
The Inverse Regression Topic Model (Supplement)

This supplement includes brief elaborations on the main
paper that may be of interest to some readers. In Section 1,
we explain the minorization procedure underlying MAP in-
ference. In Section 2, we lay out the details of our stochas-
tic subgradient approximation procedure for online MAP
inference. In Section 3, we lay out a useful interpretation
of MAP prediction. In Section 4, we summarize the results
of experiments with the two other prediction methods for
the IRTM (MAP and sufficient reduction based) mentioned
in the main paper. In Section 5, we discuss exploration of
topic variation via the topic families βk(y) themselves and
explain why we found it inadequate.

1. Minorization Scheme
Our goal in minorization is to maximize a lower bound on
the objective L of equation (2). This maximization is done
separately for the topics β and Φ, and distinct lower bounds
are produced for each. For concreteness, we focus on Φ;
the procedure for β is entirely analogous. As in the main
paper, we assume real-valued metadata yd ∈ R. The gen-
eral case is a straightforward extension.

In coordinate-wise minorization, the lower bounds, valid
in a neighborhood of the current estimate Φ(0), come from
second-order Taylor expansion; they take the form

Q̃w(Φw) = `(β, Φ(0)) +
∂`

∂Φw
(β, Φ(0))(Φw − Φ(0)

w )

+
1

2
Hw(Φw − Φ(0)

w )2 − λ|Φw|,

where

Hw = −
∑
d

∑
k

∑
v

[
nvdγdvk × (1)

sup
|Φw−Φ

(0)
w |≤δw

βkw(yd)(1− βkw(yd))

]

is a lower bound on the second derivative of ` with respect
to Φw valid for |Φw − Φ

(0)
w | ≤ δw. Since Q̃w(Φ

(0)
w ) =

L(β, Φ(0)), it is easy to see that in fact Q̃w ≤ L for |Φw−
Φ

(0)
w | ≤ δw as a function of Φw with all other parameters

held fixed.

At the end of this section, we explain how to compute Hw

explicitly using techniques from Genkin et al. (2007).

This means that, if |Φ′w − Φ
(0)
w | ≤ δw has Q̃(Φ′w) ≥

Q̃(Φ
(0)
w ), and if Φ is obtained from Φ(0) by setting Φw =

Φ′w, then

L(β, Φ) ≥ Q̃w(Φ′w) ≥ Q̃w(Φ(0)
w ) = L(β, Φ(0)),

so any update to Φw that stays within the δw-neighborhood
of Φ

(0)
w and increases Q̃w also increases L. Taking advan-

tage of this, we use coordinate ascent updates of the form

Φw ← argmax φ∈AwQ̃w(φ), where

Aw = [−δw, δw], if Φ(0)
w = 0

Aw = {φ ∈ R : |φ− Φ(0)
w | ≤ δw, sgn(φ)sgn(Φ(0)

w ) ≥ 0},
otherwise.

In other words, each update either maximizes Q̃w over the
whole δw neighborhood of Φ

(0)
w (if Φ

(0)
w = 0 or |Φ(0)

w | ≥
δw), or maximizes the lower bound over a truncated ver-
sion of the neighborhood cut off so as to remain on the
same side of 0 as Φ

(0)
w . An analogous update applies to

log βkw, albeit without truncation. We point out that, in
fact, truncation does not appear strictly necessary for this
algorithm to succeed, though it does seem natural in light
of the choice of the sparsity-inducing Laplace prior: the
mechanism that produces sparsity is precisely the difficulty
of escaping from the critical point (of non-differentiability)
at 0.

A naive implementation of this algorithm would update the
Φw and βkw sequentially. This is impractical, however, as
it requires recomputation of the log-normalizer Ck(yd) for
every topic-document pair after each update, with the result
that updating the weights costs Ω(DWK) time.

We therefore adopt a lazy updating strategy that computes
all the new Φ values before updating them, then computes
all the new β values before updating them. Essentially,
this approach amounts to a non-coordinate-wise minoriza-
tion algorithm. Indeed, if H − ∇2

Φ`(β, Φ) is positive
semidefinite on

∏
w, mAw,

`(β,Φ) ≥ `(β,Φ(0)) +∇`(β,Φ(0))T (Φ− Φ(0))

+
1

2
(Φ− Φ(0))TH(Φ− Φ(0))

=: Q(β,Φ), Φ ∈
∏
w

Aw. (2)
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This implies L ≥ Q̃ : = Q−λ||Φ||1 on the product neigh-
borhood.

Unfortunately, optimizing this function directly is infeasi-
ble, so we replaceH by a diagonal matrixD = diag(Hw),
where Hw is given by (3). This results in updates of the
form prescribed above but whose independence of each
other allows for lazy updating.1 Mathematically, the ap-
proximation makes sense in this context because Hv,w =∑
d

∑
k O

(
y2
dβkv(yd)βkw(yd)

)
if v 6= w, while Hw,w =

−
∑
d

∑
k Ω
(
y2
dβkw(yd)(1− βkw(yd))

)
. This means that,

in the typical case when βkw(yd) � 1 for all k, w, and d,
the off-diagonal entries of the lower bound on the Hessian
are much smaller than the diagonal terms. Empirically, we
find that the optimization scheme resulting from this ap-
proximation runs quickly and performs parameter estima-
tion effectively.

We now give an explicit value forHw using estimates simi-
lar to those of Genkin et al. (2007) and Taddy (2013). Begin
by noting

∂`

∂Φw
=
∑
d

∑
k

(
nwd γdwk −

∑
v

nvdγdvk · βkw(yd)

)
· yd

and

∂2`

∂Φ2
w

= −
∑
d

(∑
v

nvdγdvk

)
· βkw(yd)(1− βkw(yd))y

2
d,

and letting

Hw : = −
∑
d

y2
d

∑
k

[(∑
v

nvdγdvk

)
× (3)

sup
|Φw−Φ

(0)
w |≤δ

βkw(yd)(1− βkw(yd))

]
.

1In the general case of yd ∈ RM , we would replace by H by
a block-diagonal matrix D instead, where each block would have
dimensions M ×M .

We can compute these suprema exactly:

2 +

∑
v 6=w βkv exp(Φ

(0)
v · yd)

βkw exp(Φ
(0)
w · yd + ∆Φw · yd)

+
βkw exp(Φ

(0)
w · yd + ∆Φw · yd)∑

v 6=w βkv exp(Φ
(0)
v · yd)

= 2

+

(∑
v 6=w βkv exp(Φ

(0)
v · yd)

)2

βkw exp(Φ
(0)
w · yd + ∆Φw · yd)

∑
v 6=w βkv exp(Φ

(0)
v · yd)

+

(
βkw exp(Φ

(0)
w · yd + ∆Φw · yd)

)2

βkw exp(Φ
(0)
w · yd + ∆Φw · yd)

∑
v 6=w βkv exp(Φ

(0)
v · yd)

=(∑
v 6=w βkv exp(Φ

(0)
v · yd) + βkw exp((Φ

(0)
w + ∆Φw) · yd

)2

βkw exp((Φ
(0)
w + ∆Φw) · yd)

∑
v 6=w βkv exp(Φ

(0)
v · yd)

=
1

βkw(yd)(1− βkw(yd))
,

where β(yd) is formed at Φw = Φ
(0)
w + ∆Φw. Since the

first expression in this chain has the form

2 +
1

ax
+ ax,

where a =
βkw exp(Φ(0)

w ·yd)∑
v 6=w βkv exp(Φ

(0)
v ·yd)

and x = exp(∆Φwyd),

its minimum, hence the maximum (supremum)
of βkw(yd)(1 − βkw(yd)), is attained at x = 1

a
or, equivalently, when βkw exp(Φw · yd) =∑
v 6=w βkv exp(Φ

(0)
v · yd). This may not always be

attainable with |∆Φw| ≤ δ, so we end up with the bound

Fdwk : = inf
|∆Φw|≤δ

1

βkw(yd)(1− βkw(yd))

= 2 +
fdw∑

v 6=w βkv exp(Φ
(0)
v · yd)

+

∑
v 6=w βkv exp(Φ

(0)
v · yd)

fdw
,

where
fdwk = exp(Φw · yd + δ|yd|),

if exp(Φw · yd + δ|yd|) <
∑
v 6=w

βkv exp(Φ(0)
v · yd);

fdwk = exp(Φw · yd − δ|yd|),

if exp(Φw · yd − δ|yd|) >
∑
v 6=w

βkv exp(Φ(0)
v · yd);

fdwk =
∑
v 6=w

βkv exp(Φ(0)
v · yd),

otherwise.
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Finally, we compute Hw exactly as

Hw = −
∑
d

y2
d ·
∑
k

∑
v n

v
dγdvk

Fdwk
. (4)

2. Stochastic Subgradient Descent Scheme
We now describe our stochastic subgradient descent
(SSGD) scheme for online MAP inference. As noted in
the paper, this method is for fitting the distortion matrix Φ,
with the topics β held fixed.

In this setting, we wish to minimize the negative ELBO,
given up to constants independent of Φ, by

M =
∑
d

[
−
∑
k

∑
w

nwd γdwk log βkw

−
∑
w

nwd Φw · yd

+
∑
k

(∑
w

nwd γdwk

)
logCk(yd)

]
− (η − 1)

∑
k

∑
w

log βkw + λ ||Φ||1 .

Switching to M allows us to frame our algorithm in the
standard terms of convex optimization—in particular, to
work with the subdifferential ∂ΦM(Φ) rather than the ’su-
perdifferential’ needed for maximization.

Our stochastic approximation is based on a two-tier sam-
pling approach. First, we sample a minibatch B ⊂ [D] of
documents and form the approximate objective

M̂B = −D
S
·
∑
d∈B

[∑
k

∑
w

nwd γdwk log βkw

+
∑
w

nwd Φw · yd

−
∑
k

(∑
w

nwd γdwk

)
logCk(yd)

]
− (η − 1)

∑
k

∑
w

log βkw + λ ||Φ|| . (5)

We then choose a subgradient g ∈ ∂ΦM̂ and replace it
in turn by a sparse approximation ĝ. To compute ĝ, we
first sample a minibatch B′ ⊂ [W ] of terms and define
Vseen = {w ∈ [W ] :

∑
d∈B n

w
d > 0}. The sparse approxi-

mate subgradient is then given by

ĝwm =


gwm if w ∈ Vseen

W
S′ · gwm if w ∈ B′ ∩ [W ] \ Vseen

0 otherwise.
(6)

Since p(w ∈ B′ | w ∈ Vunseen) = S′

W , we see
that EB′ [ĝ] = g. Further, any mapping g : B 7→
g(B) ∈ ∂ΦM̂B necessarily satisfies EB [g] ∈ ∂ΦMB , so
EB,B′ [ĝ] ∈ ∂ΦMB , as required for SSGD.

As usual in stochastic optimization, we maintain an esti-
mate Φ(t) and update it iteratively, letting t → ∞. An
individual update has three stages:

1. Sample a minibatch of documents B(t) ⊂ [D] of size
S and a minibatch of terms B

′,(t) ⊂ [W ] of size S′.

2. Choose a subgradient g(t) ∈ ∂ΦM̂(Φ(t)) and com-
pute the stochastic approximation ĝ(t).

3. Update Φ(t+1) = Φ(t) − ε(t)ĝ(t), where ε(t) is the
current step size.

The first stage is carried out by repeatedly sampling with-
out replacement; the second and third, on the other hand,
require further elucidation. In the second stage, for each
w ∈ [W ] and 1 ≤ m ≤M , we set

g
(t)
w, main =

D

S

[ ∑
d∈B(t)

nwd yd

−
∑
d

∑
k

(∑
v

nvdγdvk

)
βkw(yd)yd

]
(7)

and

g(t)
w =


g

(t)
w, main + λ · sgn(Φ

(t)
w ) if Φ

(t)
w 6= 0,

g
(t)
w, main − λ o.w. if g(t)

w, main > λ,

g
(t)
w, main + λ o.w. if g(t)

w, main < −λ,
0 otherwise.

In words, each component of the subgradient is either just
the derivative in the appropriate direction (Φw 6= 0), cho-
sen to point in the same direction as the main term g

(t)
w, main

(Φw = 0 and |g(t)
w, main| > λ), or set to zero if 0 is a sub-

gradient in dimension w (Φw = 0 and |g(t)
w, main| ≤ λ).

After computing g(t), we use (6) to compute ĝ(t). Note
that an actual implementation should compute gw only
for w ∈ B′. We also point out that, while this scheme
does not itself have a provable rate of convergence, a sim-
ple modification using projections to a ball of radius R
after each step and outputting averaged iterates Φ̂(t) =

1∑t
τ=1 ε

(τ) ·
∑t
τ=1 ε

(τ)Φ(τ) can easily be proven to converge
(Polyak, 1987; Shor, 1998).
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Figure 1. Top words in βk(y) for y ∈ {−4, 0, 5} in the topic family corresponding to medicine and health care. We obtained these
results using the full press release corpus. Color and horizontal position indicates Φ value (red and left are more negative).
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Figure 2. Top words in βk(y) for y ∈ {−4, 0, 5} in the topic family corresponding to immigration. We obtained these results using the
subsampled press release corpus. Color and horizontal position indicates Φ value (red and left are more negative).

3. MAP Prediction
We show that logCk(y) is convex in y.

Proposition 3.1. In the usual notation, we have
∂ logCk(y)

∂y
= EW∼βk(y)[ΦW ]

and
∂2 logCk(y)

∂y2
= EW∼βk(y)[Φ

2
W ]−EW∼βk(y)[ΦW ]2.

In particular, logCk(y) is convex in y.

Proof. We show that βk(y) is an exponential family with
natural parameter y ∈ R. Indeed, we see that
p(w | βk, Φ, y) = βkw(y) = βkw exp (y · Φw − logCk(y)) .
Thus, if t(w) = Φw ∈ R, h(w) = βkw, and a(y) =
logCk(y),

p(w | βk, Φ, y) = exp (y · t(w)− a(y))h(w),
proving that p(w | βk, Φ, y) for fixed βk and Φ is an ex-
ponential family with parameter y ∈ R.

Now, by the usual exponential family identity (see, e.g.,
Lehmann & Casella (1998)),

∂a(y)

∂y
= EW∼βk(y) [t(W )]

and
∂2a(y)

∂y2
= EW∼βk(y)

[
t(W )2

]
−EW∼βk(y) [t(W )]

2

Since a(y) = logCk(y) and t(w) = Φw, the equalities
follow. Now, EW∼βk(y)

[
Φ2
W

]
≥ EW∼βk(y) [t(W )] by

Jensen’s inequality, so convexity follows.

Since Lpred is a negative linear combination of terms
logCk(y) plus the strictly concave penalty − 1

2σ2 (y − µ)2,
Proposition 3.1 shows that Lpred is strictly concave in y.

It likewise allows a simple probabilistic interpretation of
MAP prediction in the IRTM. Indeed, if βemp denotes
a document’s empirical word distribution, the proposition
immediately implies
∂L
∂y

= − 1

σ2
(y − µ)

+N ·

(
Ew∼βemp [Φw]

−
∑
k

(∑
w n

wγwk
N

)
Ew∼βk(y)[Φw]

)
.

After letting θ̃k =
∑
w n

wγdwk
N and β̃mod(y) =∑

k θ̃kβk(y), we then find that the MAP estimate
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Table 1. Though not as effective as our primary method, direct
MAP estimation often still outperforms MNIR and the super-
vised topic models, whereas sufficient reduction based prediction
is considerably less competitive. The Primary column lists the er-
ror when using the IRTM prediction method from the main paper.

Test error (L1) Method
MAP Suff. Red. Primary

Amazon 0.989 1.03 0.996
Press Releases (Subsampled) 0.777 0.756 0.703

Press Releases (Top Members) 0.437 0.524 0.420
Press Releases (All) 0.924 0.901 0.826

Yelp (Subset) 0.751 0.766 0.741
Yelp (All) 0.705 0.734 0.704

ŷMAP(θ, γ) given θ and γ satisfies
EW∼β̃mod(ŷMAP(θ,γ))[ΦW ] = EW∼βemp [ΦW ]

− 1

Nσ2
(ŷMAP(θ, γ)− µ).

(8)
Note that, at optimality, β̃mod ≈ βmod : =

∑
k θkβk(y),

since θ̃ ≈ θ; further, if N is large, the penalty term is dom-
inated by the empirical distortion vector term. This means
that, intuitively, the model picks ŷMAP to bring its expected
distortion vector EW∼βmod(ŷMAP)[ΦW ] as close to the em-
pirical distortion vector as possible, up to adjustments due
to the prior and the variational approximation.

4. Alternate IRTM Prediction Methods
Section 2.3 of the main paper discussed two methods of
prediction with the IRTM that fare worse than our cho-
sen adjusted MAP strategy: first, prediction via a regres-
sion onto the sufficient reduction uSRN = 1

N ·
∑
w n

wΦw,
as for MNIR in Taddy (2013); second, direct MAP pre-
diction. For completeness, we show the results of these
methods on the test sets. Though not as effective as our
primary method, direct MAP estimation often still outper-
forms MNIR and the supervised topic models, whereas suf-
ficient reduction based prediction is considerably less com-
petitive. Table 1 summarizes the results.

5. Exploration through Topic Families
Rather than using the scoring function of the main paper,
we can attempt to explore corpora by examining the most
probable words in βk(y) for varying y values. Figure 1
illustrates this approach. There, the topic corresponds to
medicine and health care, and the varying high- probabil-
ity words already suggest interesting biases in Republican
and Democratic discourse on those subjects. We might
guess, for example, that Democrats discuss breast cancer
and Alzheimer’s research much more than Republicans do
and that, obversely, Republicans prioritize childrens’ health

care in their discourse, at least in the large press release
corpus. In this case, both of these guesses turn out to be
correct.

Unfortunately, examination of the top topic words often
does not yield such illuminating patterns; Figure 2 shows
an example of how things can go wrong. The problem is
twofold. First, when y is small (−1, 1), the most likely
words in the distorted topic strongly resemble those in the
base topic. Second, as y becomes larger (−4, 4), the words
at the top tend to become those with high (positive or neg-
ative) weight, and these may have no relation to the spe-
cific topic. Words both strongly associated with the topic
and highly variable in prevalence depending on party affil-
iation appear interleaved with others that are simply likely
in the topic or prone to sentiment-dependent variability but
not strongly associated with the topic. Moreover, the most
variable words need not be the most common, so that deep
examination of the topic is necessary to unearth them. It is
worth noting that these problems appear most pronounced
on the smaller corpora, suggesting that this approach to
topic exploration might be much more effective on big data
sets than on small ones.
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