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Abstract

Principal Component Analysis (PCA) is the most
widely used unsupervised dimensionality reduc-
tion approach. In recent research, several robust
PCA algorithms were presented to enhance the
robustness of PCA model. However, the existing
robust PCA methods incorrectly center the data
using the />-norm distance to calculate the mean,
which actually is not the optimal mean due to the
£1-norm used in the objective functions. In this
paper, we propose novel robust PCA objective
functions with removing optimal mean automat-
ically. Both theoretical analysis and empirical
studies demonstrate our new methods can more
effectively reduce data dimensionality than pre-
vious robust PCA methods.

1. Introduction

Machine learning techniques have been widely applied to
many scientific domains as diverse as engineering, astron-
omy, biology, remote sensing, and economics. The dimen-
sionality of scientific data could be more than thousands,
such as digital images and videos, gene expressions and
DNA copy numbers, documents, and financial time series.
As aresult, data analysis on such data sets suffers from the
curse of dimensionality. To solve this problem, the dimen-
sionality reduction (subspace learning) algorithms have
been proposed to project the original high-dimensional fea-
ture space to a low-dimensional space, wherein the impor-
tant statistical properties are well preserved.

Among these methods, the unsupervised dimensionality re-
duction methods are more useful in the practical applica-
tions since labeled data are usually expensive to obtain and
we often have no any prior knowledge for new scientific
problems. Thus, in this work, we focus on unsupervised
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dimensionality reduction. Although PCA (Jolliffe, 2002)
is the most popularly used method, it is sensitive to the
data outliers because of the square /2-norm based objec-
tive function. In real-world applications, the data outliers
often largely appear in the datasets, thus PCA may not get
the optimal performance.

To address this problem, multiple robust PCA methods
have been presented, such as the rotational invariant L1
PCA (Ding et al., 2006) (R1PCA) and convex robust PCA
(Wright et al., 2009; Xu et al., 2012). The R1PCA mini-
mizes the /3 1-norm reconstruction error by imposing the
f5-norm on the feature dimension and the ¢;-norm on the
data points dimension, such that the effect of data out-
liers will be reduced by the /;-norm. Later this idea was
extended to robust tensor factorization (Huang & Ding,
2009). The convex robust PCA methods utilize the convex
relaxation objectives, such that the global solutions can be
achieved. However, all existing robust PCA methods ne-
glect the mean calculation problem. Because the /1-norm
or {3 1-norm are used in different robust PCA objectives,
the square ¢»-norm distance based mean is not the correct
mean anymore.

In this paper, we propose the novel robust PCA objective
functions with removing the optimal mean automatically.
We first show that the Euclidean distance based mean is
only valid for the traditional PCA. In robust PCA formula-
tions, the ¢1-norm or ¢ ;-norm are used as loss functions,
such that the Euclidean distance based mean is not the cor-
rect one. Starting from two widely used robust PCA formu-
lations, we propose our corresponding optimal mean robust
PCA objectives. We integrate the mean calculation into
the dimensionality reduction optimization objective, such
that the optimal mean can be obtained to enhance the di-
mensionality reduction. The optimization algorithms are
derived to solve the proposed non-smooth objectives with
convergence analysis. Both theoretical analysis and empir-
ical studies demonstrate our new methods can more effec-
tively reduce data dimensionality than previous robust PCA
methods.

Notations: For a vector v, we denote the /2-norm of v by
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[lv]l, = VoTwv. For a matrix M, we denote the (7, j)-th
element by m;;, the i-th column by m; and the i-th row
by m’. Denote ||M||3 = Tr(MT M), where trace(-) is
the trace operator for a square matrix, and denote || M|, =
Tr((MTM)?) as the trace norm (nuclear norm). In this
paper, we denote || M|[, ; = >_, [[m;]|, as the £2 1-norm of
matrix M, denote ||M|[; = >_, . |m;| as the £1-norm of
matrix M, and denote || M|, = Opmqr (M) as the £o-norm

of matrix M, where 0,4, (M) is the largest singular value
of M.

2. Principal Component Analysis Revisited

Given a data matrix X = [z, 72, ..., 7,] € R¥", where
d is the dimensionality of data points and n is the number
of data points. Essentially, Principal Component Analysis
(PCA) is to find a low-rank matrix to best approximate the
given data matrix in the sense of Euclidean distance. Sup-
pose the data are centered, i.e. the mean of the data is zero,
PCA is to solve the following problem:
i X-Z|% . 1
rarmin I I ey
According to the full rank decomposition, any matrix Z &
R¥™ with rank k can be decomposed as Z = UV, where
U € R¥™k vV € R" ¥ _ After denoting an identity matrix
by I, the problem (1) can be rewritten as
2
min X -uvt|. . 2
UeRkaVVERnxkaTU:IH HF ( )
Taking the derivative w.r.t. V and setting it to zero, we have
V = XTU. As aresult, the problem (2) becomes:
max Tr(UTXXTU). 3)
UeRdxk UTU=]
The columns of the optimal solution U to problem (3) are
the k eigenvectors of X X7 corresponding to the k largest
eigenvalues.

In the above derivation, we suppose the mean of the data
is zero. In the general case that the mean of the data is
not zero, PCA is to best approximate the given data matrix
with an optimal mean removed. Denote 1 as a column vec-
tor with all the elements being one, the problem of PCA
becomes:
2
i X -0’ -2z|,. . 4

oty I ®
Note the b € R?*! in problem (4) is also a variable to be
optimized. Similarly, the problem (4) can be rewritten as:

min X —o1" —UVT| . (5

bUERIXF VERn*k UTU=]

Taking the derivative w.r.t. V" and setting it to zero, we have
V = (X — b17)TU. Then the problem (5) becomes:

3 2
sorendtit o X - 01" —vUT(X - 01T, . ©)

Taking the derivative w.r.t. b and setting it to zero, we have
(I-UUT)(b1T - X)1 = 0. Suppose U+ is the orthogonal
complement of U, i.e. [U, U] is orthonormal matrix. Then
for any vector (b17 — X)1, it can be represented as:

T - X)1=Ua+ULS. (7)

Sowehave (I —UUT)(Ua+U*B) =0 Urp=0«
B = 0. Then Eq. (7) becomes:

b:%(Xl—i—Uoz), (8

where « could be any k-dimensional column vector. De-
note a centering matrix H = [ — %llT, by substituting
Eq. (8) into the problem (6), we have:

max Tr(UTXHXTU). 9)
UeRdxk UTU=1

We can see that no matter the data X is centered or not,
the problem (9) is unchanged. We can simply set o = 0
in Eq. (8), so the optimal mean in the problem (4) is b =
%X 1. That is to say, in traditional PCA, we can simply
center the data such that X1 = 0, and then solve Eq. (3)
instead of solving Eq. (9).

3. Robust Principal Component Analysis with
Optimal Mean

The problem (4) in the traditional PCA can be written as

b,myrlr]lci(%):k S |l — b — 2. Tt is known that squared

loss function is very sensitive to outliers. Therefore, the
squared approximation errors will make the traditional
PCA not robust to outliers in the data.

Previous robust PCA methods use a non-squared loss func-
tion to improve the robustness, but still center data via the
f>-norm distance based mean, which is incorrect. Instead
of using the ¢o-norm distance based mean, we propose a
new robust PCA with an optimal mean automatically re-
moved in the given data. Our new robust PCA is to solve
the following problem:

b,raﬁi(%):k ; sz —b- 21“2 ) (10)

where we optimize the mean in the robust PCA objective.
We can write the problem (10) in matrix form as follows:

ora SR, X —b1" —Z]|,, . (11)

Similarly, the problem (11) can be rewritten as:

n
. T
min Z‘xi—b—U(vl) H . (12)
bUER K VERM kK, UTU=T 2
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For each 7, by setting the derivative w.r¢ v® to zero, we have
v' = (z; — b)TU. Substituting it into Eq. (12), we arrive at

the following problem':

n

i - T P
b,UeRd@;?UTU:,;H(I U (@ =), (3)

In this paper, we use an iterative re-weighted method to
solve the problem (13). The detailed algorithm is outlined
in Algorithm 1, and the theoretical analysis of the algorithm
is given in the last of this section. In each iteration, we
solve the following problem:

min Zd” (I—UUT)(x; — (14)

bUERIXk UTU=] HQ’

where d;; is the weights as calculated in Algorithm 1.

Taking the derivative w.r.t. b and then setting it to zero, we
have (I — UUT)(b17 — X)D1 = 0. Similarly, we can let

(017 — X)D1 = Ua + U~ and get B = 0, so we have
(b17 — X)D1 = U« and thus we have
XD1 Ua
S A 1
b 1TD1 + 1TD1 (15

where « could be any k-dimensional column vector.

Substituting Eq. (15) into the problem (14), the problem
becomes

max Tr(U"XH.XTU), (16)
UeRixk UTU=I

where H; = D — LilTlDl is the weighted centering ma-
trix. The columns of the optimal solution U to problem (16)
are the k eigenvectors of X H; X7 corresponding to the k
largest eigenvalues. When the dimensionality is larger than
the number of data, i.e. d > n, the problem (16) can be
efficiently solved by the SVD of the matrix:

¥ <D% D11TD%>

1TD1
3.1. Theoretical Analysis of Algorithm 1

a7

Theorem 1 The Algorithm 1 will monotonically decrease
the objective of the problem (13) in each iteration until the
algorithm converges.

Proof: In the Steps 1 and 2 of Algorithm 1, denote the up-
dated U and b by U and b, respectively. Since the updated
U and b are the optimal solutions of the problem (14) and

'In practice, similar to (Nie et al., 2010), the ||z||, is replaced

by vzTz + ¢, where € — 0.

Algorithm 1 Algorithm to solve the problem (13).
Initialize D as an identity matrix
while not converge do
1. Update the columns of U by the £ right singular

_ Dp11”D3
D3 17D1

vectors of X (

largest singular values.
_ XD1
3. Update the diagonal matrix D, where the i-

th diagonal element of D is updated by d; =

) corresponding to the k

1
2[(I-=UUT)(z;=b)ll,
end while

according to the definition of d;; in the Step 3 of Algorithm
1, we have:

Z I( = U0T)(xi — b)II3
2[(I = UUT) (i = b,

1 — UUT) (s — )2
Zmu @ =ol, P

According to the Lemma 1 in (Nie et al., 2010), we know

H (I — U0 )(a; —b) H
2|(I =UUT)(zi = b)ll,

(I —UUT) (2 — b)||§
2T =00 @ b)), )

H (I — 00" (w; — b) H

éi(uu

), -

Summing Eq. (18) and Eq. (19) on both sides, we have

i | =00 @ —5)|, < Zj: (7 = UUT (@ = b,

(20
Since the problem (13) has an obvious lower bound 0, the
Algorithm 1 will converge. The equality in Eq. (20) holds
only when the Algorithm 1 converges. Thus, in each itera-
tion, Algorithm 1 monotonically decreases the objective of
the problem (13) until the algorithm converges. ]

Theorem 2 The Algorithm I will converge to a local min-
imal solution to the problem (13).

Proof: The Lagrangian function of problem (13) is:

= Y- v

—Tr((UTU —DA). 1)

L1(U,b,A) -b)|,

Taking the derivative w.r.t. U and b respectively and setting
them to zero, we get the KKT condition of the problem (13)
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as follows:

9 Z; (I —UUT)(z; —

5 —UA=0
d ; |1 = U0UT)(z; —b)|],
5 =0 (22)

Using the matrix calculus, we can write the Eq. (22) as fol-
lows:

" (I = UUT)(z; — b)(b—2)"U B

2 e o, A
(I-UUT)(b—a;)

ZHI UUT) (s~ B, " @9

In each iteration of Algorithm 1, we find the optimal solu-
tion to the problem (14). Thus the converged solution of
Algorithm 1 satisfies the KKT condition of problem (14).
The Lagrangian function of problem (14) is:

S || (1 - UUT) (s — b)|

i=1

~Tr((UTU —1)A). (24)

Lo(U, b, A)

Taking the derivative w.r.t. U and b respectively and setting
them to zero, we get the KKT condition of the problem (14)
as follows:

8z§dii||(I—UUT)(mi— I o
oU

8z§dii||(I—UUT)(mif I
5 =0 (25)

Similarly, we can write the Eq. (25) as follows using the
matrix calculus:

> 2di(I-UU" ) (2 —
=1

> 2di(I-UUT)(b— ;) =0 (26)

i

b)(b— ;) U = UA

According to the definition of d;; in Algorithm 1, we can
see that Eq. (26) is the same as Eq. (23) when the Algo-
rithm 1 is converged. Therefore, the converged solution of
Algorithm 1 satisfies Eq. (23), the KKT condition of prob-
lem (14). Thus the converged solution of Algorithm 1 is a
local minimal solution to the problem (13). O

3.2. Extension to a General Algorithm

It is worth noting that the content in this section is a parallel
work with (Nie et al., 2010)?. Later, we found that the re-

The motivation to derive this kind of algorithm is similar to
the motivation in Eq.(21) of (Nie et al., 2009) for solving the trace

Algorithm 2 Algorithm to solve the problem (27).
Initialize x € C
while not converge do
1. For each i, calculate D; = hl(g;(x))
2. Update x by the optimal solution to the problem

min f(x) + z Tr(DF gi(x))

end while

weighted algorithm applied in Algorithm 1 can be used to
solve the following more general problem:

) + Z hi(gi(x 27)

min
zeC f

where h;(z) is an arbitrary concave function in the domain
of g;(x). The details to solve problem (27) is described
in Algorithm 2, where h/(g;(x)) denotes any supergradient
of the concave function h; at point g;(x). According to the
definition of supergradient, it can be easily proved that the
Algorithm 2 converges. It can be seen that the converged
solution satisfies KKT condition of problem (27), thus the
Algorithm 2 will converge to a local optimal solution to
the problem (27). Empirical evidences show Algorithm 2
converges very fast and usually converges in 20 iterations.

Algorithm 2 is very easy to implement and powerful. For
example, it can be used to minimize the £,-norm, the /5 ;-
norm, the Schatten £,-norm (Nie et al., 2012), and many ro-
bust loss functions such as the capped (truncated) ¢,,-norm,
where 0 < p < 2.

More interestingly, if we need to maximize the objective in
Eq.(27), we only require that h;(x) is an arbitrary convex
function in the domain of g;(z). In this case, in Algorithm
2, the h%(g;(x)) in the first step is changed to be any sub-
gradient of h; at point g;(x), and the 'min’ in the second
step is changed to *'max’. Therefore, it can be verified that
the Algorithm 2 can also be used to maximize the £,-norm
(Nie et al., 2011), the ¢5 ,-norm, and the Schatten £,-norm,
where p > 1.

4. Optimal Mean Robust PCA with Convex
Relaxation

Recently, a convex relaxed robust PCA was proposed to
solve the following problem (Wright et al., 2009):

min [ X = Z||; +~[|1Z]..- (28)

To better pursuit the outliers in the data points, a recent
work is proposed to solve the following problem (Xu et al.,
2012):

min | X = 7|5, + /12, 29)

ratio problem. It is a very useful trick for algorithm derivation.
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Algorithm 3 Algorithm to solve the problem (30).
Let1 < p < 2. Initialize y = 0.1, E=0,A =0
while not converge do

1. Update b and Z by solving

D N e |
min s [ X 01" - z||_+412]. G2

whereX:X—E—&-%Aandi: %
2. Update E by solving

1 S
min 5 HE - XHF + 7Bl (33)

whereX:beleZ+iAand’y: L
3. Update Aby A = A+ u(X — 17 — Z — E)
3. Let 1 = min(pu, 10%)

end while

=1

However, all these work don’t take the optimal mean into
account. Although we can center the data such that X1 = 0
before solving problem (29), the mean b = %X 1 is not
necessarily the optimal mean in the problem (29) since the
¢3,1-norm loss function instead of the Frobenious norm loss
function is used in the objective.

In this section, we consider the optimal mean for the {5 ;-
norm loss function, and propose to solve the following
problem:

min || X — 617 — Z|, , +4]Z], - (30)
We can see problem (30) is a convex relaxation of problem

(11). We use Augmented Lagrangian Multiplier (ALM)
method to solve the proposed problem (30).

First, problem (30) can be rewritten as:

E A 31
e, B+l 6D

With the ALM method, we need to solve the following aug-
mented problem in each iteration:

in ||F A
i 1Ely: + 121, +

W 1
5||X -nT-zZ-E+ ;AH%

. Solving this problem with joint variables b, Z, F is diffi-
cult, we use an alternating method to solve it. The detailed
algorithm is outlined in Algorithm 3. When fix E, we solve
problem (32) to update b, Z, and when fix b, Z, we solve
problem (33) to update E.

The problem (33) can be easily solved and has the closed
form solution as follows: e; = (||Z;]|y — )+ 1= T Where

(8)4 is defined as (s)4+ = max(0, s).

We will see that the problem (32) can also be solved with
the closed form solution. First, we have the following lem-
mas:

Lemma 1 Suppose A = USV”, where the {y-norms of
all the columns of U and V are 1, and S is a nonnegative
diagonal matrix. Then ||Al|, <TrS.

Proof: Note that ||A|, = max Tr(XTAY),
XTX=[YTY=I
so we have |4, = max Tr(XTUSvTYy) =

XTX=IYTY=I
T, T _
XTXLHI%}/(TY:I D82 uviys < yisy = TS
The inequality in the last but one step holds since
Yt uvlyi = 0] Y X uj < omax(YXT) = 1, where
Omax (Y X T) denotes the largest singular value of matrix
Y X7 whichis 1since X7X =I1,YTY = 1. O

Lemma?2 || Z||, = %(HAHF+HB” )-

Proof: Suppose Z = ABT, then | Z||, = ||A <

S laillsllbilly < /S ladlls S lball; = [1AlllIBllp <

%(||A||; + HB||%), where the second step holds according

to Lemma 1 and the third step holds according to Cauchy-

Schwarz inequality. On the other hand, suppose the SVD

of Zis Z = USVT,let A = UX? and B = VX7, then

we have Z = ABT and | Z|, = [|[USVT||, = Tr(2) =
1 1 2 2

sUIUEz )5 + 22 VT3) = 5(IAllF + | Bl[f)- There-

fore, under the constraint Z7 = AB*, the minimization of
2 27

(1Al + 1 BlF) is 1 2], 0

Lemma3 I[fZH # Z, then | ZH||, < || Z],.

Proof: Suppose {A, B} = arg mjn (||AHF +[|B|[3),

WA +
, according

then according to Lemma 2 we have || Z||, =
|B||%) and Z = ABT. Thus ZH = A(HB)"
to ZH # Z and Lemma 2, we have

IZH|, =  min 2(||A||F +11BI7)
1, .
< Ul + I HBIIE)
1, - - 1 pan
= UMl +1BlF - -1"BB™)
n
1, .
< SUAIE +1BIE) = 1. 34

where the last inequality holds since ZH # Z and Z =
ABT indicates BT1 # 0. Therefore, we have ZH # Z =
1ZH|, <2l O

The problem (32) can be solved according to the following
theorem:
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Theorem 3 The unique optimal solution b, Z to the prob-
lem (32) is b = %Xl and Z = U(X — A1), VT, where
XH = USVT is the compact Singular Value Decompo-
sition (SVD) of X H and the (i, 5)-th element of (M) is
defined as max(0,m;;).

Proof: Taking the derivative of Eq. (32) w.r.t. b and setting
it to zero, we have:

~ 1 - 1 4
b=-X1--71.

(35)
n n
So the problem (32) becomes:
R R 2 | =
min | XH - ZH|}+31Z].. 66
First, we verify that Z = U(X — 71), V7 satisfies:
0c ZH — XH + 39| Z||, . (37)

Denote the compact SVD of XHas XH = UxVT =
U134 VlT + UsXlg VQT, where the singular values in X, are
all greater than v and the singular values in ¥, are all
smaller than or equal to 7. Then Z can be written as
Ui(21 — A1)V, On the other hand, we have X H1 =
0=USVT1=0=VT1=0=21=0= ZH = Z.
So we have the following equation:

XH-ZH
= U121V1T—|—U222V2T—U1(21 _:}i/I)VlT

= ALV + UV . (38)

It is lfnown (Watson, 1992) that the set of the subgradients
of || Z]] is:

| Z)|. = {h\Vi"+M : UM =0, MVy =0, || M]|, < 1}

So we have Uy Vi + ZUx 2, V3" € || Z||» and according
to Eq. (38) we have:

XH - ZH €79||Z|.. (39)

Therefore, Z = U(X — 71 )+VT satisfies Eq. (37). Since
the problem (32) is convex, Z = U (X — 1) VT is one of
the optimal solution to the problem (32).

Unlike the problem (4) which has many optimal solutions,
we further show that the solution b, Z is the unique optimal
solution to the problem (32).

According to Lemma 3, we know the optimal solution Z to
the problem (36) must satisfy ZH = Z, thus the optimal b
ish=1 — X1 according to Eq. (35), and the problem (36) is
equlvalent to the following problem:
N -

wmin 5| XH = 2|} +3)2]. (40)
Since the problem (40) is strictly convex, the optimal solu-
tion is unique. Therefore,b = 1 X1,Z = U(X - 41), V7
is the unique optimal solution to the problem (32). (|

5. Experimental Results

The main goal of PCA is to reduce the dimensionality such
that the reduced features represent and reconstruct the orig-
inal data as good as possible. In the experiments, we show
how well the reconstruction of the proposed new optimal
mean robust PCA methods compared to the previous PCA
and robust PCA methods. The compared PCA methods in-
clude original PCA (denoted as PCA), robust PCA with L1
maximization (denoted as LIPCA) (Kwak, 2008), RIPCA
(Ding et al., 2006) and robust PCA with convex relaxation
(solving Eq. (29), denoted as CRPCA) (Xu et al., 2012).
The proposed optimal mean robust PCA methods solv-
ing Eq. (11) and Eq. (30) are denoted as RPCA-OM and
CRPCA-OM, respectively.

5.1. Experimental Setup

In the experiments, we use 12 benchmark face image
datasets, including AT&T (Samaria & Harter, 1994),
UMIST (Graham & Allinson, 1998), Yale (face data),
YaleB (Georghiades et al., 2001), Palm (Hou et al., 2009),
CMU-PIE (Sim & Baker, 2003), FERET (Philips et al.,
1998), MSRA, Coil (Nene et al., 1996), JAFFE, MNIST,
and AR. We downloaded the image data from different
websites. Some of them were resized by previous work,
but this won’t effect our evaluation.

In each dataset, we randomly select 20% images and ran-
domly place a 1/4 size of occlusion in the selected images.
The reconstruction error is calculated as ) . ||z} — 7|5,
where x7 is the original image without occlusion and z; is
the reconstructed image.

5.2. Reconstruction Error Comparison for Robust
PCA methods

We first compare the reconstruction error of PCA, L1PCA,
RI1PCA and our proposed RPCA-OM methods on 12
benchmark datasets in Table 1. Because these methods
can share the common reduced dimensionality, their recon-
struction errors can be compared under the same dimen-
sion. In Table 1, we compare the reconstruction errors un-
der nine different dimensions from 10 to 50. We cannot list
more results due to limited space.

From Table 1, we can observe that:

1) The robust PCA methods RIPCA and RPCA-OM are
consistently better than the other two PCA methods, when
there are occlusions in the data which indicates these robust
PCA methods are effective and robust to outliers and noise
in the data, except for projected dimension 15 in YALEB.

2) L1PCA is better than PCA in some cases but is worse in
other cases. The reason is that LIPCA is to maximize the
#1-norm, but not to minimize the reconstruction error.
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Dimension 10 15 20 25 30 35 40 45 50
PCA 20.964 | 17.354 | 15.849 | 14.866 | 13.890 | 13.193 | 12.559 | 11.924 | 10.776
MNIST (x10%) LIPCA 18.255 | 16.384 | 15.198 | 14.282 | 13.584 | 12.895 | 12.256 | 11.666 | 11.359
RI1PCA 17911 | 16.005 | 14.865 | 13.895 | 13.044 | 12.350 | 11.719 | 11.148 | 10.774
RPCA-OM (our) | 17.885 | 15.974 | 14.859 | 13.899 | 13.037 | 12.303 | 11.707 | 11.064 | 10.627
Dimension 10 15 20 25 30 35 40 45 50
PCA 34.429 | 29.642 | 25.499 | 24.791 | 24.020 | 23.188 | 22.321 | 21.066 | 12.855
JAFFE (x10%) L1PCA 17.162 | 15.852 | 14.958 | 14.472 | 14.052 | 13.635 | 13.328 | 13.021 | 12.594
RIPCA 16.824 | 15.567 | 14.847 | 14.414 | 13.973 | 13.662 | 13.275 | 12.993 | 12.641
RPCA-OM (our) | 16.640 | 15.420 | 14.716 | 14.265 | 13.818 | 13.526 | 13.155 | 12.867 | 12.500
Dimension 10 15 20 25 30 35 40 45 50
PCA 10.451 | 9.6717 | 9.0074 | 8.5250 | 8.0723 | 7.7539 | 7.4673 | 7.2194 | 6.8686
YALEB (x10%) LIPCA 9.9809 | 9.3133 | 8.7559 | 8.2912 | 7.8940 | 7.5742 | 7.2877 | 7.0594 | 6.8297
RIPCA 10.020 | 9.3594 | 8.7214 | 8.2502 | 7.8399 | 7.5261 | 7.2370 | 6.9991 | 6.7686
RPCA-OM (our) | 9.9742 | 9.3290 | 8.6944 | 8.2169 | 7.8154 | 7.4969 | 7.2078 | 6.9719 | 6.7420
Dimension 10 15 20 25 30 35 40 45 50
PCA 19.632 | 18912 | 17.766 | 17.092 | 16.554 | 16.029 | 15.528 | 15.204 | 14.907
Coil20 (x10%) LIPCA 19.694 | 18.091 | 17.095 | 16.446 | 15913 | 15.497 | 15.124 | 14.799 | 14.509
RIPCA 19.569 | 17.988 | 16.972 | 16.326 | 15.828 | 15.411 | 15.032 | 14.706 | 14.419
RPCA-OM (our) | 19.397 | 17.905 | 16.903 | 16.270 | 15.766 | 15.376 | 14.995 | 14.667 | 14.380
Dimension 10 15 20 25 30 35 40 45 50
PCA 28.314 | 27.593 | 26.326 | 24.612 | 23.127 | 21.938 | 21.511 | 20.592 | 20.039
MSRA (x10%) L1PCA 16.181 | 15.372 | 14.765 | 14.265 | 13.827 | 13.476 | 13.180 | 12.945 | 12.737
RIPCA 16.237 | 15.440 | 14.786 | 14.180 | 13.796 | 13.462 | 13.162 | 12.927 | 12.728
RPCA-OM (our) | 16.112 | 15.302 | 14.683 | 14.068 | 13.708 | 13.345 | 13.074 | 12.837 | 12.631
Dimension 10 15 20 25 30 35 40 45 50
PCA 21.619 | 20.394 | 19.543 | 18.864 | 18.294 | 17.753 | 17.307 | 16.880 | 16.518
FERET (x10°) LIPCA 21.570 | 20.308 | 19.470 | 18.805 | 18.232 | 17.726 | 17.293 | 16.871 | 16.536
RIPCA 21.481 | 20.302 | 19.435 | 18.791 | 18.220 | 17.673 | 17.232 | 16.811 | 16.442
RPCA-OM (our) | 21.430 | 20.262 | 19.395 | 18.763 | 18.154 | 17.638 | 17.200 | 16.784 | 16.413
Dimension 10 15 20 25 30 35 40 45 50
PCA 7.8659 | 6.6812 | 5.8340 | 5.2123 | 4.7648 | 4.3930 | 4.0672 | 3.8033 | 3.5799
CMU-PIE (x10%) LIPCA 7.8727 | 6.6765 | 5.8485 | 5.2148 | 4.7691 | 4.3852 | 4.0694 | 3.8020 | 3.5889
RI1PCA 7.8431 | 6.6478 | 5.8068 | 5.1777 | 4.7334 | 4.3555 | 4.0319 | 3.7716 | 3.5473
RPCA-OM (our) | 7.8010 | 6.6134 | 5.7799 | 5.1547 | 4.7089 | 4.3315 | 4.0096 | 3.7547 | 3.5345
Dimension 10 15 20 25 30 35 40 45 50
PCA 29.333 | 27.426 | 26.152 | 25.119 | 24.270 | 23.613 | 23.002 | 22.425 | 21.931
AT&T (x10%) LIPCA 28.948 | 27.141 | 26.026 | 24.980 | 24.128 | 23.432 | 22.873 | 22.319 | 21.798
RI1PCA 28.877 | 27.109 | 25.784 | 24.857 | 23.903 | 23.266 | 22.742 | 22.176 | 21.676
RPCA-OM (our) | 28.774 | 27.036 | 25.713 | 24.756 | 23.814 | 23.153 | 22.631 | 22.064 | 21.549
Dimension 10 15 20 25 30 35 40 45 50
PCA 28917 | 27.248 | 25966 | 24910 | 24.053 | 23.330 | 22.780 | 22.180 | 21.698
UMIST (x10%) LIPCA 28.568 | 27.022 | 25.765 | 24.726 | 23.888 | 23.243 | 22.640 | 22.054 | 21.628
RIPCA 28.486 | 26.971 | 25.709 | 24.603 | 23.740 | 23.050 | 22.532 | 21.964 | 21.448
RPCA-OM (our) | 28.383 | 26.900 | 25.600 | 24.498 | 23.655 | 22.944 | 22.424 | 21.850 | 21.312
Dimension 10 15 20 25 30 35 40 45 50
PCA 23.293 | 21.004 | 19.601 | 18.428 | 17.544 | 16.816 | 16.164 | 15.617 | 15.185
AR (x10%) LIPCA 23.298 | 21.006 | 19.612 | 18.499 | 17.637 | 16.905 | 16.225 | 15.723 | 15.232
RI1PCA 23.032 | 20.837 | 19.417 | 18.251 | 17.356 | 16.644 | 15.998 | 15.428 | 14.999
RPCA-OM (our) | 22.912 | 20.767 | 19.321 | 18.193 | 17.279 | 16.530 | 15.879 | 15.306 | 14.874
Dimension 10 15 20 25 30 35 40 45 50
PCA 22.119 | 19.445 | 17.995 | 16.940 | 16.152 | 15.658 | 15.139 | 14.728 | 14.218
YALE (x10%) LIPCA 17.959 | 16.591 | 15.514 | 14.872 | 14.310 | 13.745 | 13.308 | 12.874 | 12.434
RIPCA 17.742 | 16.253 | 15.207 | 14.526 | 14.015 | 13.530 | 12.997 | 12.631 | 12.331
RPCA-OM (our) | 17.692 | 15.150 | 14.461 | 14.009 | 13.507 | 12.890 | 12.889 | 12.502 | 12.200
Dimension 10 15 20 25 30 35 40 45 50
PCA 14703 | 13.355 | 12.376 | 11.596 | 11.011 | 10.561 | 10.119 | 9.7871 | 9.4969
PALM (x10%) L1PCA 14734 | 13.373 | 12.377 | 11.628 | 11.033 | 10.580 | 10.156 | 9.7885 | 9.4881
RIPCA 14.665 | 13.319 | 12.300 | 11.527 | 10.954 | 10.461 | 10.053 | 9.7027 | 9.4058
RPCA-OM (our) | 14.651 | 13.300 | 12.287 | 11.499 | 10.935 | 10.437 | 10.035 | 9.6745 | 9.3826

Table 1. Reconstruction error comparisons of four PCA methods on 12 benchmark datasets using different dimensions. The best recon-
struction result under each dimension is bolded.
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Figure 1. Reconstruction errors under different v obtained by CRPCA and our CRPCA-OM methods.

3) Since the optimal mean is considered in the reconstruc-
tion error minimization, our RPCA-OM method consis-
tently outperforms other three methods in most cases.

5.3. Reconstruction Error Comparison for Convex
Robust PCA methods

In CRPCA and our CRPCA-OM methods, the projection
dimension cannot be selected. We can only get the recon-
struction data via adjusting the parameter . Thus, we com-
pare these two methods together. We choose the range of
v based on the suggestion from (Wright et al., 2009), in
which the 7 is suggested with the scale of m2 (m is the di-
mension of matrix Z). Considering the size of images used
in our experiments, we select the range of  from 30 to 90.
The reconstruction error comparison of these two methods
are shown in Fig.1. From Fig.1, we can conclude that:

1) As the value of the regularization parameter -y increases,
the reconstruction error for both methods increases as well,
which is due to the weight we put in the reconstruction error
decreases. As a result, the algorithm pays less attention to
minimizing the reconstruction error.

2) Our CRPCA-OM method is consistently better than CR-
PCA approach, because CRPCA-OM method takes into ac-
count the optimal mean in the Eq. (29), which as we have
said previously is not the Frobenious norm loss function’s
mean, but the /3 ;-norm loss function’s mean.

6. Conclusions

In this paper, we proposed the novel optimal mean robust
PCA models with automatically removing the correct data
mean. To solve the proposed non-smooth objectives, we
derive the new optimization algorithms with proved con-
vergence. Both theoretical analysis and empirical results
show our new robust PCA with optimal mean models con-
sistently outperform the existing robust PCA methods.
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