analyzed in the proof ofS

Theorem 2. This property is similar to the IT algorithms Because the TRON, PCD and DCD algorithms do not sup-
(Wright et al., 2009). However, owing to precision limit port the bias ternb, we extend each instance by an ad-
as discussed ii2, ;1 cannot increase to infinity in practi- ditional dimension with a large constaht = 103, as in-

cal implementations of the Inexact SVM-ALM Algorithm structed in (Hsieh et al., 2008; Lin et al., 2008). As long
2. So a potential concern is that the speedup of the Inexaets the constarit in the additional dimension is sufficiently
SVM-ALM over the Exact SVM-ALM comes at the ex- large, such conversion is equivalent to supporting thetrai
pense of prediction accuracies, but this is not the case iing of the bias ternd.

fact, as verified experimentally in this subsection. With the same settings as in (Chang et al., 2008) (Hsieh

Fig. 2 shows the difference in terms of prediction accuracyet al., 2008) we compare the L1-SVM and L2-SVM solvers
between the classification models produced by the inexadh term of the training time to reduce the objective function
SVM-ALM and the exact SVM-ALM. For better readabil- obj(-) such that the relative difference ob; to the opti-

ity, the axis ofC is plotted in log-scale, and the difference mum obj*, (obj — obj*)/|obj*|, is within 0.01. In order

is shown in terms of percentage points. A positive valueto obtain the reference solutions, we run TRON with the
indicates that the inexact SVM-ALM has higher prediction stopping conditiorVobj(w) < 0.01. Since the objective
accuracy, while a negative value indicates that the exadunctions are stable under such strict stopping conditions
SVM-ALM performs better. For almost all values 6f  these solutions are seen to be very close to the ground-truth
both algorithms perform almost identically. In particylar optima. The results are listed in Tables 2 and 3, from which
there is no indication that the models learned by the inexit is seen that, the proposed algorithm is with stable perfor
act SVM-ALM are less accurate. Contrarily, the predictionmance and on average faster than its competitors. The ad-
accuracy of the inexact SVM-ALM may be slightly better vantage of the propose algorithm is more obvious for large
than that of the exact SVM-ALM, and such phenomena isdatasets, such as the UCI Forest, SensIT Vehicle, and UCI
reasonable because it has been reported that some impleker datasets. The DCD algorithm is not stable, as it may
mentations of SVM solvers achieve higher accuracy beforget stuck at some testcases but converges extremely fast at
the objective function reaches its minimal (Chang et al.,other testcases. When the dimensionality of features in-

2008). creases to 2000 as the Epsilon data, our algorithm still per-
forms well, and is the fastest solver for L1-SVM and the
4.3. Training Time Comparison second fastest solver for L2-SVM.

The proposed Algorithm 2 is compared with the state of the i i
art solvers SVMe"f | Pegasos, BMRM (Bundle Method for #4- The Optimalp for L p-Primal SVM

Regularized Risk Minimization) (Teo et al., 2010) and the A natural advantage of our proposed algorithms is that, it
LibLinear that integrates the TRON, PCD and DCD algo-can solve the primal SVM with k-norm loss functions for
rithms. any p>1. It is not difficult to understand the fact that,

The L1-primal SVM cannot be solved by the PCD (Chang't Should be coincidental for eithgr=1 or p=2 to make
et al., 2008), because its objective function Eq.(2) is non{he prediction accuracy of theptprimal SVM the highest

differentiable. Thus the PCD is missing from the test foramong all possiblg values.
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L1-primal SVM L2-primal SVM

uCl Forest
ijenn1
—— Webpage
UCI Connect-4
—#— SensIT Vehicle (acoustic)
SensIT Vehicle (seismic)
-1.5f —¢— Shuttle B -15
—<— UClI Poker
Epsilon
25 0 = g 0 g o 25 T = = 0 g o
10f 10° 10 10 10 10 10 10f 10° 10 10 10 10 10
c c

Prediction accuracy difference(%)
Prediction accuracy difference(%)

Figure 2.Prediction accuracy difference between the inexact SVMJWA(AIgorithm 2) and the exact SVM-ALM (Algorithm 1) for
L1-primal and L2-primal SVMs as a function 6f.

Table 1.The training time (seconds) for an L1-SVM solver to re- Table 2.The training time (seconds) for an L2-SVM solver to re-
duceobj(-) to within 1% of the optimal value. Though the train- duceobj(-) to within 1% of the optimal value whe6@' = 1, the

ing time of the proposed algorithms is irrelevant withthe train- ~ same as in Table 1. The training time is measured and averaged
ing time of SVMP™f, TRON, PCD and DCD may be affected by over 10 runs. The solver with the shortest running time islbol

C. Following (Chang et al., 2008) and (Hsieh et al., 2008), wefaced.
setC = 1 for fair comparison. The training time is measured and ~pDaTaseT

OurR TRON PCD DCD BMRM

averaged over 10 runs. The solver with the shortest runiimg t FOREST 3.9 923 10.0 >500 50.6
is boldfaced. I3CNN1 3.2 7.7 3.4 7.5 64.2
DATASET OUR PEGASOS SVMP®7 DCD BMRM WEBPAGE 4.4 22 0.9 3.9 32.1
FOREST 71 7A 1 1392 =500 G51.8 CONNECT4 2.7 10.4 3.9 >500 39.7
WEBPAGE 4.6 383 62.1 3.6 30.2 SENSIT (S) 3.7 28.1 4.9 10.9 86.1
CONNECT4 2.6 54.2  122.6 >500 42.9 SHUTTLE 1.2 %6 0.9 2-6‘0 Zé-é
SENSIT(A) 3.9 128.7  399.8 17.0 102.5 EOKER 352-16 §4~179 12% ;g . 37255 A
SENSIT(S) 3.9 109.3 3359 11.1 85.2 PSILON : : : : :
SHUTTLE 1.2 29.6 66.6 2.2 20.6

POKER 4.9 107.4 303.1 500 80.6 -

EPSILON 31.1 396.4 ~500 >93_2 3152 Table 3.Prediction accuracy of L1-SVM, L2-SVM andikSVM,

wherep is tuned by trying the parameter dét, 1.1, 1.2, 1.3, 1.4,
15,16,1.7,1.8,1.9,)2

DATASET L1-SVM L2-SVM Lp-SVM P
FOREST 68.1% 65.3% 71.0%
IJCNN1 67.3% 74.2% 74.6%
WEBPAGE 57.3% 59.7% 63.4%

. . . . . CONNECT4 49.3% 44 9% 51.8%
Thus we conduct an interesting experiment showing this g\ gt (A)  43.5% 45 9% 47.3%

phenomenon. Because existing SVM solvers cannot solve SensIT (S) 41.6% 42.4% 46.8%

PRRPRRpPRRPRR
ANFRPOOODO OW

the Lp-primal SVM for p#£1 or 2, we believe that we are  SHUTTLE 35.9% 29.7% 36.1%
the first to report such results in Table 3. POKER 31.5% 33.8% 36.9%
EPSILON 42.9% 40.3% 44.6%

5. Conclusion
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