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A. Proof of Proposition 3.1
Let X be partially exchangeable with respect to the statistic
T with values T , let |T | = poly(|X|), and let, for any
partial assignment e, St,e := {x | T (x) = t and x ∼ e} ,
where x ∼ e denotes that x and e agree on the variables in
their intersection (Koller & Friedman, 2009). If we can in
time poly(|X|),

(1) for every e and every t ∈ T , decide if there exists an
x ∈ St,e and, if so, construct such an x,

then the complexity of MAP inference, that is, com-
puting argmaxy P (y, e) for any partial assignment e, is
poly(|X|). If, in addition, we can in time poly(|X|),

(2) for every e and every t ∈ T , compute |St,e|,

then the complexity of marginal inference, that is, comput-
ing P (e) for any partial assignment e, is poly(|X|).

Proof. We first prove statement (1). Let e be a given
partial assignment and assume we want to compute
argmaxy P (y, e). We construct an xt ∈ St,e for each
t ∈ T and set x̂t := argmaxxt

P (xt). By assumption, this
is possible in time poly(|X|). Since we have that x̂t = ŷe
with ŷ := argmaxy P (y, e) we can extract the solution in
linear time.

To prove statement (2), let e be a partial assignment. We
construct a xt ∈ St,e for each t ∈ T for which such an xt
exists, compute |St,e|, and return

∑
t∈T P (xt)|St,e|. By

assumption, this is possible in time poly(|X|).

We can utilize Proposition 3.1 to prove that probabilistic in-
ference for a sequence of n exchangeable binary variables
is tractable.

Example A.1 (Finite Exchangeability). Let X be an ex-
changeable sequence of binary random variables. Let n(e)
be the number of 1s in a partial assignment e to the vari-
ables X. Clearly, we have that X is exchangeable with
respect to the statistic T (x) = n(x) with values T =
{0, ..., n}.

First, we prove that for every partial assignment e to k of
the n variables and every t ∈ T , we can decide if there
exists an x ∈ St,e and, if so, construct such an x in time
poly(|X|). If n(e) > t or n−k+n(e) < t, then there does
not exist such an x. Otherwise it is possible to generate a x
with n(x) = t in linear time by assigning exactly t − n(e)
ones to the unassigned variables and we have that x ∈ St,e.
Hence, MAP inference is tractable.

Next, we prove that for every partial assignment e to k
variables and every t ∈ T , we can compute |St,e| in time

poly(|X|). But this is possible since |St,e| =
(
n−k
t−n(e)

)
.

Hence, marginal inference is tractable.

Please note that Example A.1 implies tractability results for
numerous important special cases of finite exchangeability
such as parity and threshold functions.

There are forms of finite partial exchangeability (Diaco-
nis & Freedman, 1980a) that go beyond the notion of full
finite exchengeability and, therefore, cardinality-based po-
tentials (Gupta et al., 2007; Tarlow et al., 2010) of Exam-
ple A.1. We provide three examples.

Example A.2 (Block Exchangeability). Let w be a fixed
constant. For a sequence of binary random variables X let
X = {X1, ...,Xw} be a partition of the variables X into
w subsequences, and let nY(x) be the number of 1s in an
assignment x projected onto the variables Y ⊆ X. Now,
let T (x) = (nX1(x), ..., nXw

(x)).

It is straight-forward to verify that |T | = poly(|X|).
Moreover, with arguments similar to those made in Exam-
ple A.1 one can show that conditions (1) and (2) of Propo-
sition 3.1 are met. Hence, MAP and marginal inference are
tractable for the statistic T .

Example A.3. Let X be a sequence of n binary random
variables and let τ0→1(x) be the number of times 01 occurs
as a substring2 in x. Now, consider the statistic

T (x) = τ0→1(x).

For example, for x = 11011111 we have T (x) = 1 and
for x = 01010101 we have T (x) = 4. We also have that
|T | = bn/2c+ 1 = poly(|X|).

Now, let e be a partial assignment to k of the n variables
and let 0 ≤ t ≤ bn/2c be a value of the statistic. Let
b = {0, 1, ∗}n be a string where the characters 0 and 1
encode the assignments to variables according to e and the
character * encodes unassigned variables. We now parti-
tion b into four sets Gij , i, j ∈ {0, 1}, of substrings de-
fined as Gij := {s v b | s1 = i, s|s| = j, s` = * for 1 ≤
i < ` < j ≤ |s|}, where v denotes the substring rela-
tion. We can now complete the partial assignment e to
a joint assignment x with T (x) = t if and only if (1)
τ0→1(b)+|G01| ≤ t and (2) τ0→1(b)+

∑
s∈G00

⌈
|s|−2

2
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2
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2
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When these two conditions are met, the full assignment
x can be constructed by completing the substring in the
groups Gij so as to make T (x) = t and this is possible in
linear time. Hence, MAP inference is tractable.

It is possible to construct novel tractable statistics by nest-
ing statistics that are known to be tractable.

2As opposed to subsequences, substrings are consecutive parts
of a string.
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Example A.4 (Nested Tractable Statistics). Let X be an
n × n array of binary random variables. For instance,
X could represent a binarized image with n rows and n
columns. Let k be a fixed integer constant and let ` be
the integer such that n = k`. We assume without loss
of generality that such an integer exists. We partition the
original array into `2 squares of dimension k × k. For
1 ≤ i ≤ `2, let Si be the variables of square i. Now,
let T1 : {0, 1}k2 → {0, 1} be the statistic defined as

T1(s = (s1, ..., sk2)) = [[
k2∑
i=1

si > τ ]],

for some τ with 0 ≤ τ < k2. That is, T1(s) = 1, if
the number of 1s in a given square exceeds a threshold of
τ and T1(s) = 0 otherwise. Please note that for τ = 0
this corresponds to max-pooling. Now, let T : {0, 1}n2 →
{0, ..., `2} be the statistic defined as follows:

T (x) =
`2∑
i=1

T1(si).

Based on the tractability of the two statistics, it is straight-
forward to verify that both MAP and marginal inference is
tractable for the statistic T .

Please note that the presented theoretical framework facili-
tates the discovery and development of novel tractable non-
local potentials.

B. Proof of Theorem 3.2
Let X1, ..., Xn be a sequence of random variables with
joint distribution P , let T be a statistic with distinct val-
ues t0, ..., tk, and let X1, ..., Xn be partially exchangeable
with respect to T . The ML estimates for N examples,
x(1), ...,x(N), are MLE[(w0, ..., wk)] =

(
c0
N , ...,

ck

N

)
, where

ci =
∑N
j=1[[T

(
x(j)

)
= ti]].

Proof. Let θ = (w0, ..., wk). By Theorem 2.3, the log-
likelihood for N examples x(1), ...,x(N) is

L(θ) =
N∑
j=1

log

(
k∑
i=0

wiUi

(
x(j)

))
.

Let ci =
∑N
j=1[[T

(
x(j)

)
= ti]] and let x̂i

be a joint assignment with T (x̂i) = ti. Then,
L(θ) =

∑k
i=0 ci log(wiUi(x̂i)) =

∑k
i=0 ci[log(wi) +

log(Ui(x̂i))] =
∑k
i=0 ci log(wi) +

∑k
i=0 ci log(Ui(x̂i)).

The second term is free of parameters and, hence, find-
ing the ML estimates amounts to maximizing the first sum.
This is equivalent to finding the maximum likelihood esti-
mate of a multinomial which can be solved with Lagrange
multipliers. Hence, MLE(wi) = ci

N , for 0 ≤ i ≤ k.

C. Proof of Proposition 3.3
The following statements are necessary conditions for ex-
changeability of a finite sequence of random variables
X1, ..., Xn. For all i, j, i′, j′ ∈ {1, ..., n} with i 6= j and
i′ 6= j′

(1) E(Xi) = E(Xj);

(2) Var(Xi) = Var(Xj); and

(3) Cov(Xi, Xj) = Cov(Xi′ , Xj′) ≥ −Var(Xi)
(n−1) .

These conditions are well-known and are straight-forward
to prove. Nevertheless, for the sake of completeness, we
prove statement (3).

Proof. It is straight-forward to prove statements (1) and
(2). In order to prove statement (3) we use statements (2)
to write

0 ≤ Var(X1 + · · ·+Xn)

= Var(X1) + · · ·+ Var(Xn) + 2
∑
i<j

Cov(Xi, Xj)

= nVar(Xi) + n(n− 1)Cov(Xi, Xj).

Hence, Cov(Xi, Xj) ≥ −Var(Xi)
(n−1) .

D. Proof of Theorem 4.4
The mixtures of EVMs family is globally optimal under
zero-one loss for

1. Conjunctions and disjunctions of attributes;

2. Symmetric Boolean functions such as

• Threshold (m-of-n) functions
• Parity functions
• Counting functions
• Exact value functions

Proof. Let X be the sequence of variables under consid-
eration. We write y(x) for the (hidden) class value of ex-
ample x. For conjunctions of attributes, let X̂ ⊆ X be the
sequence of variables that are part of the conjunction. Con-
ditioned on the binary class variable being either 0 or 1, we
partition the variables into the two blocks X̂ and X − X̂.
We set the parameters of the MEVM as follows.

q(X̂)(` | 1) = 1.0 if ` = |X̂| and q(X̂)(` | 1) = 0.0
otherwise;

q(X̂)(` | 0) = 0.0 if ` = |X̂| and q(X̂)(` | 0) = (|X̂|` )
2|X̂|

otherwise;
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q(X−X̂)(` | 1) = (|X|−|X̂|` )
2|X|−|X̂|

; q(X−X̂)(` | 0) = (|X|−|X̂|` )
2|X|−|X̂|

;

p(1) = 2|X|−|X̂|

2|X|
; and p(0) = (2|X̂|−1)(2|X|−|X̂|)

2|X|
.

Then, we have that P(1 | x) > 0 if y(x) = 1 and
P(1 | x) = 0 otherwise. Moreover, P(0 | x) = 0 if
y(x) = 1 and P(0 | x) > 0 otherwise. Hence, the MEVM
classifier always returns the correct class value. A similar
argument can be made to prove the optimality for disjunc-
tions of attributes.

To prove the second statement, we consider an MEVM
model with a binary class variable and the following block
structure. For each of the class variable’s values y, y ∈
{0, 1}, we have that Xy = {X1, ..., Xn}. That is, con-
ditioned on each class value, the attributes are assumed
to be exchangeable (see Figure 3; right). It is straight-
forward to verify that this particular MEVM can learn ar-
bitrary discrete distributions over any symmetric Boolean
function.


