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Abstract
The maximum a-posteriori (MAP) perturbation
framework has emerged as a useful approach
for inference and learning in high dimensional
complex models. By maximizing a randomly
perturbed potential function, MAP perturbations
generate unbiased samples from the Gibbs dis-
tribution. Unfortunately, the computational cost
of generating so many high-dimensional random
variables can be prohibitive. More efficient algo-
rithms use sequential sampling strategies based
on the expected value of low dimensional MAP
perturbations. This paper develops new measure
concentration inequalities that bound the number
of samples needed to estimate such expected val-
ues. Applying the general result to MAP pertur-
bations can yield a more efficient algorithm to
approximate sampling from the Gibbs distribu-
tion. The measure concentration result is of gen-
eral interest and may be applicable to other ar-
eas involving Monte Carlo estimation of expec-
tations.

1. Introduction
Modern machine learning tasks in computer vision, natural
language processing, and computational biology involve
inference in high-dimensional complex models. Exam-
ples include scene understanding (Felzenszwalb & Zabih,
2011), parsing (Koo et al., 2010), and protein design (Son-
tag et al., 2008). In these settings inference involves finding
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likely structures that fit the data: objects in images, parsers
in sentences, or molecular configurations in proteins. Each
structure corresponds to an assignment of values to ran-
dom variables and the likelihood of an assignment is based
on defining potential functions that account for interactions
over these variables. Given the observed data, these like-
lihoods yield a posterior probability distribution on as-
signments known as the Gibbs distribution. Contempo-
rary posterior probabilities that are used in machine learn-
ing incorporate local potential functions on the variables of
the model that are derived from the data (high signal) as
well as higher order potential functions that account for in-
teractions between the model variables and derived from
domain-specific knowledge (high coupling). The result-
ing posterior probability landscape is often “ragged,” and
in such landscapes Markov chain Monte Carlo (MCMC)
approaches to sampling from the Gibbs distribution may
become prohibitively expensive. By contrast, when no data
terms (local potential functions) exist, MCMC approaches
can be quite successful (e.g., Jerrum et al. (2004); Huber
(2003)).

An alternative to sampling from the Gibbs distribution is
to look for the maximum a posteriori probability (MAP)
structure. Substantial effort has gone into developing
algorithms for recovering MAP assignments by exploit-
ing domain-specific structural restrictions such as super-
modularity (Kolmogorov, 2006) or by linear programming
relaxations such as cutting-planes (Sontag et al., 2008;
Werner, 2008). However, in many contemporary applica-
tions, the complex potential functions on a large number of
variables yield several likely structures. We want to find
these “highly probable” assignments as well, and unfortu-
nately MAP inference returns only a single assignment.

Recent work leverages the current efficiency of MAP
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solvers to build samplers for the Gibbs distribution, thereby
avoiding the computational burden of MCMC methods.
These works calculate the MAP structure of a randomly
perturbed potential function. Such an approach effec-
tively ignores the raggedness of the landscape that hin-
ders MCMC. Papandreou & Yuille (2011) and Tarlow et al.
(2012) have shown that randomly perturbing the potential
of each structure with an independent random variable that
follows the Gumbel distribution and finding the MAP as-
signment of the perturbed potential function provides an
unbiased sample from the Gibbs distribution. Unfortu-
nately the total number of structures, and consequently the
total number of random perturbations, is exponential in the
structure’s dimension. Alternatively, Hazan et al. (2013b)
use expectation bounds on the partition function (Hazan &
Jaakkola, 2012) to build a sampler for Gibbs distribution
using MAP solvers on low dimensional perturbations; the
complexity is linear in the dimension of the structures.

The low dimensional samplers require calculating expec-
tations of the value of the MAP solution after perturbing
the posterior distribution. In this paper we study the dis-
tribution of this perturbed MAP solution. In particular, we
prove new measure concentration inequalities that show the
expected perturbed MAP value can be estimated with high
probability using only a few random samples. This is an
important ingredient to construct an alternative to MCMC
in the data-knowledge domain that relies on MAP solvers.
The key technical challenge comes from the fact that the
perturbations are Gumbel random variables, which have
support on the entire real line. Thus, standard approaches
for bounded random variables, such as McDiarmid’s in-
equality, do not apply. Instead, we derive a new Poincaré
inequality for the Gumbel distribution, as well as a modi-
fied logarithmic Sobolev inequality using the approach sug-
gested by Bobkov & Ledoux (1997); Ledoux (2001). These
results, which are of independent interest, guarantee that
the deviation between the sample mean of random MAP
perturbations and the expectation has an exponential de-
cay.

2. Problem statement
Notation: Boldface will denote tuples or vectors and cal-
ligraphic script sets. For a tuple x = (x1, x2, . . . , xn), let
xj:k = (xj , xj+1, . . . , xk).

2.1. The MAP perturbation framework

Statistical inference problems involve reasoning about the
states of discrete variables whose configurations (assign-
ments of values) specify the discrete structures of in-
terest. Suppose that our model has n variables x =
(x1, x2, . . . , xn) where each xi taking values in a discrete
set Xi. Let X = X1 × X2 × · · · × Xn so that x ∈ X .

Let Dom(θ) ⊆ X be a subset of possible configurations
and θ : X → R be a potential function that gives a score
to an assignment or structure x, where θ(x) = −∞ for
x /∈ Dom(θ). The potential function induces a probability
distribution on configurations x via the Gibbs distribution:

p(x)
∆
=

1

Z
exp(θ(x)), (1)

Z
∆
=
∑
x∈X

exp(θ(x)). (2)

The normalization constant Z is called the partition func-
tion. Sampling from (1) is often difficult because the sum in
(2) involves an exponentially large number of terms (equal
to the number of discrete structures). In many cases, com-
puting the partition function is in the complexity class #P
(e.g., Valiant (1979)).

Finding the most likely assignment of values to variables
is easier. As the Gibbs distribution is typically constructed
given observed data, we call this the maximum a-posteriori
(MAP) prediction. Maximizing (1):

x̂MAP = argmax
x∈X

θ(x). (3)

There are many good optimization algorithms for solving
(3) in cases of practical interest. Although MAP prediction
is still NP-hard in general, it is often simpler than sampling
from the Gibbs distribution.

Due to modeling inaccuracies, there are often several
meaningful structures x whose scores θ(x) are close to
θ(x̂MAP), and we would like to recover those as well. As an
alternative to MCMC methods for sampling from the Gibbs
distribution in (1), we can draw samples by perturbing the
potential function and solving the resulting MAP problem.
The MAP perturbation approach adds a random function
γ : X → R to the potential function in (1) and solves the
resulting MAP problem:

x̂R−MAP = argmax
x∈X

{θ(x) + γ(x)} . (4)

The random function γ(·) associates a random variable to
each x ∈ X . The simplest approach to designing a per-
turbation function is to associate an independent and iden-
tically distributed (i.i.d.) random variable γ(x) for each
x ∈ X . We can find the distribution of the randomized
MAP predictor in (4) when {γ(x) : x ∈ X} are i.i.d.; in
particular, suppose each γ(x) is a Gumbel random variable
with zero mean, variance π2/6, and cumulative distribution
function

G(y) = exp(− exp(−(y + c))), (5)

where c ≈ 0.5772 is the Euler-Mascheroni constant. The
following result characterizes the distribution of the ran-
domized predictor x̂R−MAP in (4).
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Theorem 1. (Gumbel & Lieblein, 1954) Let Γ = {γ(x) :
x ∈ X} be a collection of i.i.d. Gumbel random variables
whose distribution is given by (5). Then

PΓ

(
x̂ = argmax

x∈X
{θ(x) + γ(x)}

)
=

exp(θ(x̂))

Z
, (6)

EΓ

[
max
x∈X
{θ(x) + γ(x)}

]
= logZ,

VarΓ

[
max
x∈X
{θ(x) + γ(x)}

]
= π2/6.

The max-stability of the Gumbel distribution provides a
straightforward approach to generate unbiased samples
from the Gibbs distribution – simply generate the per-
turbations in Γ and solve the problem in (4). These
solution may also be used to approximate the partition
function in (2), as random samples concentrate around
their expectation according to their variance. F (Γ) =
[maxx∈X {θ(x) + γ(x)}] then

PΓ

[∣∣∣F (Γ)− E[F (Γ)]
∣∣∣ ≥ ε] ≤ VarF (Γ)

ε2
. (7)

However, because Γ contains |X | i.i.d. random variables,
this approach to inference has complexity which is expo-
nential in n.

2.2. Sampling from the Gibbs distribution using low
dimensional perturbations

Sampling from the Gibbs distribution is inherently tied to
estimating the partition function in (2). If we could com-
pute Z exactly, then we could sample x1 with probability
proportional to

∑
x2,...,xn

exp(θ(x)), and for each subse-
quent dimension i, sample xi with probability proportional
to
∑
xi+1,...,xn

exp(θ(x)), yielding a Gibbs sampler. How-
ever, this involves computing the partition function (2),
which is hard. Instead, Hazan et al. (2013b) use the rep-
resentation in (6) to derive a family of self-reducible upper
bounds onZ and then use these upper bounds in an iterative
algorithm that samples from the Gibbs distribution using
low dimensional random MAP perturbations. This gives a
method which has complexity linear in n.

In the following, instead of the |X | independent random
variables in (4), we define the random function γ(x) in (4)
as the sum of independent random variables for each coor-
dinate xi of x:

γ(x) =

n∑
i=1

γi(xi).

This function involves generating
∑n
i=1 |Xi| random vari-

ables for each i and xi ∈ Xi. Let

Γ =

n⋃
i=1

{γi(xi) : xi ∈ Xi}

Algorithm 1 Sampling with low-dimensional random
MAP perturbations from the Gibbs distribution (Hazan
et al., 2013b)
Iterate over j = 1, ..., n, while keeping fixed x1:(j−1)

1. For each xj ∈ Xj , set

pj(xj) =
exp(EΓ[Vj+1])

exp(EΓ[Vj ])
,

where Vj is given by (8)

2. Set
pj(r) = 1−

∑
xj∈Xj

p(xj).

3. Sample an element in Xj ∪ {r} according to pj(·).
If r is sampled then reject and restart with j = 1.
Otherwise, fix the sampled element xj and continue
the iterations

Output: x = (x1, ..., xn)

be a collection of
∑
i |Xi| i.i.d. Gumbel random vari-

ables with distribution (5). The sampling algorithm in
Algorithm 1 uses these random perturbations to draw un-
biased samples from the Gibbs distribution. For a fixed
x1:(j−1) = (x1, . . . , xj−1), define

Vj = max
xj:n

θ(x) +

n∑
i=j

γi(xi)

 . (8)

The sampler proceeds sequentially – for each j it con-
structs a distribution pj(·) on Xj ∪ {r}, where r indicates
a “restart” and attempts to draw an assignment for xj . If it
draws r then it starts over again from j = 1, and if it draws
an element in Xj it fixes xj to that element and proceeds to
j + 1.

Implementing Algorithm 1 requires estimating the expecta-
tions EΓ[Vj ] in (8). In this paper we show how to estimate
EΓ[Vj ] and bound the error with high probability by taking
the sample mean of M i.i.d. copies of Vj . Specifically, we
show that the estimation error decays exponentially with
M by proving measure concentration via a modified loga-
rithmic Sobolev inequality for the product of Gumbel ran-
dom variables. To do so we derive a more general result
– a Poincaré inequality for log-concave distributions that
may not be log-strongly concave, i.e., for which the second
derivative of the exponent is not bounded away from zero.

2.3. Measure concentration

We can think of the maximum value of the perturbed MAP
problem as a function of the associated perturbation vari-
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ables Γ = {γi(xi) : i ∈ [n], xi ∈ Xi}. There are
m

∆
= |X1| + |X2| + · · · + |Xn| i.i.d. random variables

in Γ. For practical purposes, e.g., to estimate the quality
of the sampling algorithm in Algorithm 1, it is important to
evaluate the deviation of its sampled mean from its expec-
tation. For notational simplicity we would only describe
the deviation of the maximum value of the perturbed MAP
from its expectation, namely

F (Γ) = V1 − E [V1] . (9)

Since the expectation is a linear function, E [F ] =∫
F (Γ)dµ(Γ) = 0 for any measure µ on Γ. The

Chebyshev’s inequality in (7) shows that the deviation of
F (Γ) is dominated by its variance. Although the vari-
ance of a Gumbel random variable is π2/6, the vari-
ance of low dimensional MAP perturbations does not have
an analytic form. However, we may bound it as fol-
lows: Var[F (Γ)] ≤ (maxx {θ(x) +

∑n
i=1 γi(xi)})2 ≤

maxx{θ(x)2} + nπ2/6. However, this bound on the vari-
ance is loose and does not reveal the concentration of mea-
sure phenomena of MAP perturbations.

To account for the offsets θ(x) seamlessly, it is natural to
consider measure concentration results that rely on the vari-
ation F (Γ). For example, the random function F (Γ) is a
Lipschitz functions, and thus it is concentrated around its
mean whenever the random variables in Γ are sampled i.i.d
from a (sub-)Gaussian distribution (Pisier, 1986; Ledoux &
Talagrand, 1991). Unfortunately, such results do not hold
for the Gumbel distribution, for which the density func-
tion decays on the positive reals R+ more slowly than the
Gaussian distribution (see Fig. 1). An alternative is to
apply measure concentration for Lipschitz random func-
tions of the Laplace distribution (cf. Ledoux (2001)), since
the Laplace distribution and the Gumbel distribution decay
similarly on the positive real numbers. However, repre-
senting F (Γ) over Gumbel random variables Γ using the
logarithm of an exponential random variables Γ̂ results in
a compound function over exponential random variables
F (− log Γ̂) that is no longer Lipschitz.

Although many measure concentration results (such as Mc-
Diarmid’s inequality) use bounds on the variation of F (Γ),
MAP perturbations are unbounded, so we derive our re-
sult using a different approach. We bound the deviation of
F (Γ) via its moment generating function

Λ(λ)
∆
= E [exp(λF )] . (10)

To wit, for every λ > 0,

P (F (γ) ≥ r) ≤ Λ(λ)/ exp(−λr).

More specifically, we construct a differential bound on the

Figure 1. Comparing the decay of Gaussian, Gumbel and Laplace
random variables. The decay of the Gaussian random variable is
significantly faster and its moments Λ(λ) always exist. The mo-
ments of the Gumbel and Laplace random variables do not always
exist (e.g., Λ(1)).

λ−scaled cumulant generating function:

H(λ)
∆
=

1

λ
log Λ(λ). (11)

First note that that by L’Hôpital’s rule H(0) = Λ′(0)
Λ(0) =∫

Fdµn = 0, so we may represent H(λ) by integrating
its derivative: H(λ) =

∫ λ
0
H ′(λ̂)dλ̂. Thus to bound the

moment generating function it suffices to bound H ′(λ) ≤
α(λ) for some function α(λ). A direct computation of
H ′(λ) translates this bound to

λΛ′(λ)− Λ(λ) log Λ(λ) ≤ λ2Λ(λ)α(λ). (12)

The left side of (12) turns out to be the so-called functional
entropy (Ledoux, 2001) of the function h = exp(λF ) with
respect to a measure µ:

Entµ(h)
∆
=

∫
h log hdµ−

(∫
hdµ

)
log

∫
hdµ.

Unlike McDiarmid’s inequality, this approach provides
measure concentration for unbounded functions such those
arising from MAP perturbations.

Log-Sobolev inequalities upper-bound the entropy
Entµ(h) in terms of an integral involving ‖∇F‖2. They
are appealing to derive measure concentration results in
product spaces, i.e., for functions of subsets of variables Γ,
because it is sufficient to prove a log-Sobolev inequality
on a single variable function f . Given such a scalar result,
the additivity property of the entropy (e.g., (Boucheron
et al., 2004)) extends the inequality to functions F of many
variables. In this work we derive a log-Sobolev inequality
for the Gumbel distribution, by bounding the variance of a
function by its derivative:

Varµ(f)
∆
=

∫
f2dµ−

(∫
fdµ

)2

≤ C
∫
|f ′|2dµ.

(13)
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This is called a Poincaré inequality, proven originally for
the Gaussian case. We prove such an inequality for the
Gumbel distribution, which then implies the log-Sobolev
inequality and hence measure concentration. We then apply
the result to the MAP perturbation framework.

2.4. Related work

We are interested in efficient sampling from the Gibbs dis-
tribution in (1) when n is large and the model is complex
due to the amount of data and the domain-specific model-
ing. MCMC approaches to sampling(cf. Koller & Fried-
man (2009)) may be computationally intractable in such
ragged probability landscapes. MAP perturbations use ef-
ficient MAP solvers as black box, but the statistical proper-
ties of the solutions, beyond Theorem 1, are still being stud-
ied. Papandreou & Yuille (2011) consider probability mod-
els that are defined by the maximal argument of randomly
perturbed potential function, while Tarlow et al. (2012)
considers sampling techniques for such models. Keshet
et al. (2011) and Hazan et al. (2013a) study the general-
ization bounds for such models. Rather than focus on the
statistics of the solution (the argmaxx) we study statistical
properties of the MAP value (the maxx) of the estimate in
(4). Other strategies for sampling from the Gibbs distri-
bution using MAP solvers include randomized hashing of
Ermon et al. (2013).

Hazan & Jaakkola (2012) used the random MAP pertur-
bation framework to derive upper bounds on the partition
function in (2), and Hazan et al. (2013b) derived the un-
biased sampler in Algorithm 1. Both of these approaches
involve computing an expectation over the distribution of
the MAP perturbation – this can be estimated by sample
averages. This paper derives new measure concentration
results that bound the error of this estimate in terms of the
number of samples, making Algorithm 1 practical.

Measure concentration has appeared in many machine
learning analyses, most commonly to bound the rate of
convergence for risk minimization, either via empirical
risk minimization (ERM) (e.g., Bartlett & Mendelson
(2003)) or in PAC-Bayesian approaches (e.g., McAllester
(2003)). In these applications the function for which
we want to show concentration is “well-behaved” in the
sense that the underlying random variables are bounded
or the function satisfies some bounded-difference or self-
bounded conditions conditions, so measure concentra-
tion follows from inequalities such as Bernstein (1946),
Azuma-Hoeffding (Azuma, 1967; Hoeffding, 1963; McDi-
armid, 1989), or Bousquet (2003). However, in our setting,
the Gumbel random variables are not bounded, and random
perturbations may result in unbounded changes of the per-
turbed MAP value.

There are several results on measure concentration for Lip-

schitz functions of Gaussian random variables (c.f. the
result of Maurey (1979) in Pisier (1986)). In this work
we use logarithmic Sobolev inequalities (Ledoux, 2001)
and prove a new measure concentration result for Gumbel
random variables. To do this we generalize a classic re-
sult of Brascamp & Lieb (1976) on Poincaré inequalities
to non-strongly log-concave distributions, and also recover
the concentration result of Bobkov & Ledoux (1997) for
functions of Laplace random variables.

3. Concentration of measure
In this section we prove the main technical results of this
paper – a new Poincaré inequality for log concave distri-
butions and the corresponding measure concentration re-
sult. We will then specialize our result to the Gumbel dis-
tribution and apply it to the MAP perturbation framework.
Because of the tensorization property of the functional en-
tropy, it is sufficient for our case to prove an inequality like
(13) for functions f of a single random variable with mea-
sure µ. Proofs are deferred to the supplement due to space
considerations.

3.1. A Poincaré inequality for log-concave distributions

Our Theorem 2 in this section generalizes a celebrated re-
sult of Brascamp & Lieb (1976, Theorem 4.1) to a wider
family of log-concave distributions and strictly improves
their result. For an appropriately scaled convex function Q
on R, the function q(y) = exp(−Q(y)) defines a density
on R corresponding to a log concave measure µ. Unfortu-
nately, their result is restricted to distributions for which
Q(y) is strongly convex. The Gumbel distribution with
CDF (5) has density

g(y) = exp (− (y + c+ exp(−(y + c)))) , (14)

and the second derivative of y+ c+ exp(−(y+ c)) cannot
be lower bounded by any constant greater than 0, so it is
not log-strongly convex.
Theorem 2. Let µ be a log-concave measure with density
q(y) = exp(−Q(y)), where Q : R → R is a convex func-
tion satisfying the following conditions:

• Q has a unique minimum in a point y = a,

• Q is twice continuously differentiable in each point of
his domain, except possibly in y = a,

• Q′(y) 6= 0 for any y 6= a,

• limy→a± Q
′(y) 6= 0 or limy→a± Q

′′(y) 6= 0.

Let f : R → R be a continuous function, differentiable
almost everywhere, such that

lim
y→±∞

f(y)q(y) = 0. (15)
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Then for any 0 ≤ η < 1 such that Q′′(y)
|Q′(y)| + η|Q′(y)| 6= 0

for all y ∈ R \ {a}, we have

Varµ(f) ≤ 1

1− η

∫
R

(f ′(y))2

Q′′(y) + η(Q′(y))2
q(y)dy.

The proof is in Orabona et al. (2013).

The main difference between Theorem 2 and the result of
Brascamp & Lieb (1976, Theorem 4.1) is that the latter
requires the function Q to be strongly convex. Our re-
sult holds for non-strongly concave functions including the
Laplace and Gumbel distributions. If we take η = 0 in
Theorem 2 we recover the original result of Brascamp &
Lieb (1976, Theorem 4.1). For the case η = 1/2, Theorem
2 yields the Poincaré inequality for the Laplace distribu-
tion given in Ledoux (2001). Like the Gumbel distribution,
the Laplace distribution is not strongly log-concave and
previously required an alternative technique to prove mea-
sure concentration (Ledoux, 2001). The following gives a
Poincaré inequality for the Gumbel distribution.

Corollary 1. Let µ be the measure corresponding to the
Gumbel distribution and q(y) = g(y) in (14). For any
function f that satisfies the conditions in Theorem 2, we
have

Varµ(f) ≤ 4

∫
R

(f ′(y))2dµ. (16)

Proof. For the Gumbel distribution we have Q(y) = y +
c+ exp(−(y + c)) in Theorem 2, so

Q′′(y) + η(Q′(y))2 = e−(y+c) + η(1− e−(y+c))2.

We want an lower bound for all y. Minimizing,

e−(y+c) = 2η(1− e−(y+c))e−(y+c)

or e−(y+c) = 1− 1
2η , so the lower bound is 1− 1

2η + 1
4η or

4η−1
4η for η > 1

2 . For η ≤ 1
2 ,

η + (1− 2η)e−(y+c) + e−2(y+c) ≥ η.

So min
{

4η
(4η−1)(1−η) ,

1
η(1−η)

}
= 4 at η = 1

2 . Applying
Theorem 2 we obtain (16).

3.2. Measure concentration for the Gumbel
distribution

MAP perturbations such as those in (8) are a function of
many random variables. We now derive a result based on
the Corollary 1 to bound the moment generating function
for random variables defined as a function of m random
variables. This gives a measure concentration inequality
for the product measure µm of µ on Rm, where µ corre-
sponds to a scalar Gumbel random variable.

Theorem 3. Let µ denote the Gumbel measure on R and
let F : Rm → R be a function such that µm-almost every-
where we have ‖∇F‖2 ≤ a2 and ‖∇F‖∞ ≤ b. Further-
more, suppose that for y = (y1, . . . , ym),

lim
yi→±∞

F (y1, . . . , ym)

m∏
i=1

g(yi) = 0,

where g(·) is given by (14). Then, for any r ≥ 0 and any
|λ| ≤ 1

10b , we have

E[exp(λ(F − E[F ]))] ≤ exp(5a2λ2).

The proof is in Orabona et al. (2013). With this lemma we
can now upper bound the error in estimating the average
E[F ] of a function F of m i.i.d. Gumbel random variables
by generating M independent samples of F and taking the
sample mean.

Corollary 2. Consider the same assumptions of Theo-
rem 3. Let η1, η2, . . . , ηM be M i.i.d. random variables
with the same distribution as F . Then with probability at
least 1− δ,

1

M

M∑
j=1

ηj − E[F ] ≤ max

(
20b

M
log

1

δ
,

√
20a2

M
log

1

δ

)
.

Proof. From the independence assumption, using the
Markov inequality, we have that

P

 M∑
j=1

ηj ≤ME[F ] +Mr


≤ exp(−ME[F ]−Mr)

M∏
j=1

E[exp(ληj)].

Applying Theorem 3, we have, for any |λ| ≤ 1
10b ,

P

 1

M

M∑
j=1

ηj ≤ E[F ] + r

 ≤ exp(M(5a2λ2 − λr)).

Optimizing over λ subject to |λ| ≤ 1
10b we obtain

exp(M(5a2λ2 − λr)) ≤ exp

(
−M

20
min

(
r

b
,
r2

a2

))
.

Equating the left side of the last inequality to δ and solving
for r, we have the stated bound.

3.3. Application to MAP perturbations

To apply these results to the MAP perturbation problem we
must calculate the parameters in the bound given by the
Corollary 2. Let F (Γ) be the random MAP perturbation as
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defined in (9). This is a function of m ∆
=
∑n
i=1 |Xi| i.i.d.

Gumbel random variables. The (sub)gradient of this func-
tion is structured and points toward the γi(xi) correspond-
ing to the maximizing assignment in x̂R−MAP defined in
(4), when γ(x) =

∑n
i=1 γi(xi). That is,

∂F (Γ)

∂γi(xi)
=

{
1 if xi ∈ x̂R−MAP

0 otherwise .

We have ‖∇F‖2 = n and ‖∇F‖∞ = 1 almost every-
where, so a2 = n and b = 1. Suppose we sample M
i.i.d. copies Γ1,Γ2, . . . ,ΓM copies of Γ and estimate the
deviation from the expectation by 1

M

∑M
i=1 F (Γi). We can

apply Corollary 2 to both F and −F to get the following
double-sided bound with probability 1− δ:∣∣∣∣∣ 1

M

M∑
i=1

F (Γi)

∣∣∣∣∣ ≤ max

(
20

M
log

2

δ
,

√
20n

M
log

2

δ

)
.

Thus this result gives an estimate of the MAP perturbation
E [maxx {θ(x) +

∑n
i=1 γi(xi)}] that holds in high proba-

bility.

This result can also be applied to estimate the quality of
Algorithm 1, which samples from the Gibbs distribution
using MAP solvers. To do so, let F equal Vj from (8). This

is a function of mj
∆
=
∑n
i=j |Xi| i.i.d. Gumbel random

variables whose gradient satisfies ‖∇Vj‖2 = n − j + 1
and ‖∇Vj‖∞ = 1 almost everywhere, so a2 = n − j + 1
and b = 1. Suppose U = Vj − E [Vj ] is a random vari-
able that measures the deviation of Vj from its expecta-
tion, and assume we sample Mj i.i.d. random variable
U1, U2, . . . , UMj

. We then estimate this deviation by the
sample mean 1

Mj

∑Mj

i=1 Ui. Applying Corollary 2 to both
Vj and −Vj to get the following bound with probability
1− δ:∣∣∣∣∣∣ 1

Mj

Mj∑
i=1

Ui

∣∣∣∣∣∣
≤ max

(
20

Mj
log

2

δ
,

√
20(n− j + 1)

Mj
log

2

δ

)
. (17)

For each j in Algorithm 1, we must estimate |Xj | expecta-
tions EΓ[Vj+1], for a total at mostm expectation estimates.
For any ε > 0 we can choose {Mj : j = 1, . . . , n} so that
the right side of (17) is at most ε for each j with probability
1 − nδ. Let p̂j(xj) be the ratio estimated in the first step
of Algorithm 1, and δ′ = nδ. Then with probability 1− δ′,
for all j = 1, 2, . . . , n,

exp(E [Vj+1]− ε)
exp(E [Vj ] + ε)

≤ p̂j(xj) ≤
exp(E [Vj+1] + ε)

exp(E [Vj ]− ε)
,
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Figure 2. Error of the sample mean versus coupling strength for
100 × 100 spin glass models. The local field parameter θi is
chosen uniformly at random from [−1, 1] to reflect high signal.
With only 10 samples one can estimate the expectation well.

or

exp(−2ε) ≤ p̂j(xj)

pj(xj)
≤ exp(2ε).

4. Experiments
We evaluated our approach on a 100×100 spin glass model
with n = 104 variables, for which

θ(x1, ..., xn) =
∑
i∈V

θi(xi) +
∑

(i,j)∈E

θi,j(xi, xj) .

where xi ∈ {−1, 1}. Each spin has a local field parameter
θi(xi) = θixi and interacts in a grid shaped graphical struc-
ture with couplings θi,j(xi, xj) = θi,jxixj . Whenever the
coupling parameters are positive the model is called attrac-
tive since adjacent variables give higher values to positively
correlated configurations. We used low dimensional ran-
dom perturbations γ(x) =

∑n
i=1 γi(xi).

The local field parameters θi were drawn uniformly at ran-
dom from [−1, 1] to reflect high signal. The parameters
θi,j were drawn uniformly from [0, c], where c ∈ [0, 4] to
reflect weak, medium and strong coupling potentials. As
these spin glass models are attractive, we are able to use
the graph-cuts algorithm (Kolmogorov (2006)) to compute
the MAP perturbations efficiently. Throughout our exper-
iments we evaluated the expected value of F (Γ) with 100
different samples of Γ. We note that we have two ran-
dom variables γi(xi) for each of the spins in the 100× 100
model, thus Γ consists of m = 2 ∗ 104 random variables.
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Figure 3. Histogram that shows the decay of random MAP values, i.e., the number of times that the sample mean has error more than r
from the true mean. These histograms are evaluated on 100× 100 spin glass model with high signal θi ∈ [−1, 1] and various coupling
strengths. One can see that the decay is indeed exponential for every M , and that for larger M the decay is faster.

Figure 2 shows the error in the sample mean
1
M

∑M
k=1 F (Γk) versus the coupling strength for three

different sample sizes M = 1, 5, 10. The error reduces
rapidly as M increases; only 10 samples are needed to
estimate the expected value of a random MAP perturbation
with 104 variables. To test our measure concentration
result, that ensures exponential decay, we measure the
deviation of the sample mean from its expectation by using
M = 1, 5, 10 samples. Figure 3 shows the histogram of
the sample mean, i.e., the number of times that the sample
mean has error more than r from the true mean. One can
see that the decay is indeed exponential for every M , and
that for larger M the decay is much faster. These show that
by understanding the measure concentration properties
of MAP perturbations, we can efficiently estimate the
mean with high probability, even in very high dimensional
spin-glass models.

5. Conclusion
Sampling from the Gibbs distribution is important because
it helps find near-maxima in the “ragged” posterior proba-
bility landscapes typically encountered in the high dimen-
sional complex models. MCMC approaches are inefficient
in such settings due to domain-specific modeling (cou-
pling) and the influence of data (signal). However, sam-
pling based on MAP perturbations ignores the ragged land-
scape. In this paper we characterized the statistics of MAP
perturbations.

The low-dimensional MAP perturbation technique requires
estimating the expected value of the quantities Vj under
the perturbations. We derived high-probability estimates of
these expectations that allow estimation with arbitrary pre-
cision. This followed from more general results on measure
concentration for functions of Gumbel random variables
and a Poincaré inequality for non-strongly log-concave dis-

tributions. These results may be of use in other applica-
tions.

Our results can be extended in several ways. The connec-
tion between MAP perturbations and PAC-Bayesian gen-
eralization bounds suggests that we may be able to show
PAC-Bayesian bounds for unbounded loss functions. Such
loss functions may exclude certain configurations and are
already used implicitly in vision applications such as inter-
active segmentation. More generally, Poincaré inequalities
relate the variance of a function and its derivatives. Our
result may suggest new stochastic gradient methods that
control variance via controlling gradients. This connection
between variance and gradients may be useful in the anal-
ysis of other learning algorithms and applications.
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