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Abstract
Principal Component Analysis (PCA) is the most
widely used unsupervised dimensionality reduc-
tion approach. In recent research, several robust
PCA algorithms were presented to enhance the
robustness of PCA model. However, the existing
robust PCA methods incorrectly center the data
using the `2-norm distance to calculate the mean,
which actually is not the optimal mean due to the
`1-norm used in the objective functions. In this
paper, we propose novel robust PCA objective
functions with removing optimal mean automat-
ically. Both theoretical analysis and empirical
studies demonstrate our new methods can more
effectively reduce data dimensionality than pre-
vious robust PCA methods.

1. Introduction
Machine learning techniques have been widely applied to
many scientific domains as diverse as engineering, astron-
omy, biology, remote sensing, and economics. The dimen-
sionality of scientific data could be more than thousands,
such as digital images and videos, gene expressions and
DNA copy numbers, documents, and financial time series.
As a result, data analysis on such data sets suffers from the
curse of dimensionality. To solve this problem, the dimen-
sionality reduction (subspace learning) algorithms have
been proposed to project the original high-dimensional fea-
ture space to a low-dimensional space, wherein the impor-
tant statistical properties are well preserved.

Among these methods, the unsupervised dimensionality re-
duction methods are more useful in the practical applica-
tions since labeled data are usually expensive to obtain and
we often have no any prior knowledge for new scientific
problems. Thus, in this work, we focus on unsupervised
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dimensionality reduction. Although PCA (Jolliffe, 2002)
is the most popularly used method, it is sensitive to the
data outliers because of the square `2-norm based objec-
tive function. In real-world applications, the data outliers
often largely appear in the datasets, thus PCA may not get
the optimal performance.

To address this problem, multiple robust PCA methods
have been presented, such as the rotational invariant L1
PCA (Ding et al., 2006) (R1PCA) and convex robust PCA
(Wright et al., 2009; Xu et al., 2012). The R1PCA mini-
mizes the `2,1-norm reconstruction error by imposing the
`2-norm on the feature dimension and the `1-norm on the
data points dimension, such that the effect of data out-
liers will be reduced by the `1-norm. Later this idea was
extended to robust tensor factorization (Huang & Ding,
2009). The convex robust PCA methods utilize the convex
relaxation objectives, such that the global solutions can be
achieved. However, all existing robust PCA methods ne-
glect the mean calculation problem. Because the `1-norm
or `2,1-norm are used in different robust PCA objectives,
the square `2-norm distance based mean is not the correct
mean anymore.

In this paper, we propose the novel robust PCA objective
functions with removing the optimal mean automatically.
We first show that the Euclidean distance based mean is
only valid for the traditional PCA. In robust PCA formula-
tions, the `1-norm or `2,1-norm are used as loss functions,
such that the Euclidean distance based mean is not the cor-
rect one. Starting from two widely used robust PCA formu-
lations, we propose our corresponding optimal mean robust
PCA objectives. We integrate the mean calculation into
the dimensionality reduction optimization objective, such
that the optimal mean can be obtained to enhance the di-
mensionality reduction. The optimization algorithms are
derived to solve the proposed non-smooth objectives with
convergence analysis. Both theoretical analysis and empir-
ical studies demonstrate our new methods can more effec-
tively reduce data dimensionality than previous robust PCA
methods.

Notations: For a vector v, we denote the `2-norm of v by
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‖v‖2 =
√
vT v. For a matrix M , we denote the (i, j)-th

element by mij , the i-th column by mi and the i-th row
by mi. Denote ‖M‖2F = Tr(MTM), where trace(·) is
the trace operator for a square matrix, and denote ‖M‖∗ =

Tr((MTM)
1
2 ) as the trace norm (nuclear norm). In this

paper, we denote ‖M‖2,1 =
∑
i ‖mi‖2 as the `2,1-norm of

matrix M , denote ‖M‖1 =
∑
i,j |mij | as the `1-norm of

matrix M , and denote ‖M‖2 = σmax(M) as the `2-norm
of matrix M , where σmax(M) is the largest singular value
of M .

2. Principal Component Analysis Revisited
Given a data matrix X = [x1, x2, ..., xn] ∈ Rd×n, where
d is the dimensionality of data points and n is the number
of data points. Essentially, Principal Component Analysis
(PCA) is to find a low-rank matrix to best approximate the
given data matrix in the sense of Euclidean distance. Sup-
pose the data are centered, i.e. the mean of the data is zero,
PCA is to solve the following problem:

min
rank(Z)=k

‖X − Z‖2F . (1)

According to the full rank decomposition, any matrix Z ∈
Rd×n with rank k can be decomposed as Z = UV T , where
U ∈ Rd×k, V ∈ Rn×k. After denoting an identity matrix
by I , the problem (1) can be rewritten as

min
U∈Rd×k,V ∈Rn×k,UTU=I

∥∥X − UV T∥∥2
F
. (2)

Taking the derivative w.r.t. V and setting it to zero, we have
V = XTU . As a result, the problem (2) becomes:

max
U∈Rd×k,UTU=I

Tr(UTXXTU) . (3)

The columns of the optimal solution U to problem (3) are
the k eigenvectors of XXT corresponding to the k largest
eigenvalues.

In the above derivation, we suppose the mean of the data
is zero. In the general case that the mean of the data is
not zero, PCA is to best approximate the given data matrix
with an optimal mean removed. Denote 1 as a column vec-
tor with all the elements being one, the problem of PCA
becomes:

min
b,rank(Z)=k

∥∥X − b1T − Z∥∥2
F
. (4)

Note the b ∈ Rd×1 in problem (4) is also a variable to be
optimized. Similarly, the problem (4) can be rewritten as:

min
b,U∈Rd×k,V ∈Rn×k,UTU=I

∥∥X − b1T − UV T∥∥2
F
. (5)

Taking the derivative w.r.t. V and setting it to zero, we have
V = (X − b1T )TU . Then the problem (5) becomes:

min
b,U∈Rd×k,UTU=I

∥∥X − b1T − UUT (X − b1T )
∥∥2
F
. (6)

Taking the derivative w.r.t. b and setting it to zero, we have
(I−UUT )(b1T−X)1 = 0. Suppose U⊥ is the orthogonal
complement ofU , i.e. [U,U⊥] is orthonormal matrix. Then
for any vector (b1T −X)1, it can be represented as:

(b1T −X)1 = Uα+ U⊥β . (7)

So we have (I −UUT )(Uα+U⊥β) = 0⇔ U⊥β = 0⇔
β = 0. Then Eq. (7) becomes:

b =
1

n
(X1 + Uα), (8)

where α could be any k-dimensional column vector. De-
note a centering matrix H = I − 1

n11
T , by substituting

Eq. (8) into the problem (6), we have:

max
U∈Rd×k,UTU=I

Tr(UTXHXTU) . (9)

We can see that no matter the data X is centered or not,
the problem (9) is unchanged. We can simply set α = 0
in Eq. (8), so the optimal mean in the problem (4) is b =
1
nX1. That is to say, in traditional PCA, we can simply
center the data such that X1 = 0, and then solve Eq. (3)
instead of solving Eq. (9).

3. Robust Principal Component Analysis with
Optimal Mean

The problem (4) in the traditional PCA can be written as
min

b,rank(Z)=k

∑n
i=1 ‖xi − b− zi‖

2
2. It is known that squared

loss function is very sensitive to outliers. Therefore, the
squared approximation errors will make the traditional
PCA not robust to outliers in the data.

Previous robust PCA methods use a non-squared loss func-
tion to improve the robustness, but still center data via the
`2-norm distance based mean, which is incorrect. Instead
of using the `2-norm distance based mean, we propose a
new robust PCA with an optimal mean automatically re-
moved in the given data. Our new robust PCA is to solve
the following problem:

min
b,rank(Z)=k

n∑
i=1

‖xi − b− zi‖2 , (10)

where we optimize the mean in the robust PCA objective.
We can write the problem (10) in matrix form as follows:

min
b,rank(Z)=k

∥∥X − b1T − Z∥∥
2,1
. (11)

Similarly, the problem (11) can be rewritten as:

min
b,U∈Rd×k,V ∈Rn×k,UTU=I

n∑
i=1

∥∥∥xi − b− U(vi)
T
∥∥∥
2
. (12)
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For each i, by setting the derivative w.r.t vi to zero, we have
vi = (xi − b)TU . Substituting it into Eq. (12), we arrive at
the following problem1:

min
b,U∈Rd×k,UTU=I

n∑
i=1

∥∥(I − UUT )(xi − b)
∥∥
2
. (13)

In this paper, we use an iterative re-weighted method to
solve the problem (13). The detailed algorithm is outlined
in Algorithm 1, and the theoretical analysis of the algorithm
is given in the last of this section. In each iteration, we
solve the following problem:

min
b,U∈Rd×k,UTU=I

n∑
i=1

dii
∥∥(I − UUT )(xi − b)

∥∥2
2
, (14)

where dii is the weights as calculated in Algorithm 1.

Taking the derivative w.r.t. b and then setting it to zero, we
have (I − UUT )(b1T −X)D1 = 0. Similarly, we can let
(b1T − X)D1 = Uα + U⊥β and get β = 0, so we have
(b1T −X)D1 = Uα and thus we have

b =
XD1

1TD1
+

Uα

1TD1
(15)

where α could be any k-dimensional column vector.

Substituting Eq. (15) into the problem (14), the problem
becomes

max
U∈Rd×k,UTU=I

Tr(UTXHdX
TU), (16)

where Hd = D − D11TD
1TD1

is the weighted centering ma-
trix. The columns of the optimal solutionU to problem (16)
are the k eigenvectors of XHdX

T corresponding to the k
largest eigenvalues. When the dimensionality is larger than
the number of data, i.e. d > n, the problem (16) can be
efficiently solved by the SVD of the matrix:

X

(
D

1
2 − D11TD

1
2

1TD1

)
. (17)

3.1. Theoretical Analysis of Algorithm 1

Theorem 1 The Algorithm 1 will monotonically decrease
the objective of the problem (13) in each iteration until the
algorithm converges.

Proof: In the Steps 1 and 2 of Algorithm 1, denote the up-
dated U and b by Ũ and b̃, respectively. Since the updated
U and b are the optimal solutions of the problem (14) and

1In practice, similar to (Nie et al., 2010), the ‖z‖2 is replaced
by
√
zT z + ε, where ε→ 0.

Algorithm 1 Algorithm to solve the problem (13).
Initialize D as an identity matrix
while not converge do

1. Update the columns of U by the k right singular

vectors of X(D
1
2 − D11TD

1
2

1TD1
) corresponding to the k

largest singular values.
2. Update b by b = XD1

1TD1
3. Update the diagonal matrix D, where the i-
th diagonal element of D is updated by dii =

1
2‖(I−UUT )(xi−b)‖2

end while

according to the definition of dii in the Step 3 of Algorithm
1, we have:

n∑
i=1

‖(I − Ũ ŨT )(xi − b̃)‖22
2‖(I − UUT )(xi − b)‖2

≤
n∑
i=1

‖(I − UUT )(xi − b)‖22
2‖(I − UUT )(xi − b)‖2

. (18)

According to the Lemma 1 in (Nie et al., 2010), we know

n∑
i=1

∥∥∥(I − Ũ ŨT )(xi − b̃)
∥∥∥
2
−

∥∥∥(I − Ũ ŨT )(xi − b̃)
∥∥∥2
2

2‖(I − UUT )(xi − b)‖2


≤

n∑
i=1

(∥∥∥(I − UUT )(xi − b)
∥∥∥
2
−
∥∥(I − UUT )(xi − b)

∥∥2
2

2‖(I − UUT )(xi − b)‖2

)
(19)

Summing Eq. (18) and Eq. (19) on both sides, we have

n∑
i=1

∥∥∥(I − Ũ ŨT )(xi − b̃)
∥∥∥
2
≤

n∑
i=1

∥∥(I − UUT )(xi − b)
∥∥
2

(20)
Since the problem (13) has an obvious lower bound 0, the
Algorithm 1 will converge. The equality in Eq. (20) holds
only when the Algorithm 1 converges. Thus, in each itera-
tion, Algorithm 1 monotonically decreases the objective of
the problem (13) until the algorithm converges. �

Theorem 2 The Algorithm 1 will converge to a local min-
imal solution to the problem (13).

Proof: The Lagrangian function of problem (13) is:

L1(U, b,Λ) =

n∑
i=1

∥∥(I − UUT )(xi − b)
∥∥
2

−Tr((UTU − I)Λ) . (21)

Taking the derivative w.r.t. U and b respectively and setting
them to zero, we get the KKT condition of the problem (13)
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as follows:

∂
n∑
i=1

∥∥(I − UUT )(xi − b)
∥∥
2

∂U
− UΛ = 0

∂
n∑
i=1

∥∥(I − UUT )(xi − b)
∥∥
2

∂b
= 0 (22)

Using the matrix calculus, we can write the Eq. (22) as fol-
lows:

n∑
i=1

(I − UUT )(xi − b)(b− xi)TU
‖(I − UUT )(xi − b)‖2

− UΛ = 0

∑
i

(I − UUT )(b− xi)
‖(I − UUT )(xi − b)‖2

= 0 (23)

In each iteration of Algorithm 1, we find the optimal solu-
tion to the problem (14). Thus the converged solution of
Algorithm 1 satisfies the KKT condition of problem (14).
The Lagrangian function of problem (14) is:

L2(U, b,Λ) =

n∑
i=1

dii
∥∥(I − UUT )(xi − b)

∥∥2
2

−Tr((UTU − I)Λ) . (24)

Taking the derivative w.r.t. U and b respectively and setting
them to zero, we get the KKT condition of the problem (14)
as follows:

∂
n∑
i=1

dii
∥∥(I − UUT )(xi − b)

∥∥2
2

∂U
− UΛ = 0

∂
n∑
i=1

dii
∥∥(I − UUT )(xi − b)

∥∥2
2

∂b
= 0 (25)

Similarly, we can write the Eq. (25) as follows using the
matrix calculus:

n∑
i=1

2dii(I − UUT )(xi − b)(b− xi)TU = UΛ∑
i

2dii(I − UUT )(b− xi) = 0 (26)

According to the definition of dii in Algorithm 1, we can
see that Eq. (26) is the same as Eq. (23) when the Algo-
rithm 1 is converged. Therefore, the converged solution of
Algorithm 1 satisfies Eq. (23), the KKT condition of prob-
lem (14). Thus the converged solution of Algorithm 1 is a
local minimal solution to the problem (13). �

3.2. Extension to a General Algorithm

It is worth noting that the content in this section is a parallel
work with (Nie et al., 2010)2. Later, we found that the re-

2The motivation to derive this kind of algorithm is similar to
the motivation in Eq.(21) of (Nie et al., 2009) for solving the trace

Algorithm 2 Algorithm to solve the problem (27).
Initialize x ∈ C
while not converge do

1. For each i, calculate Di = h′i(gi(x))
2. Update x by the optimal solution to the problem

min
x∈C

f(x) +
∑
i

Tr(DT
i gi(x))

end while

weighted algorithm applied in Algorithm 1 can be used to
solve the following more general problem:

min
x∈C

f(x) +
∑
i

hi(gi(x)), (27)

where hi(x) is an arbitrary concave function in the domain
of gi(x). The details to solve problem (27) is described
in Algorithm 2, where h′i(gi(x)) denotes any supergradient
of the concave function hi at point gi(x). According to the
definition of supergradient, it can be easily proved that the
Algorithm 2 converges. It can be seen that the converged
solution satisfies KKT condition of problem (27), thus the
Algorithm 2 will converge to a local optimal solution to
the problem (27). Empirical evidences show Algorithm 2
converges very fast and usually converges in 20 iterations.

Algorithm 2 is very easy to implement and powerful. For
example, it can be used to minimize the `p-norm, the `2,p-
norm, the Schatten `p-norm (Nie et al., 2012), and many ro-
bust loss functions such as the capped (truncated) `p-norm,
where 0 < p ≤ 2.

More interestingly, if we need to maximize the objective in
Eq.(27), we only require that hi(x) is an arbitrary convex
function in the domain of gi(x). In this case, in Algorithm
2, the h′i(gi(x)) in the first step is changed to be any sub-
gradient of hi at point gi(x), and the ’min’ in the second
step is changed to ’max’. Therefore, it can be verified that
the Algorithm 2 can also be used to maximize the `p-norm
(Nie et al., 2011), the `2,p-norm, and the Schatten `p-norm,
where p ≥ 1.

4. Optimal Mean Robust PCA with Convex
Relaxation

Recently, a convex relaxed robust PCA was proposed to
solve the following problem (Wright et al., 2009):

min
Z
‖X − Z‖1 + γ‖Z‖∗ . (28)

To better pursuit the outliers in the data points, a recent
work is proposed to solve the following problem (Xu et al.,
2012):

min
Z
‖X − Z‖2,1 + γ‖Z‖∗ . (29)

ratio problem. It is a very useful trick for algorithm derivation.
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Algorithm 3 Algorithm to solve the problem (30).
Let 1 < ρ < 2. Initialize µ = 0.1, E = 0, Λ = 0
while not converge do

1. Update b and Z by solving

min
b,Z

1

2

∥∥∥X̃ − b1T − Z∥∥∥2
F

+ γ̃‖Z‖∗ (32)

where X̃ = X − E + 1
µΛ and γ̃ = γ

µ .
2. Update E by solving

min
E

1

2

∥∥∥E − X̃∥∥∥2
F

+ γ̃‖E‖2,1 (33)

where X̃ = X − b1T − Z + 1
µΛ and γ̃ = 1

µ .
3. Update Λ by Λ = Λ + µ(X − b1T − Z − E)
3. Let µ = min(ρµ, 108)

end while

However, all these work don’t take the optimal mean into
account. Although we can center the data such thatX1 = 0
before solving problem (29), the mean b = 1

nX1 is not
necessarily the optimal mean in the problem (29) since the
`2,1-norm loss function instead of the Frobenious norm loss
function is used in the objective.

In this section, we consider the optimal mean for the `2,1-
norm loss function, and propose to solve the following
problem:

min
b,Z

∥∥X − b1T − Z∥∥
2,1

+ γ‖Z‖∗ . (30)

We can see problem (30) is a convex relaxation of problem
(11). We use Augmented Lagrangian Multiplier (ALM)
method to solve the proposed problem (30).

First, problem (30) can be rewritten as:

min
b,Z,E,X−b1T−Z=E

‖E‖2,1 + γ‖Z‖∗ . (31)

With the ALM method, we need to solve the following aug-
mented problem in each iteration:

min
b,Z,E

‖E‖2,1 + γ‖Z‖∗ +
µ

2
‖X − b1T − Z − E +

1

µ
Λ‖2F

. Solving this problem with joint variables b, Z,E is diffi-
cult, we use an alternating method to solve it. The detailed
algorithm is outlined in Algorithm 3. When fixE, we solve
problem (32) to update b, Z, and when fix b, Z, we solve
problem (33) to update E.

The problem (33) can be easily solved and has the closed
form solution as follows: ei = (‖x̃i‖2 − γ̃)+

x̃i

‖x̃i‖2
, where

(s)+ is defined as (s)+ = max(0, s).

We will see that the problem (32) can also be solved with
the closed form solution. First, we have the following lem-
mas:

Lemma 1 Suppose A = USV T , where the `2-norms of
all the columns of U and V are 1, and S is a nonnegative
diagonal matrix. Then ‖A‖∗ ≤ TrS.

Proof: Note that ‖A‖∗ = max
XTX=I,Y TY=I

Tr(XTAY ),

so we have ‖A‖∗ = max
XTX=I,Y TY=I

Tr(XTUSV TY ) =

max
XTX=I,Y TY=I

∑
j sj

∑
i x

T
i ujv

T
j yi ≤

∑
j sj = TrS.

The inequality in the last but one step holds since∑
i x

T
i ujv

T
j yi = vTj Y X

Tuj ≤ σmax(Y XT ) = 1, where
σmax(Y XT ) denotes the largest singular value of matrix
Y XT which is 1 since XTX = I, Y TY = I . �

Lemma 2 ‖Z‖∗ = min
Z=ABT

1
2 (‖A‖2F + ‖B‖2F ).

Proof: Suppose Z = ABT , then ‖Z‖∗ =
∥∥ABT∥∥∗ ≤∑

i

‖ai‖2‖bi‖2 ≤
√∑

i

‖ai‖22
∑
i

‖bi‖22 = ‖A‖F ‖B‖F ≤

1
2 (‖A‖2F + ‖B‖2F ), where the second step holds according
to Lemma 1 and the third step holds according to Cauchy-
Schwarz inequality. On the other hand, suppose the SVD
of Z is Z = UΣV T , let A = UΣ

1
2 and B = V Σ

1
2 , then

we have Z = ABT and ‖Z‖∗ =
∥∥UΣV T

∥∥
∗ = Tr(Σ) =

1
2 (‖UΣ

1
2 ‖2F + ‖Σ 1

2V T ‖2F ) = 1
2 (‖A‖2F + ‖B‖2F ). There-

fore, under the constraint Z = ABT , the minimization of
1
2 (‖A‖2F + ‖B‖2F ) is ‖Z‖∗. �

Lemma 3 If ZH 6= Z, then ‖ZH‖∗ < ‖Z‖∗.

Proof: Suppose {Â, B̂} = arg min
Z=ABT

1
2 (‖A‖2F + ‖B‖2F ),

then according to Lemma 2 we have ‖Z‖∗ = 1
2 (‖Â‖2F +

‖B̂‖2F ) and Z = ÂB̂T . Thus ZH = Â(HB̂)T , according
to ZH 6= Z and Lemma 2, we have

‖ZH‖∗ = min
ZH=ABT

1

2
(‖A‖2F + ‖B‖2F )

≤ 1

2
(‖Â‖2F + ‖HB̂‖2F )

=
1

2
(‖Â‖2F + ‖B̂‖2F −

1

n
1T B̂B̂T1)

<
1

2
(‖Â‖2F + ‖B̂‖2F ) = ‖Z‖∗ , (34)

where the last inequality holds since ZH 6= Z and Z =
ÂB̂T indicates B̂T1 6= 0. Therefore, we have ZH 6= Z ⇒
‖ZH‖∗ < ‖Z‖∗. �

The problem (32) can be solved according to the following
theorem:
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Theorem 3 The unique optimal solution b̂, Ẑ to the prob-
lem (32) is b̂ = 1

nX̃1 and Ẑ = U(Σ− γ̃I)+V
T , where

X̃H = UΣV T is the compact Singular Value Decompo-
sition (SVD) of X̃H and the (i, j)-th element of (M)+ is
defined as max(0,mij).

Proof: Taking the derivative of Eq. (32) w.r.t. b and setting
it to zero, we have:

b̂ =
1

n
X̃1− 1

n
Ẑ1 . (35)

So the problem (32) becomes:

min
b,Z

1

2
‖X̃H − ZH‖2F + γ̃‖Z‖∗ . (36)

First, we verify that Ẑ = U(Σ− γ̃I)+V
T satisfies:

0 ∈ ẐH − X̃H + γ̃∂‖Ẑ‖∗ . (37)

Denote the compact SVD of X̃H as X̃H = UΣV T =
U1Σ1V

T
1 + U2Σ2V

T
2 , where the singular values in Σ1 are

all greater than γ̃ and the singular values in Σ2 are all
smaller than or equal to γ̃. Then Ẑ can be written as
U1(Σ1 − γ̃I)V T1 . On the other hand, we have X̃H1 =
0⇒ UΣV T1 = 0⇒ V T1 = 0⇒ Ẑ1 = 0⇒ ẐH = Ẑ.
So we have the following equation:

X̃H − ẐH
= U1Σ1V

T
1 + U2Σ2V

T
2 − U1(Σ1 − γ̃I)V T1

= γ̃U1V
T
1 + U2Σ2V

T
2 . (38)

It is known (Watson, 1992) that the set of the subgradients
of ‖Ẑ‖∗ is:

∂‖Ẑ‖∗ = {U1V
T
1 +M : UT1 M = 0,MV1 = 0, ‖M‖2 ≤ 1}

So we have U1V
T
1 + 1

γ̃U2Σ2V
T
2 ∈ ∂‖Ẑ‖∗, and according

to Eq. (38) we have:

X̃H − ẐH ∈ γ̃∂‖Ẑ‖∗ . (39)

Therefore, Ẑ = U(Σ− γ̃I)+V
T satisfies Eq. (37). Since

the problem (32) is convex, Ẑ = U(Σ− γ̃I)+V
T is one of

the optimal solution to the problem (32).

Unlike the problem (4) which has many optimal solutions,
we further show that the solution b̂, Ẑ is the unique optimal
solution to the problem (32).

According to Lemma 3, we know the optimal solution Ẑ to
the problem (36) must satisfy ẐH = Ẑ, thus the optimal b̂
is b̂ = 1

nX̃1 according to Eq. (35), and the problem (36) is
equivalent to the following problem:

min
b,Z

1

2
‖X̃H − Z‖2F + γ̃‖Z‖∗ . (40)

Since the problem (40) is strictly convex, the optimal solu-
tion is unique. Therefore, b̂ = 1

nX̃1, Ẑ = U(Σ− γ̃I)+V
T

is the unique optimal solution to the problem (32). �

5. Experimental Results
The main goal of PCA is to reduce the dimensionality such
that the reduced features represent and reconstruct the orig-
inal data as good as possible. In the experiments, we show
how well the reconstruction of the proposed new optimal
mean robust PCA methods compared to the previous PCA
and robust PCA methods. The compared PCA methods in-
clude original PCA (denoted as PCA), robust PCA with L1
maximization (denoted as L1PCA) (Kwak, 2008), R1PCA
(Ding et al., 2006) and robust PCA with convex relaxation
(solving Eq. (29), denoted as CRPCA) (Xu et al., 2012).
The proposed optimal mean robust PCA methods solv-
ing Eq. (11) and Eq. (30) are denoted as RPCA-OM and
CRPCA-OM, respectively.

5.1. Experimental Setup

In the experiments, we use 12 benchmark face image
datasets, including AT&T (Samaria & Harter, 1994),
UMIST (Graham & Allinson, 1998), Yale (face data),
YaleB (Georghiades et al., 2001), Palm (Hou et al., 2009),
CMU-PIE (Sim & Baker, 2003), FERET (Philips et al.,
1998), MSRA, Coil (Nene et al., 1996), JAFFE, MNIST,
and AR. We downloaded the image data from different
websites. Some of them were resized by previous work,
but this won’t effect our evaluation.

In each dataset, we randomly select 20% images and ran-
domly place a 1/4 size of occlusion in the selected images.
The reconstruction error is calculated as

∑
i ‖xri − xoi ‖2,

where xoi is the original image without occlusion and xri is
the reconstructed image.

5.2. Reconstruction Error Comparison for Robust
PCA methods

We first compare the reconstruction error of PCA, L1PCA,
R1PCA and our proposed RPCA-OM methods on 12
benchmark datasets in Table 1. Because these methods
can share the common reduced dimensionality, their recon-
struction errors can be compared under the same dimen-
sion. In Table 1, we compare the reconstruction errors un-
der nine different dimensions from 10 to 50. We cannot list
more results due to limited space.

From Table 1, we can observe that:

1) The robust PCA methods R1PCA and RPCA-OM are
consistently better than the other two PCA methods, when
there are occlusions in the data which indicates these robust
PCA methods are effective and robust to outliers and noise
in the data, except for projected dimension 15 in YALEB.

2) L1PCA is better than PCA in some cases but is worse in
other cases. The reason is that L1PCA is to maximize the
`1-norm, but not to minimize the reconstruction error.
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MNIST (×104)

Dimension 10 15 20 25 30 35 40 45 50
PCA 20.964 17.354 15.849 14.866 13.890 13.193 12.559 11.924 10.776

L1PCA 18.255 16.384 15.198 14.282 13.584 12.895 12.256 11.666 11.359
R1PCA 17.911 16.005 14.865 13.895 13.044 12.350 11.719 11.148 10.774

RPCA-OM (our) 17.885 15.974 14.859 13.899 13.037 12.303 11.707 11.064 10.627

JAFFE (×104)

Dimension 10 15 20 25 30 35 40 45 50
PCA 34.429 29.642 25.499 24.791 24.020 23.188 22.321 21.066 12.855

L1PCA 17.162 15.852 14.958 14.472 14.052 13.635 13.328 13.021 12.594
R1PCA 16.824 15.567 14.847 14.414 13.973 13.662 13.275 12.993 12.641

RPCA-OM (our) 16.640 15.420 14.716 14.265 13.818 13.526 13.155 12.867 12.500

YALEB (×105)

Dimension 10 15 20 25 30 35 40 45 50
PCA 10.451 9.6717 9.0074 8.5250 8.0723 7.7539 7.4673 7.2194 6.8686

L1PCA 9.9809 9.3133 8.7559 8.2912 7.8940 7.5742 7.2877 7.0594 6.8297
R1PCA 10.020 9.3594 8.7214 8.2502 7.8399 7.5261 7.2370 6.9991 6.7686

RPCA-OM (our) 9.9742 9.3290 8.6944 8.2169 7.8154 7.4969 7.2078 6.9719 6.7420

Coil20 (×105)

Dimension 10 15 20 25 30 35 40 45 50
PCA 19.632 18.912 17.766 17.092 16.554 16.029 15.528 15.204 14.907

L1PCA 19.694 18.091 17.095 16.446 15.913 15.497 15.124 14.799 14.509
R1PCA 19.569 17.988 16.972 16.326 15.828 15.411 15.032 14.706 14.419

RPCA-OM (our) 19.397 17.905 16.903 16.270 15.766 15.376 14.995 14.667 14.380

MSRA (×105)

Dimension 10 15 20 25 30 35 40 45 50
PCA 28.314 27.593 26.326 24.612 23.127 21.938 21.511 20.592 20.039

L1PCA 16.181 15.372 14.765 14.265 13.827 13.476 13.180 12.945 12.737
R1PCA 16.237 15.440 14.786 14.180 13.796 13.462 13.162 12.927 12.728

RPCA-OM (our) 16.112 15.302 14.683 14.068 13.708 13.345 13.074 12.837 12.631

FERET (×105)

Dimension 10 15 20 25 30 35 40 45 50
PCA 21.619 20.394 19.543 18.864 18.294 17.753 17.307 16.880 16.518

L1PCA 21.570 20.308 19.470 18.805 18.232 17.726 17.293 16.871 16.536
R1PCA 21.481 20.302 19.435 18.791 18.220 17.673 17.232 16.811 16.442

RPCA-OM (our) 21.430 20.262 19.395 18.763 18.154 17.638 17.200 16.784 16.413

CMU-PIE (×103)

Dimension 10 15 20 25 30 35 40 45 50
PCA 7.8659 6.6812 5.8340 5.2123 4.7648 4.3930 4.0672 3.8033 3.5799

L1PCA 7.8727 6.6765 5.8485 5.2148 4.7691 4.3852 4.0694 3.8020 3.5889
R1PCA 7.8431 6.6478 5.8068 5.1777 4.7334 4.3555 4.0319 3.7716 3.5473

RPCA-OM (our) 7.8010 6.6134 5.7799 5.1547 4.7089 4.3315 4.0096 3.7547 3.5345

AT&T (×104)

Dimension 10 15 20 25 30 35 40 45 50
PCA 29.333 27.426 26.152 25.119 24.270 23.613 23.002 22.425 21.931

L1PCA 28.948 27.141 26.026 24.980 24.128 23.432 22.873 22.319 21.798
R1PCA 28.877 27.109 25.784 24.857 23.903 23.266 22.742 22.176 21.676

RPCA-OM (our) 28.774 27.036 25.713 24.756 23.814 23.153 22.631 22.064 21.549

UMIST (×104)

Dimension 10 15 20 25 30 35 40 45 50
PCA 28.917 27.248 25.966 24.910 24.053 23.330 22.780 22.180 21.698

L1PCA 28.568 27.022 25.765 24.726 23.888 23.243 22.640 22.054 21.628
R1PCA 28.486 26.971 25.709 24.603 23.740 23.050 22.532 21.964 21.448

RPCA-OM (our) 28.383 26.900 25.600 24.498 23.655 22.944 22.424 21.850 21.312

AR (×104)

Dimension 10 15 20 25 30 35 40 45 50
PCA 23.293 21.004 19.601 18.428 17.544 16.816 16.164 15.617 15.185

L1PCA 23.298 21.006 19.612 18.499 17.637 16.905 16.225 15.723 15.232
R1PCA 23.032 20.837 19.417 18.251 17.356 16.644 15.998 15.428 14.999

RPCA-OM (our) 22.912 20.767 19.321 18.193 17.279 16.530 15.879 15.306 14.874

YALE (×104)

Dimension 10 15 20 25 30 35 40 45 50
PCA 22.119 19.445 17.995 16.940 16.152 15.658 15.139 14.728 14.218

L1PCA 17.959 16.591 15.514 14.872 14.310 13.745 13.308 12.874 12.434
R1PCA 17.742 16.253 15.207 14.526 14.015 13.530 12.997 12.631 12.331

RPCA-OM (our) 17.692 15.150 14.461 14.009 13.507 12.890 12.889 12.502 12.200

PALM (×105)

Dimension 10 15 20 25 30 35 40 45 50
PCA 14.703 13.355 12.376 11.596 11.011 10.561 10.119 9.7871 9.4969

L1PCA 14.734 13.373 12.377 11.628 11.033 10.580 10.156 9.7885 9.4881
R1PCA 14.665 13.319 12.300 11.527 10.954 10.461 10.053 9.7027 9.4058

RPCA-OM (our) 14.651 13.300 12.287 11.499 10.935 10.437 10.035 9.6745 9.3826

Table 1. Reconstruction error comparisons of four PCA methods on 12 benchmark datasets using different dimensions. The best recon-
struction result under each dimension is bolded.
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(b) UMIST
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(c) YALE
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(d) AR
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(e) CMU-PIE
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(f) Coil
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(g) FERET

30 60 90
0

0.5

1

1.5

2

2.5

3
x 10

5

r

R
ec

on
st

ru
ct

io
n 

E
rr

or

JAFFE

 

 
CRPCA
CRPCA−OM(our)

(h) JAFFE
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(i) MNIST
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(j) MSRA
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(k) Palm
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Figure 1. Reconstruction errors under different γ obtained by CRPCA and our CRPCA-OM methods.

3) Since the optimal mean is considered in the reconstruc-
tion error minimization, our RPCA-OM method consis-
tently outperforms other three methods in most cases.

5.3. Reconstruction Error Comparison for Convex
Robust PCA methods

In CRPCA and our CRPCA-OM methods, the projection
dimension cannot be selected. We can only get the recon-
struction data via adjusting the parameter γ. Thus, we com-
pare these two methods together. We choose the range of
γ based on the suggestion from (Wright et al., 2009), in
which the γ is suggested with the scale of m

1
2 (m is the di-

mension of matrix Z). Considering the size of images used
in our experiments, we select the range of γ from 30 to 90.
The reconstruction error comparison of these two methods
are shown in Fig.1. From Fig.1, we can conclude that:

1) As the value of the regularization parameter γ increases,
the reconstruction error for both methods increases as well,
which is due to the weight we put in the reconstruction error
decreases. As a result, the algorithm pays less attention to
minimizing the reconstruction error.

2) Our CRPCA-OM method is consistently better than CR-
PCA approach, because CRPCA-OM method takes into ac-
count the optimal mean in the Eq. (29), which as we have
said previously is not the Frobenious norm loss function’s
mean, but the `2,1-norm loss function’s mean.

6. Conclusions
In this paper, we proposed the novel optimal mean robust
PCA models with automatically removing the correct data
mean. To solve the proposed non-smooth objectives, we
derive the new optimization algorithms with proved con-
vergence. Both theoretical analysis and empirical results
show our new robust PCA with optimal mean models con-
sistently outperform the existing robust PCA methods.
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