
Supplemental Material for:
Finding Dense Subgraphs via Low-Rank Bilinear Optimization

1. Proof of Lemma 4: Building the set Sd for arbitrary d-dimensional subspaces
In our general case, we solve DBkS on

Ad = VdU
T
d =

d∑
i=1

viu
T
i

where
Vd = [v1 . . . vd] and Ud = [λ1 · v1 . . . λd · vd] .

Solving the problem on Ad is equivalent to answering the following combinatorial question:

“how many different top-k supports are there in a d-dimensional subspace: topk(c1 · v1 + . . .+ cd · vd)?”

Here we define d− 1 auxiliary angles φ1, . . . , φd−1 ∈ Φ = [0, π) and we rewrite the coefficients c1, . . . , cd as

c =

 c1
...
cd

 =


sinφ1

cosφ1 sinφ2
...

cosφ1 cosφ2 . . . sinφd−1
cosφ1 cosφ2 . . . cosφd−1

 .

Clearly we can express every vector in the span of Vd as a linear combination c1 · v1 + . . .+ cd · vd in terms of φ:

v(φ1, . . . , φd−1) = (sinφ1) · v1 + (cosφ1 sinφ2) · v2 + . . .+ (cosφ1 cosφ2 . . . cosφd−1) · vd. (1)

For notation simplicity let us define a vector that contains all d− 1 auxiliary phase variables

ϕ = [φ1, . . . , φd−1].

We can use the above derivations to rewrite the set Sd that contains all top k coordinates in the span of Vd as:

Sd = {topk(c1 · v1 + . . .+ cd · vd) : c1, . . . , cd ∈ R}
= {topk ± (v(ϕ)) : ϕ ∈ Φd−1}
= {topk ± ((sinφ1) · v1 + (cosφ1 sinφ2) · v2 + . . .+ (cosφ1 cosφ2 . . . cosφd−1) · vd), ϕ ∈ Φd−1}

Observe again that each element of v(ϕ) is a continuous spectral curve in the d− 1 auxiliary variables:

[v(ϕ)]i = (sinφ1) · [v1]i + (cosφ1 sinφ2) · [v2]i + . . .+ (cosφ1 cosφ2 . . . cosφd−1) · [vd]i.

Consequently, the top/bottom-k supports of v(ϕ) (i.e., topk(±v(ϕ))) are themselves a function of the d− 1 variables in ϕ.
How can we find all possible supports?

Remark 1. In our general problem we wish to find all top and bottom k coordinates that appear in a d-dimensional
subspace. In the following discussion, for simplicity we handle the top k coordinates problem. Finding the bottom k
trivially follows, by just checking the smallest k coordinates of each vector c1 · v1 + . . .+ cd · vd that we construct using
our algorithm.

Title Suppressed Due to Excessive Size

1.1. Ranking regions for a single coordinate [v(ϕ)]i

We now show that for each single coordinate [v(ϕ)]i, we can partition Φd−1 in regions, wherein the ith coordinate [v(ϕ)]i
retains the same ranking relative to the other n− 1 coordinates in the vector v(ϕ).

Let us first consider for simplicity [v(ϕ)]1. We aim to find all values of ϕ where [v(ϕ)]1 is in one of the the k largest
coordinates of v(ϕ). We observe that this region can be characterized by using n boundary tests:

[v(ϕ)]1 ≷ [v(ϕ)]2

[v(ϕ)]1 ≷ [v(ϕ)]3

...
[v(ϕ)]1 ≷ [v(ϕ)]n

Each of the above boundary tests defines a bounding curve that partitions the Φd−1 domain. We refer to this bounding
curve as B1,j(ϕ) : Φd−1 7→ Φd−2. A B1,j(ϕ) curve partitions Φ and defines two regions of ϕ angles:

R1>j = {ϕ ∈ Φd−1 : [v(ϕ)]1 > [v(ϕ)]j} andR1≤j = {ϕ ∈ Φd−1 : [v(ϕ)]1 ≤ [v(ϕ)]j} (2)

such thatR1>j ∪R1≤j = Φd−1.

Observe that these n− 1 curves B1,1(ϕ), . . . ,B1,n(ϕ) partition Φ in disjoint cells, C11 , . . . , C1T , such that

T⋃
i=1

C1i = Φd−1.

Within each cell C1i , the first coordinate [v(ϕ)]1 retains a fixed ranking relative to the rest of the elements in v(ϕ), e.g., for
a specific cell it might be the largest element, and in another cell it might be the 10th smallest, etc. This happens because
for all values of ϕ in a single cell, the respective ordering [v(ϕ)]1 ≷ [v(ϕ)]2, . . . , [v(ϕ)]1 ≷ [v(ϕ)]n remains the same.

If we have access to a single point, say ϕ0, that belongs to a specific cell, say C1j , then we can calculate [v(ϕ0)] and find the
ranking of the first coordinate [v(ϕ)]1, that remains invariant for all ϕ ∈ C1j . Hence, if we visit all these cells, then we can
find all possible rankings that the first coordinate [v(ϕ)]1 takes in the d-dimensional span of v1, . . . ,vd. In the following
subsections, we show that the number of these cells is bounded by T ≤ 2d

(
n−1
d−1
)
.

Observe that each bounding curve B1,i(ϕ) has a one-to-one correspondence to an equation [v(ϕ)]1 = [v(ϕ)]j , which is
linear in c:

[v(ϕ)]1 = [v(ϕ)]j ⇒ eT1 Vdc− eTi Vdc = 0⇒ (e1 − ej)
TVdc = 0. (3)

Due to their linear characterization with respect to c, it is easy to see that each (d− 1)-tuple of bounding curves intersects
on a single point in Φd−1:1

[v(ϕ)]1 = [v(ϕ)]i1
[v(ϕ)]1 = [v(ϕ)]i2

...
[v(ϕ)]1 = [v(ϕ)]id−1

⇒

(e1 − ei1)
TVdc = 0

(e1 − ei2)
TVdc = 0
...

(e1 − eid−1)
TVdc = 0

⇒


(e1 − ei1)

T

(e1 − ei2)
T

...
(e1 − eid−1)

T

Vdc = 0(d−1)×1.

Let us denote the solution of the above linear inverse problem as c1,i1,...,id−1
. We refer to c1,i1,...,id−1

as an intersection
vector. For each intersection vector c1,i1,...,id−1

, we can compute its polar expression and solve for the angles ϕ that
generate it. These d − 1 input angles correspond exactly to the intersection point of d − 1 curves specified by the above
d−1 equations. We denote these d−1 angles that generate c1,i1,...,id−1

, as ϕ1,i1,...,id−1
which we refer to as the intersection

point of the d− 1 curves B1,i1(ϕ), . . . ,B1,id−1
(ϕ).

Since, the ϕ1,i1,...,id−1
intersection points are defined for every d − 1 curves, the total number of intersection points is(

n−1
d−1
)
. In the following subsections, we show how we can visit all cells by just examining these intersection points.

We proceed to show that if we visit the adjacent cells of the intersection points defined for all coordinates, then we can find
all top-k supports in the span of Vd.

1as a matter of fact, due to the sign ambiguity of the solution, this corresponds to two intersection points. However, the following
discussion omits this technical detail for simplicity.

Title Suppressed Due to Excessive Size

1.2. Visiting all cells = finding all top k supports

Our goal is to find all top-k supports that can appear in the span of Vd. To do so, it is sufficient to visit the cells where
[v(ϕ)]1 is the k-th largest coordinate, then the cells where [v(ϕ)]2 is the k-largest, and so on. Within such cells, one
coordinate (say [v(ϕ)]i) remains always the k-th largest, while the identities of the bottom n − k coordinates remain the
same. This means that in such a cell, we have that

[v(ϕ)]i ≥ [v(ϕ)]j1 , . . . , [v(ϕ)]i ≥ [v(ϕ)]jn−k

for all ϕ in that cell and some scecific n− k other coordinates indexed by j1, . . . , jn−k. Hence, although the sorting of the
top k−1 elements might change in that cell (i.e., the first might become the second largest, and vice versa), the coordinates
that participate in the top k − 1 support will be the same, while at the same time the k-th largest will be [v(ϕ)]i.

Hence, for each coordinate [v(ϕ)]i, we need to visit the cells wherein it is the k-th largest. We do this by examining all cells
wherein [v(ϕ)]i retains a fixed ranking. Visiting all these cells (T for each coordinate), is possible by visiting all n ·

(
n−1
d−1
)

intersection points of Bi,j(ϕ) curves as defined earlier. Since we know that each cell is adjacent to at least 1 intersection
point, then at each of these points we visit all adjacent cells. For each cell that we visit, we compute the support of the
largest k coordinates of a vector v(ϕ0) with a ϕ0 that lies in that cell. We include this top k index set in Sd and carry the
same procedure for all cells. Since we visit all coordinates and all their adjacent cells, this means that we visit all cells Cij .
This means that this procedure will construct all possible supports in

Sd = {topk(c1 · v1 + . . .+ cd · vd) : c1, . . . , cd ∈ R}

1.3. Constructing the set Sd

To visit all possible cells Cij , we now have to check the intersection points, which are obtained by solving the system of
d− 1 equations

[v(ϕ)]i1 = [v(ϕ)]i2 = . . . = [v(ϕ)]id
⇔[v(ϕ)]i1 = [v(ϕ)]i2 , . . . , [v(ϕ)]i1 = [v(ϕ)]id . (4)

We can rewrite the above as  eTi1 − eTi2
...

eTi1 − eTid

Vdc = 0(d−1)×1 (5)

where the solution is the nullspace of the matrix, which has dimension 1.

To explore all possible candidate vectors, we need to visit all cells. To do so, we compute all possible
(
n
d

)
solution

intersection vectors ci1,...,id . On each intersection vector we need to compute the locally optimal support set

topk (Vdci1,...,id) .

Then observe that the coordinates i1, . . . , id of Vdci1,...,id have the same value, since they all satisfy equation (5). Let
us assume that t of them appear in the set topk (Vdci1,...,id). The, finding the top k supports of all neighboring cell is
equivalent to checking all different supports that can be generated by taking all

(
d
t

)
possible t-subsets of the i1, . . . , id

coordinates with respect to Vdci1,...,id , while keeping the rest of the elements in Vdci1,...,id in their original ranking, as
computed in topk (Vdci1,...,id) . This, induces at most O(

(
d
d/2

)
) local sortings, i.e., top k supports. All these sortings will

eventually be the elements of the Sd set. The number of all candidate support sets will now be O(
(
d
d/2

)(
n−1
d

)
) = O(nd)

and the total computation complexity is O
(
nd+1

)
, since for each point we compute the top-k support in linear time O(n).

For completeness the algorithm of the spannogram framework that generates Sd is given below.

1.4. Resolution of singularities

In our proofs, we assumed that the curves in v(φ) are in general position. This is needed so that no more than d− 1 curves
intersect at a single point. This assumption is equivalent to requiring that every d × d submatrix of Vd is full rank. This
“general position” requirement can be handled by introducing infinitesimal perturbations in Vd. The details of the analysis
of this method can be found in (Papailiopoulos et al., 2013).

Title Suppressed Due to Excessive Size

Algorithm 1 Spannogram Algorithm for Sd.
1: Sd = ∅
2: for all (i1, . . . , id) ∈ {1, . . . , n}d and s ∈ {−1, 1} do

3: c = s · nullspace

 [(Vd]i1,:−[Vd]i2,:

...
[Vd]i1,:−[Vd]id,:


4: v = VT

d c
5: S = topk(v)
6: T = S − {i1, . . . , id}
7: for all

(
d

k−|T |

)
subsets J of (i1, . . . , id) do

8: Sd = Sd
⋃

(T ∪ J)
9: end for

10: end for
11: Output: Sd.

2. Proof of Lemma 1: Going from DkS to DBkS and back
In this subsection we show how a ρ-approximation algorithm for DBkS for arbitrary matrices, implies a 2ρ-approximation
for DkS. Our proof goes through a randomized sampling argument.

Algorithm 2 randombipartite(G)
1: L = ∅,R = ∅
2: draw n fair coins, and assign each of them to the n vertice of the graph.
3: L = the set of vertices that corresponds to heads
4: R = {1, . . . , n}\L
5: GB = G
6: delete all edges in GB(L) and GB(R)
7: Output: GB

2.1. Proof of Lemma 1: Randomized Reduction

Let us denote by G(S) the subgraph in G induced by a vertex set S. Let the adjacency matrix of the bipartite graph created
by randombipartite(G) be GB

AB =

[
0n1×n2

B
BT 0n2×n1

]
,

where n1 + n2 = n. In the following, we refer to B as the bi-adjacency matrix of the bipartite graph GB. Moreover, we
denote as L andR the two disjoint vertex sets of a bipartite graph.

Before we proceed let us state a simple property on the quadratic form of bipartite graphs.

Proposition 1. Let AB =
[
0n1×n2

B

BT 0n2×n1

]
be the adjacency matrix of a bipartite graph. Then, for any subset of vertices

S, we have that S = Sl ∪ Sr, with Sl = S ∩ L and Sr = S ∩R. Moreover,

1TSAB1S = 2 · 1TSlB1Sr .

Proof. It is easy to see that Sl and Sr are the vertex subsets of S that correspond to either the left or right nodes of the
bipartite graph. Since the two sets are disjoint, we have

1S = 1Sl + 1Sr .

Then, the quadratic forms on AB can be equivalently rewritten as bilinear forms on B:

1TSAB1S = (1Sl + 1Sr)
T
[
0n1×n2

B

BT 0n2×n1

]
(1Sl + 1Sr) = 1SrB

T1Sl + 1SlB1Sr = 2 · 1TSlB1Sr .

Title Suppressed Due to Excessive Size

Due to the above, we consider the following bilinear optimization problem

{XB,YB} = arg max
|X |=k1
|Y|=k2
k1+k2=k

1TXB1Y , (6)

where the constraint k1 + k2 = k forces the left and right vertices to induce a k-subgraph. Due to Proposition 1, the
two vertex sets are disjoint, i.e., XB ∩ YB = ∅, since the columns and rows of B index two disjoint vertex sets L and R,
respectively.

Let SB = XB∪YB be the k vertices in the union of XB and YB. Then, we will relate the density of SB on the original graph
G to the bipartite we obtain from randombipartite(G).

Proposition 2. The density of SB, the densest k-subgraph of GB, on the original graph G, is at least

den(SB) =
1TSBA1SB

k
≥

1TSBAB1SB
k

= 2 ·
1TXB

B1YB

k
.

Proof. The result follows immediately by the nonnegativity of the entries in A, and the fact that AB contains a subset of
the entries of A. The last equality follows from Proposition 1.

We will now show that den(SB) is at least opt/2, in expectation. We will use this fact to show that, if we solve DBkS on
logn
δ graphs independently created using randombipartite(G), and by keeping the best solution among them, then the

extracted k-subgraph has with high probability density opt/(2 + δ).

Proposition 3. Let GB be the output of randombipartite(G). Then, there exists in GB, a k-subgraph that contains
k·opt
2 edges, in expectation.

Proof. First observe that we can represent the edges of GB as random variables Xi,j . If (i, j) is not an edge in G, then Xi,j

will be 0 with probability 1. If however (i, j) is an edge in G, then Xi,j is 1, i.e., appears in GB, with the same probability
that one of its vertices lands in L, while the second is in R. It is easy to find that this probability is Pr{Xi,j = 1} = 1/2.
Hence,

Xi,j =

{
0, if (i, j) not an edge in G,
Z, if (i, j)is an edge in G, (7)

where Z is a Bernoulli(1/2) random variable.

Now let S∗ denote the vertex set of the densest k-subgraph on the original graph G, that has density den(S∗) = opt.
Observe that for that subgraph we have

1TS∗A1S∗ =
∑
i,j∈S∗

Ai,j = k · opt.

Let AB denote the adjacency matrix of the bipartite graph GB. Then, we have that the expected quadratic form on the new
adjacency 1TS∗AB1S∗ is:

E
{
1TS∗AB1S∗

}
= E

 ∑
i,j∈S∗

Xi,j

 = E


∑
i,j∈S∗
(i,j)∈G

Z

 =
1

2
·
∑
i,j∈S∗

Ai,j =
k · opt

2
.

We will now show that if we run randombipartite(G) a total number of 3 log n · log log n times, then with high
probability, at least one GB will contain a k-subgraph with density at least 0.5 · opt. This will imply that the densest k
subgraph of GB will have density at least 0.5 · opt.

Title Suppressed Due to Excessive Size

Algorithm 3 DkS 2 approx(G, δ)

1: for i = 1 : logn
δ do

2: GBi = randombipartite(G)
3: Bi = biadjacency of GBi
4: {X i,Yi} = arg max|X |=k1,|Y|=k2,k1+k2=k 1TXBi1Y
5: end for
6: {XB,YB} = arg maxi 1

T
X i∪YiA1X i∪Yi

7: Output: SB = XB ∪ YB

Proposition 4. Then, with probability at least 1− 1
n , we have

1TSBA1SB ≥
1− δ

2
· opt.

Proof. In this proof we will use the reverse Markov Inequality which states that for any random variable X , such that
X ≤ m, then, for any a ≤ E{X}, we have

Pr{X ≤ a} ≤ m− E{X}
m− a

.

Let S∗ denote the densest k-subgraph for G. Here, our random variable will be the the quadratic form

X = 1TS∗A
i
B1S∗ .

Due to Proposition 3, we have that E{X} = 0.5 · k · opt. Hence, set m = k · opt and α = k·opt
2 − δ · k·opt2 to obtain:

Pr

{
X ≤ k · opt

2
− δ · k · opt

2

}
≤ k · opt− k · opt/2
k · opt− k·opt

2 + δ · k·opt2

=
1

1 + δ

Now, observe that if we want to have with probability 1− 1
n at least one graph GBi where

1TS∗A
i
B1S∗ >

1− δ
2
· k · opt,

we need to draw l graphs, such that (
1

1 + δ

)l
≤ 1

n

which yields l = logn
log(1+δ) . Since δ ∈ (0, 1), we have that a number of

log n

δ

draws suffices (assuming the base-2 logarithm), so that

max
i

1TX i∪YiA
i
B1X i∪Yi ≥ max

i
1TS∗A

i
B1S∗ ≥

1− δ
2

1TS∗A1S∗ .

Proposition 4 establishes Lemma 2. What we show in our approximation results is that we can compute a solution with
density at least

1− δ
2
· opt− 2|λd+1|,

where λd+1 is the d+ 1 absolutely largest eigenvalue of the adjacency matrix A.

Title Suppressed Due to Excessive Size

3. Proof of Theorem 1
3.1. Low-rank DBkS on bipartite graphs and rectangular matrices

The first important technical proposition that we show, is that we can solve DBkS for any constant rank rectangular matrix
B of dimensions n1 × n2.

Proposition 5. Let B be any matrix of size n1 × n2 and let

Bd =

d∑
i=1

σiviu
T
i

be its singular value decomposition, where vi and ui is the left and right singular vectors corresponding to the ith largest
singular value σi(B). Then, we can solve the following problem

{Xd,Yd} = arg max
|X |=k1,|Y|=k2

1TXBd1Y .

in time O(min{n1, n2}d+1).

Proof. For simplicity we assume that the left singular vectors are scaled by their singular values, hence

Bd = v1u
T
1 + . . .+ vdu

T
d .

Let us without loss of generality assume that n1 ≤ n2.

We wish to solve:

max
|X |=k1,|Y|=k2

1TX
(
v1u

T
1 + . . .+ vdu

T
d

)
1Y . (8)

Observe that we can rewrite (8) in the following way

max
|X|=k1,|Y|=k2

1TX

[
v1 · (uT1 1Y)︸ ︷︷ ︸

c1

+ . . .+ vd · (uTd 1Y)︸ ︷︷ ︸
cd

]
= max
|Y|=k2

(
max
|X|=k1

1TXvY

)
,

where vY = v1 · c1 + . . . + vd · cd is an n1-dimensional vector generated by the d-dimensional subspace spanned by
v1, . . . ,vd.

We will now make a key observation: for every fixed vector vY , the index set X that maximizes 1TXvY can be easily
computed. It is not hard to see that for any fixed vector vY , the k1-subset X that maximizes

1TXvY =
∑
i∈X

[vY]i

corresponds to either the set of k1 largest or k1 smallest signed coordinates of vY . That is, the locally optimal sets are
either topk1(vY) or topk1(−vY).

We now wish to find all possible locally optimal sets X . If we could possibly check all vectors vY , then we could find all
locally optimal index sets topk1(±vY).

Let us denote as Sd the set of all k1-sized sets X that are the optimal solutions of the inner maximization of in the above,
for any vector v in the span of v1, . . . ,vd

Sd = {topk1(±[v1 · c1 + . . .+ vd · cd]) : c1, . . . , cd ∈ R}.

Clearly, this set contains all possible locally optimal X sets of the form topk1(vY). Therefore, we can rewrite DBkS on
Bd as

max
|Y|=k2

max
X∈Sd

1TXBd1Y . (9)

Title Suppressed Due to Excessive Size

The above problem can now be solved in the following way: for every set X ∈ Sd find the locally optimal set Y that
maximizes 1TXBd1Y . Again, this will either be topk2(−Bd1X) or topk2(Bd1X). Then, we simply need to test all such
X ,Y pairs on Bd and keep the optimizer.

Due to the above, the problem of solving DBkS on the rectangular matrix Bd is equivalent to constructing the set of k1-
supports Sd, and then finding the optimal solution in that set. How large can Sd be and can we construct it in polynomial
time? As we showed in the first section of the supplemental material this set has size O(

(
n1

d

)
) and can be constructed in

time O(nd+1
1).

Observe that in the above we could have equivalently solved the problem by finding all the top k2 sets in the span of
u1, . . . ,ud, say that they belong in set S ′d. Then, we could solve the problem by finding for each k2 sized set Y ∈ S ′d the
optimal k1 sized set X . Both approaches are the same, and the one with the smallest dimension is selected to reduce the
computational complexity.

The algorithm that solves the problem for rectangular matrices is given below.

Algorithm 4 low-rank approximations for DBkS
1: lowrankDBkS(k1, k2, d, B)

2: [Vd,Σd,Ud] = SVD(B, d)
3: Sd = Spannogram(k1,Vd)
4: {Xd,Yd} = arg max|Y|=k2 maxX∈Sd 1TXVdΣdU

T
d 1Y

5: Output: {Xd,Yd}

1: Spannogram(k1, Vd)

2: Sd = {topk(v) : v ∈ span(v1, . . . ,vd)}
3: Output: Sd.

3.2. Bipartite graphs part of Theorem 1

In our following derivations, for both cases of a rectangular and square symmetric matrices, we consider the same notation
of the output solution and output density for simplicity:

{Xd,Yd} = arg max
|X |=k,|Y|=k

1TXAd1Y and optBd =
1TXdA1Yd

k
,

{Xd,Yd} = arg max
k1,k2:k1+k2=k

max
|X |=k1,|Y|=k2

1TXBd1Y and optBd = 2
1TXdB1Yd

k
.

Moreover, as a reminder the optimal solutions and densities for the problems of interest (DkS, DBkS on A, and DBkS on
B) are

S∗ = arg max
|S|=k

1TSA1S and opt =
1TS∗A1S∗

k
,

{X∗,Y∗} = arg max
|X |=k,|Y|=k

1TXA1Y and optB =
1TX∗A1Y∗

k
,

{X∗,Y∗} = arg max
k1,k2:k1+k2=k

max
|X |=k1,|Y|=k2

1TXB1Y and optB = 2
1TX∗B1Y∗

k
.

We continue with bounding the distance between the optimal solution for DBkS and rank-d optimal solution pair {Xd,Yd}.
We have the following result, which is essentially Lemma 2 of our main paper.
Proposition 6. For any matrix A, we have

optBd ≥ optB − 2 · |λd+1|. (10)

Title Suppressed Due to Excessive Size

Moreover, for any rectangular matrix B, we have

optBd ≥ optB − 2 · σd+1. (11)

Proof. Let X∗,Y∗ be the optimal solution of DBkS on A and let Xd,Yd be the optimal solution of DBkS on the rank-d
matrix Ad. Then, we have

optBd =
1TXdA1Yd

k
=

1TXd(Ad + A−Ad)1Yd
k

=
1TXdAd1Yd

k
+

1TXd(A−Ad)1Yd
k

≥
1TXdAd1Yd

k
−
‖1Xd‖2 · ‖(A−Ad)1Yd‖2

k
≥

1TXdAd1Yd
k

− |λd+1|, (12)

where the first inequality comes due to Cauchy-Schwarz and the second due to the fact that the norm of the indicator vector
is k and the operator norm of A−Ad is equal to the d+ 1 largest eigenvalue of A.

Moreover, we have that

optB =
1TX∗A1Y∗

k
=

1TX∗(Ad + A−Ad)1Y∗
k

=
1TX∗Ad1Y∗

k
+

1TX∗(A−Ad)1Y∗
k

≤
1TXdAd1Yd

k
+

1TX∗(A−Ad)1Y∗
k

≤
1TXdAd1Yd

k
+
‖1X∗‖2 ‖(A−Ad)1Y∗‖2

k
≤

1TXdAd1Yd
k

+ |λd+1| (13)

where the first inequality comes due to the fact that 1TXdAd1Yd ≥ 1TX∗Ad1Y∗ and the second and third are similar to the
previous bound. We can now combine the above two bound to obtain:

optBd ≥ optB − 2 · |λd+1|. (14)

In the exact same way, we can obtain the result for rectangular matrices.

The above proposition, combined with Proposition 1 give us the bipartite part of Theorem 1, where optB = opt, that is

optBd ≥ optB − 2 · |λd+1| = opt− 2 · |λd+1|.

3.3. Graphs with their first d eigenvalues positive part of Theorem 1

To establish the part about graphs with the d largest eigenvalues being positive, we use the following result.

Proposition 7. If Ad is positive semidefinite, then

max
|X |=k

1TXAd1X
k

= max
|X |=k

max
|Y|=k

1TXAd1Y
k

Proof. This is easy to see by the fact that for any two sets X ,Y we have

max
|S|=k

1TXAd1Y ≤ max
|X |=k,|Y|=k

1TXAd1Y = max
|X |=k,|Y|=k

1TXVdΛ
1/2
d Λ

1/2
d VT

d 1Y

≤ max
|X |=k,|Y|=k

max
{
‖Λ1/2

d Vd1X ‖2, ‖Λ1/2
d Vd1Y‖

}
≤ max
|X |=k,|Y|=k

max
{
1TXAd1X , 1TYAd1Y

}
≤ max
|S|=k

1TSAd1S

where the second inequality comes due to the Cauchy-Schwarz inequality.

We can combine the above proposition with the first part of Proposition 6 to obtain that

optd = optBd ≥ opt− 2|λd+1(A)|

when Ad is positive semidefinite.

Title Suppressed Due to Excessive Size

3.4. Arbitrary graphs part of Theorem 1

In the next proposition, we show how to translate a low-rank approximation of A after we used the random sampling of
randombipartite(G). We need this result to to establish the general result of Theorem 1, by connecting the previous
spectral bound, with the 2 loss in approximation between DBkS and DkS.

Proposition 8. Let A be the adjacency matrix of a graph. Moreover, let the matrices P1 and P2 be such that B = P1AP2

is the bi-adjecency created by each loop of randombipartite(G), where P1 is an n1×nmatrix indexing the left vertices
of the graph, and P2 is an n× n2 sampling matrix that indexes the right vertices of the sub-sampled graph. Then,

optBd ≥ optB − 2|λd+1(A)|,

where optB is the maximum density on B = P1AP2.

Proof. Let without loss of generality assume that B will be the bipartite subgraph between the first n1 and the remaining
n2 = n− n1 vertices, such that

A =

[
C B
BT D

]
(15)

Then there are two sampling matrices that pick the corresponding columns and rows

P1 = [In1×n1
0n1×n2

] and P2 =

[
0n1×n2

In2×n2

]
Then, instead of working on the matrix that is the rank-d best fit for B, we work on

Bd = P1AdP2.

Now, we use the bounding techniques of our previous derivations:

optd =
1TXdB1Yd

k
=

1TXdP1(Ad + A−Ad)P21Yd
k

=
1TXdP1AdP21Yd

k
+

1TXdP1(A−Ad)P21Yd
k

≥
1TXdP1AdP21Yd

k
−
‖1Xd‖2 · ‖P1(A−Ad)P21Yd‖2

k
≥

1TXdP1AdP21Yd
k

− |λd+1|, (16)

where the last step comes due to the fact that P1,P2 their singular values are 1. We can use a similar bound to obtain

optB ≤
1TXdP1AdP21Yd

k
+ |λd+1|,

where optB is the density of the densest k-subgraph on the graph with bi-adjacency matrix P1AP2. and combine the
above to establish the result.

We can now use our random sampling Proposition 4 and combine that with Propositions 8, and 6, to establish Theorem 1
for arbitrary graphs.

4. Proof of Theorem 2: graphs with highly dense k-subgraphs
We now establish the following a priori spectral bound that holds for any graph.

Lemma 1. For any unweighted graph G, we have that

|λd| ≤
√

2 ·m
d

(17)

where m is the number of edges in G.

Title Suppressed Due to Excessive Size

Proof. Observe that

d · λ2d ≤
d∑
i=1

λ2i ≤
n∑
i=1

λ2i = ‖A‖2F =
∑
i,j

A2
i,j =

∑
i,j

Ai,j = 2 ·m, .

where the second to last equality comes due to the fact that A2
i,j can only be 1 or 0.

We use this bound and Theorem 1, to obtain a the following result, which is a restatement of Theorem 2.

Proposition 9. If the densest-k-subgraph contains a constant fraction of all the edges, and k = Θ(
√
E), then we can

approximate DkS within a factor of 2 + ε, in time nO(1/ε2). If additionally the graph is bipartite, then we can approximate
DkS within a factor of 1 + ε.

Proof. For any arbitrary graph, due to Theorem 1, we have

optd ≥
(

1− δ
2

)
· opt− 2 · |λd+1|.

Since, we assumed that the densest k-subgraph contains a constrant fraction of the edges, this means that k · opt = c1 ·m
for some constant c > 0. Moreover, we assumed that k = c2 ·

√
m, for some constant c2 > 0. Hence,

c2 ·
√
m · opt = c1 ·m⇒ opt =

c1
c2
·
√
m.

Using Lemma 1, we also get

|λd| ≤
√

2m

d
=

√
2

d
· c2
c1
· opt.

Combining the above gives us

optd ≥
(

1− δ
2

)
· opt− 2|λd+1| ≥

(
1− δ

2
−
√

2

d
· c2
c1

)
· opt

Hence, if we want
√

2
d ·

c2
c1

= δ
2 , we need to set d =

⌈
1
2 ·

c22
c21
· 1
δ2

⌉
= O(1

δ2). Setting δ = ε
2 establishes the result. In a

similar way, we obtain the 1 + ε approximation for bipartite graphs, by using the second bound of Theorem 1.

5. Proof of Lemma 3: Data Dependent Bounds
Proof. Let X∗,Y∗ be the optimal solution of DBkS on A and let Let Xd,Yd be the optimal solution of DBkS on the rank-d
matrix Ad. Then, for the first bound we have

optB =
1TX∗A1Y∗

k
=

1TX∗(Ad + A−Ad)1Y∗
k

=
1TX∗Ad1Y∗

k
+

1TX∗(A−Ad)1Y∗
k

≤
1TXdAd1Yd

k
+

1TX∗(A−Ad)1Y∗
k

≤
1TXdAd1Yd

k
+
‖1X∗‖2 ‖(A−Ad)1Y∗‖2

k
≤

1TXdAd1Yd
k

+ |λd+1|. (18)

The upper bound k − 1 is trivial by the fact that for any X and Y we have

1TXA1Y
k

≤ 1TX (11T − In)1Y
k

≤ k(k − 1)

k
= k − 1.

The last bound is simply due to the spectral bound on the bilinear form 1TXA1Y
k ≤ ‖1X ‖2·‖A1Y‖2

k ≤ λ1.

Title Suppressed Due to Excessive Size

6. Proof of Theorem 3: Nearly-linear Time Algorithm
When the matrix Ad has mixed signs of eigenvalues, then we have to go through the route of DBkS. However, when Ad

has only positive eigenvalues, then it is easy to show that solving the bilinear problem on Ad is equivalent to solving

max
|X |=k

1TXAd1X
k

.

This is the DkS low-rank problem, that now can be solved by our algorithm. We show that when this spectral scenario
holds, we can speed up computations tremendously, by the use of a simple randomization.

Let us first remind the fact that DBkS and DkS are equivalent for positive semidefinite matrices. We will show here how
max|S|=k 1TSAd1S can be approximately in time nearly-linear in n, by only introducing a small relative approximation
error. Our approximation will use ε-nets.

Definition 1. (ε-net) Let Sd = {c ∈ Rd : ‖c‖2 = 1} be the surface of the d-dimensional sphere. An ε-net of Sd is a finite
set N d

ε ⊂ Sd such that
∀c ∈ Sd ∃ ĉ ∈ N d

ε : ‖c− ĉ‖2 ≤ ε.

We now show that we can solve our optimization, via the use of ε-nets, which we construct in the next subsection.

Proposition 10. Let N d
ε be an ε-net of Sd. Then,

(1− ε)2 · max
|S|=k

1TSAd1S ≤ max
c∈Ndε

max
|S|=k

(
cTΛ

1/2
d VT

d 1S
)2
≤ max
|S|=k

1TSAd1S . (19)

Proof. Let c be a d× 1 unit length vector, i.e., ‖c‖2 = 1. Then, by the Cauchy-Schwartz inequality we have

(cTΛ
1/2
d VT

d 1S)2 ≤ ‖Λ1/2
d VT

d 1S‖22.

We can get equality in the previous bound for a unit norm c co-linear to Λ
1/2
d VT

d 1S . Therefore, we have

‖Λ1/2
d VT

d 1S‖22 = max
‖c‖2=1

(cTΛ
1/2
d VT

d 1S)2. (20)

Hence,
max
|S|=k

1TSAd1S = max
|S|=k

‖Λ1/2
d VT

d 1S‖22 = max
|S|=k

max
‖c‖2=1

(cTΛ
1/2
d VT

d 1S)2. (21)

We can now obtain the upper bound of the proposition, sinceN d
ε ⊆ Sd. Now for the lower bound, let (1Sd , cd) denote the

optimal solution of the above maximization, such that

max
|S|=k

1TSAd1S = (cdVd
T1Sd)2.

Then, there exists a vector ĉ in the ε-net N d
ε , such that cd = ĉ + r, with ‖r‖ ≤ ε. Then,√

max
|S|=k

1TSAd1S = cd
TVT

d 1Sd = (ĉ + r)TVT
d 1Sd

(α)

≤ ĉTVT
d 1Sd + ε · ‖VT

d 1Sd‖ = ĉTVT
d 1Sd + ε ·

√
max
|S|=k

1TSAd1S ,

where (α) is due to the triangle inequality, then the Cauchy-Schwartz inequality, and then the fact that ‖r‖ ≤ ε. From the
above inequality we get

(1− ε)2 max
|S|=k

1TSAd1S ≤
(
ĉTVT

d 1Sd
)2 ≤ max

c∈Ndε
max
|S|=k

(
cTVT

d 1S
)2

which concludes the proof.

The importance of the above proposition lies in the fact that for a fixed c we can easily solve the problem

max
|S|=k

(
cTVT

d 1S
)2
.

Title Suppressed Due to Excessive Size

Observe that the above optimization is the same problem that we had to solve for a fixed Y in Section 3. This inner product
is maximized when S picks the largest, or smallest k elements of the n-dimensional vector cTVT

d . The complexity to do
that is linear O(n) (Cormen et al., 2001).

It is now obvious that the number of elements, and the complexity to constructN d
ε is important. In the next subsection, we

show how to build such a net, using similar random coding arguments to (Wyner, 1967). Let N d
ε be a set of vectors drawn

uniformly on the sphere (the cardinality is determined in the next subsection and will be O(1
εd
· log(1

ε·δ)). Our algorithm
operates as follows: First we draw a set of |N d

ε | random vectors, and then we find the corresponding optimal S, by solving

max
c∈Mε

max
|S|=k

(
cTΛ

1/2
d VT

d 1S

)2
.

This can be done in time O(|N d
ε | · n). Then, among all these solutions, with probability 1 − δ, the best solution satisfies

the bound of the proposition. The randomized algorithm is given below for completeness.

Algorithm 5 Randomized Spannogram
1: Spannogram approx(k, Vd,Λd)
2: Sd = ∅
3: for i = 1 : |N d

ε | do
4: v = (Λ

1/2
d ·Vd)

T · randn(d, 1)
5: Sd = Sd ∪ topk(v) ∪ topk(−v)
6: end for
7: Output: arg maxS∈Sd

∥∥∥Λ1/2
d VT

d 1S

∥∥∥.

Computing Ad in the first step of the algorithm, can also be done in nearly linear-time in the size of the input A. There
is extensive literature on approximating Ad by a rank-d matrix Âd such that ‖Ad − Âd‖2 ≤ δ, in time proportional to
the nonzero entries of A times a logarithmic term, as long as |λd/λd+1| is at least a constant (Rokhlin et al., 2009; Halko
et al., 2011; Gittens et al., 2013).

6.1. A simple ε-net construction via random coding principles

We construct an ε-net of the d-dimensional sphere by randomly and independently drawing a sufficient number of uniformly
distributed points. This construction is essentially studied by Wyner (Wyner, 1967) in the asymptotic d→∞ regime, under
a different question: how many random spherical caps are needed to cover a sphere?

The idea behind our construction is simple, and uses to ingredients. First, by a lemma of (Vershynin, 2010) (p.8, Lemma
5.2) we know that there exist an ε-net on the d-dimensional sphere of size at most

|N d
ε | ≤

(
1 +

2

ε

)d
.

Then, we use an elementary balls-and-bin arguments to find the number of vectors that we need to draw at random, so
that each point of the net N d

ε , is ε-close to at least one of the vectors that we drew. This set of random vectors will then
correspond to a 2 · ε-net.

More formally, let
Cd(c0, ε) =

{
c ∈ Sd : ‖c− c0‖ ≤ ε

}
,

be a spherical cap of Sd centered at c0, that includes all vectors within distance ε from c0. Let us now define a set of mε,d

spherical caps for each point c0 of the set N d
ε . Then, by the definition of an ε-net, the caps centered at the vectors of N d

ε

cover the sphere: ⋃
c0∈Ndε

Cd(c0, ε) =
{
c ∈ Sd : ‖c− c0‖ ≤ ε

}
= Sd.

Title Suppressed Due to Excessive Size

Now, consider an arbitrary point ĉ0 in some spherical cap Cd(c0, ε). By the triangle inequality, any other point c in
Cd(c0, ε), satisfies

‖c− ĉ0‖ ≤ ‖c− c0‖+ ‖c0 − ĉ0‖ ≤ 2ε.

The above implies that if we construct a set that contains at least one point from each of the mε,d caps centered on the
vectors ofN d

ε , then this set of points forms a 2ε-net. In the following, we do this by randomly drawing a sufficient number
of vectors on the sphere.

Let us draw random points uniformly distributed over Sd, by normalizing randomly generated Gaussian vectors distributed
according to N(0, Id). A random point falls in one particular cap with probability at least 1

mε,d
. This is true, since mε,d

spherical caps suffice to cover the surface of the sphere. The probability that some of the caps is empty after we throw m
vectors is

Pr


|Ndε |⋃
i=1

{cap i is empty after m vector draws}

 ≤ |N d
ε | ·

(
1− 1

|N d
ε |

)m
. (22)

If we wish the probability of this “bad event” to be δ, then we get that the number of m vectors that we need to throw has
to satisfy

|N d
ε | ·

(
1− 1

|N d
ε |

)m
≤ δ ⇒ log(|N d

ε |) +m · log

(
1− 1

|N d
ε |

)
≤ log(δ)

⇒m ≥ log(δ)− log(|N d
ε |)

log
(

1− 1
|Ndε |

) =
log(|N d

ε |/δ)

− log
(

1− 1
|Ndε |

) ≥ d log
(
1+2ε
δ

)
1
|Ndε |

⇒m ≥
(

1 +
2

ε

)d
·
(
d · log

(
1 +

2

ε

)
+ log δ

)
Hence, we get the following lemma.
Lemma 2. Let us draw uniformly at random(

1 +
2

ε

)d
·
(
d · log

(
1 +

2

ε

)
+ log δ

)
= O

(
1

εd
log

(
1

ε · δ

))
vectors on the d-dimensional sphere. Then, with probability at least 1− δ, this set is a 2 · ε-net of the sphere.

7. Vertex Sparsification via Simple Leverage Score Sampling
Our algorithm comes together with a vertex elimination step: after we compute the low-rank approximation matrix Ad,
we discard rows and columns of Ad, i.e., vertices, depending on their weighted leverage scores. Leverage score sampling
has been extensively studied in the literature, for many different applications, where it can provably provide small error
bounds, while keeping a small number of features from the original matrix (Mahoney & Drineas, 2009; Boutsidis et al.,
2009).

As we see in the following, this pre-processing step comes with an error guarantee. We show that by throwing away
vertices with small leverage scores, can only introduce a provably small error.

Let us define as

`i =

∥∥∥∥[Vd|Λ|1/2
]
i,:

∥∥∥∥ =

√√√√ d∑
j=1

[Vd]2i,j |λj |,

the weighted leverage score of a vertex i. Then, our elimination step is simple. Let Âd be a subset of Ad, where we have
eliminated all vertices with `i ≤ η

3k`1
. Let PH be a diagonal matrix of 1s and 0s, with a 1 only in the (i, i) indices such

that `i > η
3k`1

. Then,
Âd = PHAdPH.

We can now guarantee the following upper bound on the error introduced by the elimination.

Title Suppressed Due to Excessive Size

Proposition 11. Let Âd be created as above,
Âd = PHAdPH.

where PH is a diagonal matrix of 1s and 0s, with a 1 on (i, i) indices such that `i > η
3k`1

. Then,

1TXAd1Y
k

− η ≤ 1TX Âd1Y
k

≤ 1TXAd1Y
k

+ η, (23)

for all subsets of k vertices X ,Y .

Proof. Let for brevity θ be a user tuned threshold. Moreover, let PH be a diagonal matrix of 1s and 0s, with a 1 on (i, i)
indices such that `i > θ, and let PL be a diagonal matrix of 1s and 0s, with a 1 on (i, i) indices such that `i ≤ θ. Clearly,

PH + PL = In×n.

Then, we can rewrite Ad as:

Ad = (PH + PL)Ad(PH + PL) = PHAdPH + PLAdPL + PHAdPL + PLAdPH.

Then, we have the following

|1TX (Ad − Âd)1Y | = |1TX (PLAdPL + PHAdPL + PLAdPH)1Y | (24)

≤ |1TXPLAdPL1Y |+ |1TXPHAdPL1Y |+ |1TXPLAdPH1Y | (25)
(26)

Observe that for the first error term we have

|1TXPLAdPL1Y | = |1TXPLVdΛ
1/2
d SΛ

1/2
d VT

d PL1Y | (27)

≤ ‖1TXPLVdΛ
1/2
d ‖ · ‖SΛ

1/2
d VT

d PL1Y‖ ≤ ‖1TXPLVdΛ
1/2
d ‖ · ‖S‖ · ‖Λ

1/2
d VT

d PL1Y‖ (28)

= ‖1TXPLVdΛ
1/2
d ‖ · 1 · ‖Λ

1/2
d VT

d PL1Y‖ ≤
√
k · θ ·

√
k · θ = k · θ2. (29)

where the second and third inequalities come due to the Cauchy-Schwarz inequality. In the above S denotes the diagonal
matrix that contains the signs of the eigenvalues. Clearly, its operator norm is 1. Hence, the last inequality in the above
is due to the fact that 1X ,1Y have k entries with 1, and each picks the rows of VdΛ

1/2
d with the highest leverage score.

Then, due to the triangle inequality on the k-largest row norms (i.e., leverage scores) of VdΛ
1/2
d we get the final result.

Similarly, we can bound the remaining two error terms

|1TXPLAdPH1Y | = |1TXPLVdΛ
1/2
d SΛ

1/2
d VT

d PH1Y | (30)

≤ ‖1TXPLVdΛ
1/2
d ‖ · ‖SΛ

1/2
d VT

d PH1Y‖ ≤ ‖1TXPLVdΛ
1/2
d ‖ · ‖S‖ · ‖Λ

1/2
d VT

d PH1Y‖ (31)

= ‖1TXPLVdΛ
1/2
d ‖ · 1 · ‖Λ

1/2
d VT

d PH1Y‖ ≤
√
k · θ ·

√
k · `1 = k · θ · `1. (32)

Since, θ ≤ `1, we conclude that the above error can be bounded as

|1TX (Ad − Âd)1Y |
k

≤ 3 · k · θ · `1 = η.

Hence, we obtain the proposition.

8. NP-hardness of DkS on rank-1 matrices
In this section, we establish the hardness of the quadratic formulation of DkS, even for rank-1 matrices. Interestingly the
problem is not hard when we relax it to its bilinear form as we showed in our main result. The claim follows.

Claim 1. DkS is NP-hard for rank-1 matrices A with one negative eigenvalue.

Title Suppressed Due to Excessive Size

Proof. Observe that a rank-1 matrix with 1 negative eigenvalue can be written as

A = −vv

where λ1 = ‖v‖2. Then, see that

max
|S|=k

1TSA1S = max
|S|=k

−1TSvvT1S = min
|S|=k

1TSvvT1S =

(
min
|S|=k

|1TSv|
)2

=

(
min
|S|=k

∣∣∣∣∣∑
i∈S

vi

∣∣∣∣∣
)2

.

An algorithm that can solve the above problem, can be used to solve SUBSETSUM. In SUBSETSUM we are given a set
of integers and we wish to decide whether there exists a non-empty subset of these integers that sums to zero. In the
following algorithm we show how this can be trivially done, by solving min|S|=k

∣∣∑
i∈S vi

∣∣ for all values of k. If for some
value of k the sum in the optimizaton is zero, then we decide YES as the output for the SUBSETSUM. Hence, solving

Algorithm 6 SubsetSum via rank-1 DkS
1: Input: v = [v1, . . . , vn]
2: for i = 1 : k do
3: si = min|S|=k

∣∣∑
i∈S vi

∣∣
4: if si == 0 then
5: Output: YES
6: else
7: Output: NO
8: end if
9: end for

max|S|=k 1TSA1S is NP-hard even for rank-1 matrices, in the general case.

9. Additional Experiments
In Fig. 1, we show additional experiment on 9 more large-graphs. The description of the graphs can be found in Table 1.
Moreover, in Fig. 2. The description of the experiments can be found in the figure captions.

Table 1. Datasets used in our experiments

DATA SET NODES EDGES DESCRIPTION

COM-DBLP 317,080 1,049,866 DBLP COLLABORATION NETWORK
COM-LIVEJOURNAL 3,997,962 34,681,189 LIVEJOURNAL ONLINE SOCIAL NETWORK
WEB-NOTREDAME 325,729 1,497,134 WEB GRAPH OF NOTRE DAME
EGO-FACEBOOK 4,039 88,234 SOCIAL CIRCLES FROM FACEBOOK (ANONYMIZED)
CA-ASTROPH 18,772 396,160 COLLABORATION NETWORK OF ARXIV ASTRO PHYSICS
CA-HEPPH 12,008 237,010 COLLABORATION NETWORK OF ARXIV HIGH ENERGY PHYSICS
CA-CONDMAT 23,133 186,936 COLLABORATION NETWORK OF ARXIV CONDENSED MATTER
CA-GRQC 5,242 28,980 COLLABORATION NETWORK OF ARXIV GENERAL RELATIVITY
CA-HEPTH 9,877 51,971 COLLABORATION NETWORK OF ARXIV HIGH ENERGY PHYSICS THEORY
LOC-BRIGHTKITE 58,228 214,078 BRIGHTKITE LOCATION BASED ONLINE SOCIAL NETWORK
ROADNET-CA 1,965,206 5,533,214 ROAD NETWORK OF CALIFORNIA
EMAIL-ENRON 36,692 367,662 EMAIL COMMUNICATION NETWORK FROM ENRON
COM-ORKUT 3,072,441 117,185,083 ORKUT ONLINE SOCIAL NETWORK
FLICKR 105,938 2,316,948 NETWORK OF FLICKR IMAGES SHARING COMMON METADATA
FBMEDIUM 63,731 817,090 FRIENDSHIP DATA OF FACEBOOK USERS

http://snap.stanford.edu/data/com-DBLP.html
http://snap.stanford.edu/data/com-LiveJournal.html
http://snap.stanford.edu/data/web-NotreDame.html
http://snap.stanford.edu/data/egonets-Facebook.html
http://snap.stanford.edu/data/ca-AstroPh.html
http://snap.stanford.edu/data/ca-HepPh.html
http://snap.stanford.edu/data/ca-CondMat.html
http://snap.stanford.edu/data/ca-GrQc.html
http://snap.stanford.edu/data/ca-HepTh.html
http://snap.stanford.edu/data/loc-brightkite.html
http://snap.stanford.edu/data/roadNet-CA.html
http://snap.stanford.edu/data/email-Enron.html
http://snap.stanford.edu/data/com-Orkut.html
http://konect.uni-koblenz.de/networks/flickrEdges
http://konect.uni-koblenz.de/networks/facebook-wosn-links

Title Suppressed Due to Excessive Size

References
Boutsidis, Christos, Mahoney, Michael W, and Drineas, Petros. An improved approximation algorithm for the column

subset selection problem. In Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
968–977. Society for Industrial and Applied Mathematics, 2009.

Cormen, Thomas H, Leiserson, Charles E, Rivest, Ronald L, and Stein, Clifford. Introduction to algorithms. MIT press,
2001.

Gittens, Alex, Kambadur, Prabhanjan, and Boutsidis, Christos. Approximate spectral clustering via randomized sketching.
arXiv preprint arXiv:1311.2854, 2013.

Halko, Nathan, Martinsson, Per-Gunnar, and Tropp, Joel A. Finding structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions. SIAM review, 53(2):217–288, 2011.

Mahoney, Michael W and Drineas, Petros. Cur matrix decompositions for improved data analysis. Proceedings of the
National Academy of Sciences, 106(3):697–702, 2009.

Papailiopoulos, Dimitris S, Dimakis, Alexandros G, and Korokythakis, Stavros. Sparse pca through low-rank approxima-
tions. arXiv preprint arXiv:1303.0551, 2013.

Rokhlin, Vladimir, Szlam, Arthur, and Tygert, Mark. A randomized algorithm for principal component analysis. SIAM
Journal on Matrix Analysis and Applications, 31(3):1100–1124, 2009.

Vershynin, Roman. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint arXiv:1011.3027,
2010.

Wyner, Aaron D. Random packings and coverings of the unit n-sphere. Bell System Technical Journal, 46(9):2111–2118,
1967.

Title Suppressed Due to Excessive Size

Figure 1. Subgraph density vs. subgraph size (k). We show the comparison of densest subgraph algorithms on several additional
datasets: Academic collaboration graphs from Arxiv (ca-HepTh, ca-HepPh, ca-GrQc, Ca-Astro), Geographic location-based networks
(roadNet, loc-Brightkite), The Enron email communication graph (email-Enron) and a facebook subgraph (facebook-wosn). The number
of vertices and edges are shown in each plot. As can be seen, in almost all cases rank-2 and rank-5 spannograms match or outperform
previous algorithms. One notable exception is the ca-GrQc where, for subgraphs of size above k = 400 or above, T-power performs
better. Another observation is that the spannogram benefits are often more significant for smaller subgraph sizes. It can also be seen that
the tightness of our data-dependent bound (solid black line) varies for different data sets and subgraph sizes.

Title Suppressed Due to Excessive Size

Figure 2. Running times on a MacBook Pro 10.2, with Intel Core i5 @ 2.5 GHz (2 cores), 256 KB L2 Cache per core, 3 MB L3 Cache,
and 8 GB RAM. Experiments were run on MATLAB R2011b (7.13.0.564). As can be seen, Rank-1 is significantly faster than all other
algorithms for all tested cases. Rank-2 is comparable to prior work, having running times of a few seconds. Rank-5 was the highest
accuracy setting we tested. It can take several minutes on large graphs and seems useful only when high accuracy is desired or other
methods are far from the upper bound. The approximation error in the ε-net was set to 0.1.

