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A. Proofs

A.1. Proof of Theorem 2

The derivative of g(p) is
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Hence, ¢'(p) > 0 whenever p < yApq,k,. and g(p) is strictly increasing in the interval (—oo, YApg i, ). Moreover,

lim g(p) = -7 and lim  g(p) = +o0,
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and thus g(p) has exactly one root in (—00, YApg i, ). Notice that ||z|]2 = || VeC(VTYVP)”Q = |V Qy||2 = ||ly||2 since
Vpq is an orthonormal matrix, and then pg = YApQ ko — ||Yll2/T = YAPQ ko — Hz|| /T. As aresult,
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where the first inequality is because Apg x > ApQ i, for k > kq. The fact that g(pg) < 0 concludes that the only root in
(=00, YAPQ, k) is in [po, YAPQ,k, ) but not (—oo, po). O

A.2. Proof of Theorem 3

Denote by h = vec(H), y = vec(Y) and M = (yP ® Q — pl,..), and denote by h’, 3y’ and M’ similarly. Let Ay, (+) and
Amax (+) be two functions extracting the smallest and largest eigenvalues of a matrix. Under our assumption,
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which means that M is positive definite, and so is M’. By Eq. (14),
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Note that || Av||2 < Amax(A)||v||2 for any symmetric positive-definite matrix A and any vector v, as well as A\pax(AB) <
Amax (A) Amax(B) for any symmetric positive-definite matrices A and B. Hence,
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where the first inequality is the triangle inequality, the second inequality is because M ~! and M’~! are symmetric positive
definite, and the third inequality follows from Apax (M 1) = 1/Anin(M) and Apax(M'™1) = 1/Amin(M’). Due to the
symmetry of h and b/,

ly =¥l | |p—p'lmin{{[yll2, lyll2}
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This inequality is the vectorization of (18).

For MAVR in optimization (9), Theorem 2 together with our assumption indicates that

YAPQ1 — lYll2/T < p <¥APq.1,
YAr@1 — 1Y ll2/7 < 0" <¥Ap@.1.

so |p" = p| < max{|lyll2/7, |y'll2/7} and

Ih—Hs < ly = y'll2 | max{liyllz, [ly'll2} min{liyllz, lly'll2}
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For unconstrained MAVR in optimization (10), we have
||h _ h/||2 < Hy - y/||2
> nyﬂ- 9
since p = p' = —1. O

A.3. Proof of Theorem 4

Denote by h = vec(H), y = vec(Y), h* = vec(H*), e = vec(E), and M = vP ® Q. The Kronecker product P ® Q
is symmetric and positive definite, and then M/ is a well-defined symmetric and positive-definite matrix. We can know
based on V(H*) < (Y, that

IMY2R* |y = \/vh (P @ Q)R < \[vCullh* 3 = VACh|R"|2.

Let Apin(+) and Apax(+) be two functions extracting the smallest and largest eigenvalues of a matrix. In the following, we
will frequently use that || Av||a < Amax(A)||v||2 for any symmetric positive-definite matrix A and any vector v.

Consider unconstrained MAVR in optimization (10) first. Since p = —1,
h—h*=(M+1I,) 'y—h"
=(M+1I,.) " (h* +e) — (M + I,.) " (M + I,.)h*
= (M 4+ L,.) *Mh* + (M + I,.) 'e.

As a consequence,
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since E[(M + I,.)"‘e] = (M + I,.) 'Ee = 0,,.. Subsequently,
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where the last inequality is because the eigenvalues of (Apg + Ipne)™
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On the other hand,
E[[(M + Ine) " "ell3 < Amax((M + Ine) ™)) - Elle]3
Ele'e]
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Hence,

Bllh — h*[3 < SCullh* |+ To? + 0%,
which completes the proof of inequality (20).
Next, consider MAVR in optimization (9). We would have
h—h" = (M —pl) "'y —h"
= (M = plpe) ' (h" + &) = (M — plye) ™ (M = plnc) b’
=—(M - plmr (M = (p+ V) Ipe)h” + (M — plye) ™"

In general, E[(M — pI,,.)"'e] # 0, since p depends on e. Furthermore, M — (p + 1)1I,,. may have negative eigenvalues
when YApg 1 — 1 < p < yApg,1 — C,, +. Taking the expectation of [|h — h™||2,
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On the other hand,
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where we used the fact that sup,, p is independent of e, and applied Jensen'’s inequality to obtain that

Ellyl> < /Elly|3 < VI.
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In the end,
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where the third inequality is due to Jensen’s inequality. Therefore, inequality (19) follows by combining the three upper
bounds of expectations. O



