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1. TT-representation for some types of
potentials

In this section we derive explicit formulae for the TT-
representations of two types of potentials: unary and pair-
wise Ising. The correctness of each formula immediately
follows from the definition of the matrix product. Both the
representations are of low TT-rank. One can use the derived
formulae instead of TT-SVD during step 1 of the algorithm
from section 5.1.

1.1. Unary potentials

The unary potentials Θ`(x) =
∑n

i=1 fi(xi), where
fi (i = 1, . . . , n) are arbitrary univariate functions, admit
a TT-representation Θ`(x) =

∏n
i=1G

`
i [xi] with the

following cores:

G`
i [xi] =

[
1 0

fi(xi) 1

]
, i = 2, . . . , n− 1,

G`
1[x1] =

[
f1(x1) 1

]
,

G`
n[xn] =

[
1

fn(xn)

]
.

The maximal TT-rank equals 2.

1.2. Ising potentials

The Ising potential

Θ`(xi, xj) = xixj , 1 ≤ i < j ≤ n,

can be represented in the TT-format as Θ`(xi, xj) =
G`

i [xi]G
`
j [xj ], where the TT-cores are defined as follows:

G`
i [xi] = xi, G`

j [xj ] = xj ,

i.e. each core is simply a number (a 1-by-1 matrix) for
each value of xi (or xj). The TT-representation of the Ising
potential is of maximal TT-rank equal to 1.

2. Proof of theorem 1
The main paper presents the algorithm that converts the en-
ergy tensor E into the TT-format (sec. 5.1). Theorem 1
states an upper bound on the maximal TT-rank of the re-
sulting TT-representation.
Theorem 1. If the order of each potential Θ`, ` =
1, . . . ,m does not exceed p, then the algorithm in sec. 5.1
constructs a TT-representation for the energy E in such a
way that its maximal TT-rank is polynomially bounded:

r(E) ≤ d
p
2 ·m,

where each variable xi takes at most d possible values.

Proof. At first, let us estimate the rank of the TT-
representation of the potential Θ` constructed after step 1
of the algorithm. According to Oseledets (2011, Th. 2.1)
the TT-SVD algorithm finds a TT-decomposition with the
ranks that are not higher than the TT-ranks of the corre-
sponding unfolding matrices1. Since the order of each po-
tential does not exceed p, the i-th unfolding matrix Ai

of Θ` is of dimensionality α×β with α ≤ di and β ≤ dp−i.
Recall that the rank of an α × β matrix cannot be greater
than min{α, β}. Thus, inequality r(Ai) ≤ d

p
2 holds and

therefore after step 1 the following bound is true:

r(Θ`) ≤ d
p
2 . (1)

As mentioned in the algorithm description, during step 2
the TT-rank of the potential tensor is not increasing. Thus,
after step 2 inequality (1) still holds for the tensor of each
potential. During step 3 of the algorithm we compute the
sum of the potentials, so the maximal TT-rank is growing
additively. The fact that the total number of potentials is m
completes the proof.

1 An i-th unfolding matrix of an n-dimensional tensor A is a
matrix where the first index is defined by the first i dimensions of
the tensor A and the second index – by the last n− i dimensions
of A.
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3. Proof of theorem 2 and corollary 1
We propose algorithm 1 to compute the partition function
of MRF. Reminding the notation the approximation of the
product of the sequence of matrices {Bj}nj=i in the TT-
format is denoted by fi. We have fn = Bn and f1 = Z̃.
Using the matrix-by-vector product and the TT-rounding
procedure algorithm 1 sequentially computes values fi:

fi = round(Bifi+1, ε),

where the TT-rounding precision controls the relative accu-
racy:

‖Bifi+1 − fi‖2 ≤ ε ‖Bifi+1‖2 . (2)

Theorem 2. For an MRF and a rounding parameter ε ≥ 0
the absolute error of the partition function estimation Z̃
computed by algorithm 1 is bounded as follows:∣∣∣Z − Z̃∣∣∣ ≤ ‖B1‖2 . . . ‖Bn−2‖2 · ‖Bn−1fn − fn−1‖2 +

+ ‖B1‖2 . . . ‖Bn−3‖2 · ‖Bn−2fn−1 − fn−2‖2 + . . .+

+ ‖B1f2 − f1‖2 . (3)

We start the proof with the following lemma.

Lemma 1. For all i = 1, . . . , n−1 the following inequality
holds:

‖Bi . . . Bn − fi‖2 ≤
≤ ‖Bi‖2 . . . ‖Bn−2‖2 · ‖Bn−1fn − fn−1‖2 +
+ ‖Bi‖2 . . . ‖Bn−3‖2 · ‖Bn−2fn−1 − fn−2‖2 +
+ . . .+ ‖Bifi+1 − fi‖2 . (4)

Proof. We prove the lemma by induction. Indeed, for i =
n− 1 we have

‖Bn−1Bn − fn−1‖2 = ‖Bn−1fn − fn−1‖2 ,

where equality fn = Bn holds by definition of fn.

Now suppose that (4) is true for all i = j + 1, . . . , n − 1.
For i = j we obtain

‖Bj . . . Bn − fj‖2 =

= ‖(Bj . . . Bn −Bjfj+1) + (Bjfj+1 − fj)‖2 ≤
≤ ‖Bj‖2 ‖Bj+1 . . . Bn − fj+1‖2 + ‖Bjfj+1 − fj‖2 ≤
≤ ‖Bj‖2 (‖Bj+1‖2 . . . ‖Bn−2‖2 · ‖Bn−1fn − fn−1‖2 +
+ ‖Bj+1‖2 . . . ‖Bn−3‖2 · ‖Bn−2fn−1 − fn−2‖2 +
+ . . .+ ‖Bj+1fj+2 − fj+1‖2) + ‖Bjfj+1 − fj‖2 ,

which is (4) for i = j.

Proof of the theorem 2. Recall that Z = B1 . . . Bn and
Z̃ = f1. Therefore

|Z − Z̃| = |B1 . . . Bn − f1| = ‖B1 . . . Bn − f1‖2 .

The latter equation follows from the fact that both
B1 . . . Bn and f1 are actually real numbers and in this
case the absolute value and the vector L2-norm coincide.
Applying lemma 1 to the equation above completes the
proof.

Corollary 1. For an MRF and a rounding parameter ε ≥ 0
the absolute error of the partition function estimation Z̃
computed by algorithm 1 is bounded as follows:∣∣∣Z − Z̃∣∣∣ ≤ ‖B1‖2 . . . ‖Bn‖2 ((1 + ε)n−1 − 1). (5)

We start with proving lemmas 2 and 3.

Lemma 2. Inequality (6) holds for all i = 1, . . . , n:

‖fi‖2 ≤ ‖Bi‖2 . . . ‖Bn‖2 (1 + ε)n−i. (6)

Proof. We prove the lemma by induction. For i = n the
statement immediately follows from the definition of fn.

Let (6) be true for i = j+1 ≤ n. Inequality (2) implies that

‖fj‖2 = ‖fj −Bjfj+1 +Bjfj+1‖2 ≤
≤ ε ‖Bj‖2 ‖fj+1‖2 + ‖Bj‖2 ‖fj+1‖2 =

= ‖Bj‖2 ‖fj+1‖2 (1 + ε) ≤
≤‖Bj‖2 . . . ‖Bn‖2 (1 + ε)n−j ,

where the last inequality follows from the induction as-
sumption.

Lemma 3. Inequality (7) holds for all i = 1, . . . , n:

‖Bifi+1 − fi‖2 ≤ ‖Bi‖2 . . . ‖Bn‖2 ε(1 + ε)n−i−1. (7)

Proof. The statement immediately follows from lemma 2
and the inequality

‖Bifi+1 − fi‖2 ≤ ε ‖Bifi+1‖2 ≤ ε ‖Bi‖2 ‖fi+1‖2 .

Proof of the corollary 1. By applying lemma 3 to inequal-
ity (3) we obtain

|Z − Z̃| ≤ ‖B1‖2 . . . ‖Bn‖2 ε+
+ ‖B1‖2 . . . ‖Bn‖2 ε(1 + ε) + . . .+

+ ‖B1‖2 . . . ‖Bn‖2 ε(1 + ε)n−2 =

= ‖B1‖2 . . . ‖Bn‖2 ε
∑n−2

j=0
(1 + ε)j =

= ‖B1‖2 . . . ‖Bn‖2 ((1 + ε)n−1 − 1).
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4. Details of the experimental setup
In our experiments we use the Ising model as the main play-
ground. The energy of the model is defined as follows:

E(x) = − 1

T

( n∑
i=1

xihi +
∑
{i,j}∈E

cijxixj

)
, (8)

where variables xi, i = 1, . . . , n take values from the
set {−1, 1} and E is the connectivity system. We refer to
coefficients hi as unary weights, to cij as pairwise weights,
and to parameter T as temperature. The connectivity sys-
tem E defines pairwise connections between the variables.
We typically use square 4-connected grids of 10×10 nodes.
If all pairwise weights are equal (cij = c) we call the Ising
model homogeneous and heterogeneous otherwise.

In sec. 6.2 we construct the plots in fig. 3 using the het-
erogeneous Ising model of size 10 with with unary and
pairwise weights generated uniformly from [−1, 1] with the
temperature T set to 1.

In sec. 7.1 (fig. 2) we use a series of homogeneous Ising
models based on 4-connected grids of increasing sizes:
from 1× 1 to 12× 12. All the unary weights hi are gener-
ated from the uniform distribution on segment [−1, 1], the
pairwise weight c equals 1, the temperature T equals 10.

In sec. 7.2 for experiment 1 (fig. 4a) we use a set of ho-
mogeneous Ising models of size 10 × 10 where unary
weights hi are generated again from the uniform distribu-
tion on segment [−1, 1], the pairwise weight c equals 1, the
temperature T varies from 10−1 to 103. For each value of
the temperature we generate 50 models and report the abso-
lute error of the logarithm of the computed partition func-
tions (we show the median, lower and upper quartiles2).

In sec. 7.2 for experiment 2 (fig. 4b) we use a series of mod-
els generated by the authors of the WISH method (Ermon
et al., 2013). These are heterogeneous Ising models (mixed
attractive and repulsive potentials) of size 10 × 10, where
the unary weights are generated uniformly on [−1, 1], the
temperature is fixed to 1, and the pairwise weights are gen-
erated uniformly from [−f, f ] with the parameter f vary-
ing from 0.25 to 3. We report the absolute error of the
logarithm of the computed partition functions.

In sec. 7.2 for experiment 3 (fig. 5) we use homogeneous
Ising models of size 10 × 10 where the unary potentials
are generated uniformly from [−1, 1], the pairwise weight
equaled 1, the temperature varies from 10−1 to 101. For
each value of the temperature we average results over 10
models.

In sec. 7.3 (fig. 6) we use heterogeneous Ising models of

2The median, lower and upper quartiles are defined as 50%,
25%, and 75% quantiles respectively.

size 10 × 10, where the unary weights are generated uni-
formly from [−1, 1], the temperature is fixed to 1, and
the pairwise weights are generated uniformly from [−f, f ]
with parameter f varying from 0 to 3. For each value of
parameter f we generate 50 models and report the aver-
age absolute error of the marginal for the “+1” class, i.e.
0.01

∑100
i=1 |p̃(xi = +1)− p(xi = +1)|, where p̃(xi = +1)

and p(xi = +1) are the approximate, and the true marginal
probabilities of variable xi taking value “+1” correspond-
ingly. For each value of the parameter f we report the me-
dian, the lower and upper quartiles w.r.t. all the generated
models.
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