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Abstract
We present a scalable Bayesian framework for
low-rank decomposition of multiway tensor data
with missing observations. The key issue of
pre-specifying the rank of the decomposition is
sidestepped in a principled manner using a mul-
tiplicative gamma process prior. Both continu-
ous and binary data can be analyzed under the
framework, in a coherent way using fully conju-
gate Bayesian analysis. In particular, the analy-
sis in the non-conjugate binary case is facilitated
via the use of the Pólya-Gamma sampling strat-
egy which elicits closed-form Gibbs sampling
updates. The resulting samplers are efficient and
enable us to apply our framework to large-scale
problems, with time-complexity that is linear in
the number of observed entries in the tensor. This
is especially attractive in analyzing very large but
sparsely observed tensors with very few known
entries. Moreover, our method admits easy ex-
tension to the supervised setting where entities
in one or more tensor modes have labels. Our
method outperforms several state-of-the-art ten-
sor decomposition methods on various synthetic
and benchmark real-world datasets.

1. Introduction
Sparsely observed multiway data are now routinely col-
lected in various application domains such as multirela-
tional social networks (Nickel et al., 2011), recommender
systems (Xiong et al., 2010), contingency table analy-
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ses (Zhou et al., 2013), brain-computer imaging (Cichocki,
2013), and chemometrics (Mørup & Hansen, 2009), among
many others. The prevalence of such data necessitates de-
veloping flexible and scalable methods to analyze them.
Multiway tensor decomposition methods based on the low-
rank tensor approximation (Kolda & Bader, 2009) offer
an attractive way to extract useful information from such
data, by providing a concise representation that captures
the salient characteristics of the data. Of particular interest
are methods that can analyze large-scale but incomplete,
sparsely observed data where a significant fraction of the
entries is missing (Acar et al., 2011).

Probabilistic tensor decomposition methods (Chu &
Ghahramani, 2009), in particular Bayesian tensor decom-
position methods (Xu et al., 2013; Xiong et al., 2010) are
naturally appealing since they provide a principled mech-
anism for dealing with missing data, allow analysis of di-
verse data types (continuous, binary, ordinal, etc.) using
suitable likelihood models, and make it possible to quan-
tify the uncertainty in the parameter estimates and the pre-
dictions (when dealing with missing data). Unfortunately,
these methods require that the rank of the decomposition is
specified prior to the analysis. The rank-estimation prob-
lem is further confounded in the case of tensor data for
which rank determination is known to be an NP-hard prob-
lem (Hastad, 1990). Finally, scalability is another con-
cern when applying these methods. Inference via MCMC
or variational methods can be slow as the tensor size be-
comes large (in the number of observed entries, in the num-
ber/dimensions of tensor modes, or in all of these).

Motivated by these, we present a flexible and scalable non-
parametric Bayesian tensor decomposition method for an-
alyzing multiway tensor data. Our method has the follow-
ing key properties: (1) The tensor rank does not have to
be specified beforehand and is learned adaptively from the
data in a principled way using the theoretically motivated
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multiplicative gamma process prior (Bhattacharya & Dun-
son, 2011) on the elements of the core diagonal tensor in
the CANDECOMP/PARAFAC (CP) low-rank decomposi-
tion of tensors (Kolda & Bader, 2009); (2) Both contin-
uous and binary datasets can be analyzed using a fully
Bayesian framework, via simple closed-form Gibbs sam-
pling updates; (3) Easy extension to the supervised setting
where entities in one or more tensor modes have labels; (4)
Inference scales linearly with the number of observed en-
tries in the tensor, which makes inference highly scalable
for large but sparsely observed multiway datasets, com-
monly encountered in application domains such as mul-
tirelational networks, recommender systems, etc. Even on
non-sparse tensors, our framework, capable of dealing with
large amounts of missing data, allows us to use a very small
fraction of the entire data while achieving reconstruction
quality that is close to using the complete data (our exper-
imental results on tasks such as image inpainting corrob-
orate this). Our framework is therefore also scalable for
analyzing large-scale dense tensors.

2. Low-Rank Tensor Decomposition
In this section, we present our framework for low-rank ten-
sor decomposition based on the CP decomposition (Kolda
& Bader, 2009). We infer the rank by placing a shrink-
age prior, the multiplicative gamma process (MGP) (Bhat-
tacharya & Dunson, 2011), over the superdiagonal ele-
ments of the core tensor (Λ in Figure 1) in the CP decom-
position. The MGP prior adaptively learns the appropriate
number of component tensors, and leads to an efficient low-
rank approximation of the tensor.

2.1. CP Decomposition of Tensor

The CANDECOMP/PARAFAC (CP) decomposition de-
composes a tensor into a sum of rank-1 component ten-
sors (Kolda & Bader, 2009). AK-way (orK-mode) tensor
X ∈ Rn1×n2×···×nK , with the integer nk being the dimen-
sion of X along the kth way, can be represented in its CP
decomposition form:

X =

R∑
r=1

λr · u(1)
r ◦ u(2)

r ◦ · · · ◦ u(K)
r (1)

where the vector u(k)
r ∈ Rnk and ‘◦’ denotes the vector

outer product. HereR is referred to as the rank of the tensor
X . With the CP decomposition as given in (1), the tensor
element xi, with i = [i1, i2, · · · , iK ] its K-dimensional
index vector, can be concisely represented by:

xi =

R∑
r=1

λr

K∏
k=1

u
(k)
ikr

(2)

Denote by U (k) = [u
(k)
1 ,u

(k)
2 , · · · ,u(k)

R ], k =
1, 2, · · · ,K, the nk × R factor matrix of the k-th mode of

X
= +...

u(1)1

Λ
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Figure 1. The CP decomposition of tensors (a three-mode tensor
shown for illustration).
the tensor. When a vector form of the tensor X is desired,
the above CP decomposition can be written as:

vec(X ) = U (1) � U (2) � · · · � U (K) · λ (3)

where � denotes the Khatri-Rao product and λ =
[λ1, λ2, · · · , λR] denotes the vector along the superdiag-
onal of the core tensor.

2.2. Rank Specification

The CP decomposition yields a concise representation of
tensors. However, the tradeoff of the conciseness is that
in the CP decomposition the rank of the tensor being de-
composed needs to be pre-specified. However, rank esti-
mation for tensors is in general an NP hard problem (Has-
tad, 1990). To avoid the burdensome rank estimation task,
a reasonable solution is to express the original tensor with
a “good-enough” low-rank approximation; for example, in
the sense of the Frobenius norm. But unfortunately, un-
like the 2-way (matrix) cases, where the low-rank approx-
imation is completely solved with the Eckart-Young theo-
rem (Eckart & Young, 1936), for tensors the low-rank ap-
proximation can often be an ill-posed problem as discussed
in (de Silva & Lim, 2008). Such theoretical dilemma in-
spires alternative solutions for low-rank approximation of
tensors. Instead of relying on ad-hoc or cumbersome model
selection methods such as AIC, BIC, or the marginal like-
lihood, we turn to the nonparametric Bayesian modeling
paradigm to adaptively infer the rank of the tensor being de-
composed (or a close approximation of the rank necessary
to obtain a sufficiently good low-rank approximation for
a given dataset). In particular, we propose a nonparamet-
ric Bayesian low-rank CP decomposition for tensors based
on the theoretically well motivated multiplicative gamma
process (Bhattacharya & Dunson, 2011) prior (MGP) con-
struction to infer the rank, as opposed to priors such as
the Indian Buffet Process (Griffiths & Ghahramani, 2011)
for which inference can be complicated/slow. As we show
subsequently, the shrinkage property of the MGP leads to
fully conjugate models in both continuous and binary data
cases and allows us to derive simple, closed-form Gibbs
sampling updates for all model parameters. For the binary
case in particular, the conjugacy is achieved via the Pólya-
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Gamma sampling strategy (Polson et al., 2012) which elic-
its a closed-form Gibbs sampler.

2.3. CP Decomposition with MGP

Our low-rank tensor decomposition model construction is
based on the multiplicative gamma process (MGP), origi-
nally proposed in the context of factor analysis of matrix
data (Bhattacharya & Dunson, 2011). In (Bhattacharya &
Dunson, 2011), this prior was employed on the columns of
the factor loading matrix, such that the columns increas-
ingly shrink to zero as the column index increases. We
generalize this construction for the multi-way tensor case.
Crucially, different from the construction used in (Bhat-
tacharya & Dunson, 2011), for the low-rank decomposition
of tensors we put the MGP prior on the superdiagonal el-
ements λ of the core tensor Λ. This greatly reduces the
number of parameters to be estimated in the tensor case.
We denote this CP decomposition driven by the MGP as
MGP-CP. The MGP prior is represented by:

λr ∼ N (0, τ−1r ), 1 ≤ r ≤ R

τr =

r∏
l=1

δl, δl ∼ Ga(ac, 1) ac > 1
(4)

The multiplicative gamma process prior described in (4) on
the precision of the Gaussian distribution for λr will shrink
the λr towards zero as r increases. The appropriate rank
R under our MGP based tensor decomposition model can
be inferred two ways: (i) using a reasonably large trunca-
tion level, or (ii) using an adaptation strategy (discussed
in Section 3.2) which allows growing or shrinking ranks
as inference progresses. We refer to the truncation-based
version as MGP-CPt and the adaptation-based version as
MGP-CPa.

We assume that for each mode of the tensor, theR columns
u
(k)
r of the factor matrix U (k), are drawn from a Gaussian

distribution:

u(k)
r ∼ N(µ(k),Σ(k)), 1 < r ≤ R, 1 < k ≤ K (5)

where µ(k) and Σ(k) are the mean vector and covariance
matrix of the Gaussian distribution of the kth tensor mode.
Then the covariance between any two elements in the ten-
sor X , xi and xj conditioned on the factor matrices is:

Cov(xi, xj |{U (k)}Kk=1) =

R∑
r=1

τ−1r

K∏
k=1

u
(k)
ikr
u
(k)
jkr

(6)

In (6) we observe that the covariance is structured as the
sum of the covariances associated with each rank-one com-
ponent tensor, indicating that each component tensor stands
for an independent significant factor constituting the data.

We now state some results characterizing the bound on
the approximation error for the truncation based MGP-CP
which show that the approximation error decreases expo-
nentially fast as the truncation level tends to infinity (proofs
are given in the supplementary material).

Theorem 1. With ac > 1, the sequence∑R
r=1 λr

∏K
k=1 u

(k)
ikr

converges in `2 as R→∞.

Theorem 2. Denote the residual by MR
i1i2...ik

=∑∞
r=R+1 λr

∏K
k=1 u

(k)
ikr

. Then ∀ε > 0 we have
P{(MR

i1i2...ik
)2 > ε} < 1

εaRc (ac−1)
∏K
k=1 ζk, where ζk is

defined such that E(u
(k)
ikr

)2 is bounded by ζk <∞.

3. Model and Inference
3.1. Model Description

The goal of inference in our model is to infer the param-
eters of the CP decomposition, Λ, U (1), U (2), · · · , U (K),
based on potentially a very limited (sparse) set of obser-
vations Y = {yi}i∈I , where I is the index set of all the
observations, and N = |Y| the number of these observa-
tions. Following the MGP-CP model given in (4) and (5),
the prior, p(Λ, {U (k)}Kk=1), is given below

R∏
r=1

N (λr|0, τ−1r )Ga(δr|ar, 1)

K∏
k=1

N (u(k)
r |µ(k)

r ,Σ(k)
r )

(7)
We further assume that the covariance matrices Σ

(k)
r ’s are

diagonal, which amounts to assuming that the entities in
each tensor mode are a priori independent of each other.

Two types of likelihood models are considered based on
different types of real-world data: continuous and binary
data. The observations Y are assumed to be i.i.d. For the
continuous observations with Gaussian noise, where τε is
the precision, the model likelihood is given by

p(Y|X ) =
∏
i

N (yi|xi, τ−1ε ) (8)

For binary-valued data (e.g., relational data) the logistic
link function is applied:

p(Y|X ) =
∏
i

(
1

1 + e−xi
)yi(

e−xi

1 + e−xi
)1−yi (9)

3.2. Inference via Gibbs Sampling

For continuous data, our model construction with prior in
(7) and likelihood model in (8) is locally conjugate and a
Gibbs sampler can easily be derived for all the model pa-
rameters. For the binary case, the logistic likelihood in (9)
is not conjugate to the prior in (7). To achieve conjugacy in
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the binary case, we use the Pólya-Gamma sampling strat-
egy (Polson et al., 2012), which allows us to derive a fully
analytic Gibbs sampler in the binary case as well.

The Gibbs sampling update equations for the various model
parameters {δr}Rr=1, {λr}Rr=1, and {U (k)}Kk=1, given con-
tinuous or binary observations Y , are as follows:

(i) For the update of the MGP, for δr, 1 ≤ r ≤ R:

δr ∼ Ga(ac+
1

2
(R−r+1), 1+

1

2

R∑
h=r

λ2h

h∏
l=1,l 6=r

δl) (10)

(ii) When the observations Y are real-valued and the like-
lihood is given as in (8), for the update of λr, 1 ≤ r ≤ R:

xi = (

K∏
k=1

u
(k)
ikr

)λr + (
∑
r′ 6=r

λr′
K∏
k=1

u
(k)
ikr′

) = ariλr + bri

(11)

λr ∼ N (µ̂r, τ̂
−1
r ), τ̂r = τr + τε

∑
i

ari
2

µ̂r = τ̂−1r τε
∑
i

ari(yi − bri)
(12)

For the update of u(k)
r , 1 ≤ r ≤ R, 1 ≤ k ≤ K, denote:

xi = (λr
∏
k′ 6=k

u
(k)
ik′r)u

(k)
ikr

+ (
∑
r′ 6=r

λr′
K∏
k=1

u
(k)
ikr′

)

= c
(k)
ikr
u
(k)
ikr

+ d
(k)
ikr

(13)

Then u(k)
r ∼ N (µ̂

(k)
r , Σ̂

(k)
r ) with:

Σ̂(k)
r = (Σ(k)

r

−1
+ T (k)

r )−1

T (k)
r = diag(τ

(k)
1r , τ

(k)
2r , · · · , τ (k)nkr

)

τ (k)nr = τε
∑

i,ik=n

c
(k)
ikr

2
, 1 ≤ n ≤ nk

(14)

µ̂(k)
r = Σ̂(k)

r (Σ(k)
r

−1
µ(k)
r + T (k)

r α(k)
r )

α(k)
r = [α

(k)
1r , α

(k)
2r , · · · , α(k)

nkr
]>, for 1 ≤ n ≤ nk :

α(k)
nr = (τ (k)nr )−1τε

∑
i,ik=n

c
(k)
ikr

(yi − d(k)ikr
)

(15)

Additionally we put a gamma prior on the noise precision
τε ∼ Ga(a0, b0), with the posterior τ̂ε ∼ Ga(a0+ 1

2N, b0+
1
2

∑
i(xi − x̂i)

2), with x̂i is the estimation of xi recon-
structed by following (2).

(iii) When the observations Y are binary and the likelihood
is given as in (9), the model is a latent Gaussian model
(LGM) with Logit likelihood. We apply the recent result of

(Polson et al., 2012) which elicits a conjugate Gibbs sam-
pler. For the update of λr, 1 ≤ r ≤ R, with (11) we have,
λr = 1

ari
xi− bri

ari
. Then the augment random variable φi are

drawn independently from the Pólya-Gamma distribution:

φi ∼ PG(1, xi) (16)

where PG(·, ·) represents the Pólya-Gamma distribution.
Then λr, 1 ≤ r ≤ R is drawn from Gaussian:

λr ∼ N (µ̂r, τ̂
−1
r ), τ̂r = τr +

∑
i

ari
2φi

µ̂r = τ̂−1r
∑
i

ari(yi − 0.5− φibri)
(17)

For the update of u(k)
r , 1 ≤ r ≤ R, 1 ≤ k ≤ K, with (13):

u
(k)
ikr

=
1

c
(k)
ikr

xi −
d
(k)
ikr

c
(k)
ikr

(18)

Then u(k)
r ∼ N (µ̂

(k)
r , Σ̂

(k)
r ) with the µ̂(k)

r , Σ̂
(k)
r given as

same as in (14) and (15), but τ (k)nr , α(k)
nr changed. For 1 ≤

n ≤ nk:

τ (k)nr =
∑

i,ik=n

c
(k)
ikr

2
φi, 1 ≤ n ≤ nk

α(k)
nr = (τ (k)nr )−1

∑
i,ik=n

c
(k)
ikr

(yi − 0.5− φid(k)ikr
)

(19)

Supervised Extension: Our framework can also be eas-
ily extended to the case where entities in one or more
of the tensor modes have labels associated with them.
This can be done assuming a regression/classification
model between the mode-specific factors and the cor-
responding labels. Suppose mode k entities have la-
bels t(k) = {t(k)1 , . . . , t

(k)
nk }. For binary labels t(k)n ∈

{−1,+1}, we associate a classification weight vector
θ(k) ∼ Nor(0, γ2IR). Denoting the factors of entity n by
u
(k)
n ∈ RR, we have p(t(k)n = +1) = 1/(1 + exp(−z(k)n ))

where z(k)n = θ(k)
>
u
(k)
n = θ

(k)
r u

(k)
nr +

∑
r′ 6=r θ

(k)
r′ u

(k)
nr′ .

Sampling for u(k)
r can be done by slightly modifying Equa-

tions 14 and 15 (for real-valued tensor) and Equation 19
(for binary-valued tensors): we introduce Pólya-Gamma
variables for each label t(k)n and the summations in these
equations also go over the additional terms due to the like-
lihood part of z(k)n , ∀n = 1, . . . , nk. The weight vector
θ(k) can also be sampled in closed-form as in (Polson et al.,
2012). We omit the details here for brevity.

Adaptation Strategy: In our truncation based variant,
MGP-CPt, we run the Gibbs sampler using a reasonably
large truncation level R and, as inference progresses, only
relevant components have significant contribution to the
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model, with the λr for the rest shrinking to values close
to zero. In our adaptive variant, MGP-CPa, whenever |λr|
becomes less than a predefined threshold ε (say 0.001),
the corresponding component is removed from the model;
otherwise if all the |λr| > ε, a new component tensor is
added. Such adaptation occurs with probability p(t) =
exp(β0+β1t) at the tth iteration, with β0, β1 chosen so that
adaptation occurs around every 10 iterations at the begin-
ning of the chain but decreases in frequency exponentially
fast (Bhattacharya & Dunson, 2011). The simple strategy
of thresholding based on the absolute values of λr worked
well in all of our experiments. Other criteria can also be
used. For example, in the continuous data case, one pos-
sible strategy could be to monitor the explained variances
by each rank-1 component on some held-out data and if
the contribution of certain rank-1 components to the total
explained variance drops below a very small value (say
<1%), we drop them (otherwise add a new component
based on p(t)). In the binary data case, we can likewise
monitor the contribution of each rank-1 component to the
predictive probabilities of the observations, and drop any
component that is non-informative, e.g., if its contribution
to close to a uniform distribution and has mean close to 0.5
(otherwise add a new component based on p(t)).

3.3. Computational Complexity

The per-iteration computational cost of our inference al-
gorithm is linear in the number of observation N . For
sparse tensors N is considerably smaller than the ten-
sor size L =

∏K
k=1 nk. The individual contributions

to the overall time complexity are as follows: (i) sam-
pling each δr, r = {1, . . . , R} takes O(R2) time lead-
ing to a time-complexity O(R3); (ii) sampling each λr,
r = {1, . . . , R} takes O(NK) time leading to a time-
complexity O(NRK); (iii) sampling each u

(k)
r , r =

{1, . . . , R}, k = {1, . . . ,K} takes O(NRK) time lead-
ing to a time-complexity O(NK2R2). Note that no ex-
plicit matrix inversions are involved in our inference pro-
cedure since the covariance of the prior on u(k)

r is assumed
to be diagonal and therefore the computations in (14) can
be performed in O(nk) time. The overall time-complexity
is dominated by the third term O(NR2K2) which is lin-
ear in the number of observations N . This is especially
encouraging for a sampling based inference method.

4. Related Work
With the advent of social networks and multirela-
tional/multiway data observed in many application do-
mains, tensor decomposition methods have gained a lot of
attention recently. Although a number of tensor decompo-
sition methods have been proposed, many state-of-the-art
methods (Nickel et al., 2011; Bordes et al., 2012; Jenatton

et al., 2012) are specialized for analyzing three-mode ten-
sor data and do not generalize to higher-order tensors. Ten-
sor decomposition methods that can infer the rank are rela-
tively few. Among the probabilistic approaches, one option
is to use the Automatic Relevance Determination (ARD)
method (Mørup & Hansen, 2009; Zhao et al., 2014). We
use this method as a baseline in our experiments. Some
non-probabilistic methods for tensor decomposition em-
ploy trace-norm regularization (Tomioka et al., 2010) to
get an approximation of the tensor rank. In another re-
cent work, nuclear-norm based rank-regularization (Baz-
erque et al., 2013) is used to infer the rank in a proba-
bilistic tensor factorization model and inference is based
on MAP estimation. All of these methods assume that
the observations are real-valued unlike our method which
can deal with both real and binary data. A nonparamet-
ric Bayesian method similar in spirit to ours is presented
in (Dunson & Xing, 2012), where a stick-breaking prior
is put on the superdiagonal of Λ in the CP decomposi-
tion of a probability tensor (a special type of tensor whose
entries sum to 1), to nonparametrically learn a low-rank
representation through inference. The main consideration
for applying the stick-breaking process prior in (Dunson &
Xing, 2012) comes from its statistically decreasing prop-
erty and the norm one requirement of the specific type of
tensors (three-mode probability tensor). In another recent
work, (Yoshii et al., 2013) proposed a positive semidefi-
nite tensor factorization (PSDTF) which corresponds to the
CP decomposition where the rank is learned with a trun-
cation level put on the gamma random variables along the
superdiagonal of Λ. However, this method is also limited
to special types of 3-way tensors where each slice is a pos-
itive semidefinite matrix. A potential alternative is to put
a gamma process along the superdiagonal is the construc-
tion of the gamma process discussed in (Wang & Carin,
2012), where the statistically decreasing samples facilitate
the nonparametric learning of the required rank. However,
the resulting model will not conjugate with this choice of
the prior. Tensor decomposition methods that explicitly
model binary data are also relatively few. The recently
proposed Infinite Tucker Decomposition method (Xu et al.,
2013) uses a probit model for binary data. We compare
with this method in our experiments. Another recent work
on modeling binary tensor data is a logistic loss based ex-
tension of the non-probabilistic RESCAL model (Nickel &
Tresp, 2013). It is, however, limited to three-mode tensors.

5. Experiments
We perform experiments with our model on both synthetic
and real-world tensor datasets, and compare it with sev-
eral baselines. The datasets used in our experiments span
a wide range of application domains, such as chemomet-
rics, multirelational social networks, brain-signal analysis
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Synthetic Data (R=10) Amino Acid Flow-injection EEG Data
Bayesian CP 0.1231 (±0.0278) 0.0004 (±0.0001) 0.0012 (±0.0002) 0.1760 (±0.0032)

ARD-CP 0.0921 (±0.0006) 0.0350 (±0.0535) 0.0196 (±0.0133) 0.1860 (±0.0050)
InfTuckertp 0.6644 (±0.0136) 0.8478 (±0.0103) 0.8382 (±0.0080) 0.5394 (±0.0823)
MGP-CPt 0.0922 (±0.0011) 0.0006 (±0.0001) 0.0007 (±0.0003) 0.1622 (±0.0016)
MGP-CPa 0.0935 (±0.0007) 0.0005 (±0.0001) 0.0005 (±0.0003) 0.1608 (±0.0033)

Table 1. Continuous Data: MSE

(EEG), and image analysis. We experiment with both vari-
ants of our model: truncated MGP (referred to as MGP-
CPt) and the adaptive MGP (referred to as MGP-CPa). For
both methods, we use the Gaussian likelihood model for
continuous data and the logistic model (with Pólya Gamma
sampling during inference) for binary data. For our model,
we set µ(k)

r to zero vector and Σ
(k)
r to identity matrix.

The following baselines were used for comparisons. (i)
Bayesian CP (BCP), a fully Bayesian version of the stan-
dard probabilistic CP decomposition (Xiong et al., 2010). It
assumes that the rank is known. (ii) ARD based CP (ARD-
CP), a method that uses automatic relevance determina-
tion (ARD) (Mørup & Hansen, 2009; Zhao et al., 2014)
to determine the rank of a tensor by inferring the relevant
columns in the factor matrix of each mode. (iii) An Infinite
Tucker Decomposition based on t process (InfTuckertp),
which is a kernel-based nonparametric Bayesian general-
ization of the low-rank Tucker decomposition(Xu et al.,
2013), and is based on an implicit mapping of the compo-
nent tensors to a higher (potentially infinite) dimensional
space and performing a low-rank Tucker decomposition in
that space. This method requires that the rank is given.

We evaluate our model and the various baselines on the
following experiments: (i) tensor completion for continu-
ous data, (ii) tensor completion for binary data, (iii) SVM
based classification for EEG data using factors learned by
different tensor decomposition methods, and (iv) image in-
painting for color images by posing it as tensor completion
problem for continuous data. We initialize the MGP-CPa

using an initial rank = 1 and allow the rank to grow/shrink
using our adaptation strategy discussed in Section 2.3. For
MGP-CPt and the ARD-CP baseline, we set the trunca-
tion level to a sufficiently large value. We run the sam-
pling based methods for 1500 iterations with 1000 burn-in
iterations, collect samples every 5 iterations after the burn-
in phase, and report all results using the posterior sample
based averages. For Bayesian CP and InfTuckertp, which
require the rank to be specified, we vary the ranks over a
range and report the results using the rank that gave the
best held-out data predictions.

5.1. Low-rank Tensor Completion: Continuous Data

We first experiment on the tensor completion task for con-
tinuous data. For this experiment, we use four datasets:
(i) Synthetic data of size 20 × 20 × 20 × 20, generated as
an equally-weighted sum of 10 rank-1 tensors of the same

size (so the ground-truth rank is 10). (ii) Amino Acid
data (Xu et al., 2013; Chu & Ghahramani, 2009) of size
5 × 61 × 201, consisting of five laboratory-made amino
acid samples. (iii) Flow Injection data (Xu et al., 2013;
Chu & Ghahramani, 2009) of size 12× 100× 89 obtained
from a flow injection analysis (FIA) system. (iv) EEG data
of size 15 × 16 × 560 consisting of EEG measurements
of 560 samples. For this task, we treat 50% of the data
as missing and reconstruct it using the model learned on
the remaining 50% data. We report the results in terms of
the mean-squared-error (MSE) on the reconstruction task.
Each experiment is repeated 10 times with different splits
of observed and missing data.
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Figure 2. Empirical distribution of the inferred rank by MGP-CPa

run with 90% and 50% missing data (starting with R = 1)

Table 1 shows the results. Both our models achieve recon-
struction accuracies comparable to or better than the gold-
standard Bayesian CP (given the ground-truth rank for syn-
thetic data, and best rank chosen via held-out error on real-
world datasets - 5 for Amino Acid, 6 for Flow-injection, 30
for EEG data). Moreover, on all datasets, both our models
perform better than ARD-CP and InfTuckertp.

To see whether our method can recover the true underlying
rank, we run MGP-CPa on the 20 × 20 × 20 × 20 syn-
thetic data having a ground-truth rank 10, first with 90%
missing data and then with 50% missing data. Figure 2
shows the posterior distribution of the inferred rank (based
on the estimated empirical distribution of the ranks using
posterior samples after the burn-in phase). As shown in the
figure, in both cases, the posterior is concentrated at rank
10 and as the amount of training data increases from 90%
missing to 50% missing, the posterior peaks further at rank
10. On real-world datasets, our method discovers ranks that
are consistent with what is known from domain knowledge
in the chemometrics literature on analyzing these datasets
(our method infers the rank to be 3-4 on average on Amino
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Synthetic Data (R=10) Lazega Lawyers Kinship Nation
Bayesian CP 0.6997 (±0.0434) 0.5671 (±0.0243) 0.9754 (±0.0022) 0.7230 (±0.0344)

ARD-CP 0.6045 (±0.0461) 0.5542 (±0.0378) 0.9842 (±0.0019) 0.6698 (±0.0527)
InfTuckertp 0.8759 (±0.0143) 0.5982 (±0.0179) 0.9825 (±0.0022) 0.7981 (±0.0133)
MGP-CPt 0.9288 (±0.0140) 0.6412 (±0.0101) 0.9896 (±0.0014) 0.8105 (±0.0083)
MGP-CPa 0.9283 (±0.0109) 0.6448 (±0.0139) 0.9909 (±0.0015) 0.8096 (±0.0082)

Table 2. Binary Data: AUC Scores

Acid data and 6-7 on average on Flow Injection data).

5.2. Low-rank Tensor Completion: Binary Data

We next experiment with tensor completion for binary
tensors. We use four binary datasets for this experi-
ment: (i) Synthetic data of size 20 × 20 × 20 × 20
having a ground-truth rank 10 (about 1.6% non-zero en-
tries). (ii) Lazega-Lawyers multirelational social network
data (Lazega, 2001) given in the form of a tensor of size
71× 71× 3 (about 15% non-zero entries) containing three
types of social networks (friendship, coworker, and advi-
sory relationships) between 71 partners and associates in
several New England law firms. (iii) Kinship multirela-
tional data (Nickel et al., 2011) of size 104 × 104 × 26
(about 3.84% non-zero entries) containing 26 types of kin-
ship relations within the Alwayarra tribe. (iv) Nation mul-
tirelational data (Nickel et al., 2011) given in the form of a
tensor of size 14 × 14 × 56 (about 19% non-zero entries)
containing 57 types of relationships (e.g., export, protests,
economic aid, etc.) among 14 countries. For each dataset,
except Kinship, we treat 90% of the entries as missing and
predict them using the rest 10% data. For Kinship data
we use the experimental setting of 90% training and 10%
test data as done in other recent works (Nickel et al., 2011;
Jenatton et al., 2012). We use the area under the receiver-
operating characteristic curve (AUC) score to compare the
different methods in terms of their predictive ability. Each
experiment is repeated 10 times with different splits of ob-
served and missing data. As the results in Table 2 show,
both our methods outperform the other baselines in terms
of the AUC scores. It is noteworthy to see that on binary
data the improvements of our methods over Bayesian CP
are much more significant than the continuous-data case
(even though the Bayesian CP baseline is provided with the
ground-truth rank for the synthetic data and the best chosen
rank based on held-out error for the real-world data). This
can be attributed to the fact that Bayesian CP uses least-
square minimization whereas our methods use the logistic
loss. Because of this, for datasets having a significant num-
ber of zero entries (like the ones used in the experiments
here), the Bayesian CP will tend to be biased towards pre-
dicting zeros. The ARD-CP baseline, although in principle
able to infer the rank, suffers due to squared-loss minimiza-
tion like Bayesian CP. InfTuckertp, the next-best perform-
ing method, uses the logistic loss like our method; how-

ever, it relies on variational EM for inference and is prone
to local-optimal issues (besides having to select the rank
via cross-validation).

5.3. Binary Classification with Extracted Factors

We now experiment on an extrinsic evaluation task: binary
classification using the factors learned via tensor decompo-
sition. On the EEG data used in Section 5.1 for tensor com-
pletion experiments, we also have binary labels for each of
the 560 samples. We conduct an SVM based classification
experiment where the factors extracted by various tensor
decomposition methods are used to train an SVM. The ten-
sor decomposition step uses only 50% of the total data and
the 3rd mode factors (the 3rd mode represents the subjects)
are used to train an SVM. After the tensor decomposition
step, we use 10% of the subjects to train the SVM (using
the extracted factors) and test on the remaining 90% sub-
jects (to simulate a small sample size setting where a naı̈ve
approach of flattening the 15 × 16 × 560 tensor a matrix
could overfit). Because the tensor methods use only 50%
data in the factor extraction stage, in the SVM experiment
with the flattened tensor which resulted in a matrix of size
560 × 240, we hide 50% of the features and impute them
using the respective feature means.

We repeat the classification experiment 20 times with dif-
ferent splits of training and test data. As Table 3 shows, the
tensor decomposition methods perform better than SVM on
flattened tensor which seems to overfit due to small sam-
ple size. Among the various tensor-decomposition-based
methods, MGP-CPa yields the best classification accuracy.

Classification Accuracy
SVM (on flattened tensor) 65.02% (±3.10%)

Bayesian CP + SVM 67.95% (±4.39%)
ARD-CP + SVM 72.26% (±3.03%)

Infinite Tucker + SVM 66.53% (±3.32%)
MGP-CPt + SVM 72.32% (±3.54%)
MGP-CPa + SVM 74.57% (±2.42%)

Table 3. Binary classification using factors learned from tensor
decomposition

5.4. Image Inpainting

Image inpainting is the task of completing an image with
missing pixels. A two-dimensional RGB image can be
treated as a three-dimensional tensor and the image inpaint-
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Figure 3. Top row: 90% missing. left: original, right: recon-
structed. Middle row: 80% missing. left: original, right: re-
constructed. Bottom row: 50% missing. left: original, right:
reconstructed.

ing task can be formulated as a tensor completion problem
where the goal is to predict the values of the missing pix-
els using the observed pixel values. We apply our meth-
ods and the other baselines on this task using the bench-
mark Lena image of size 256×256×3 for various fraction
of missing pixels (90% missing, 80% missing, and 50%
missing). Bayesian CP and InfTuckertp were run with R
ranging from 5 to 50 and we report the result with the best
reconstruction error. For ARD-CP and MGP-CPt, the trun-
cation level was set to 50. The MGP-CPa was initialized
with R = 1. In Table 4, the reconstruction accuracies for
each case are shown, and the reconstructed images for each
case using our MGP-CPt model are shown in Figure 3. As
shown in Table 4, both MGP-CPt and MGP-CPa outper-
form the other baselines on this task in all the three cases.
As Figure 3 shows, our method can recover the underlying
ground-truth image up to a very reasonable quality even
when the percentage of missingness is very high.

90% 80% 50%
Bayesian CP 0.0146 0.0099 0.0088

ARD-CP 0.0203 0.0197 0.0193
Infinite Tucker 0.2563 0.2106 0.1056

MGP-CPt 0.0125 0.0049 0.0023
MGP-CPa 0.0102 0.0057 0.0031

Table 4. Image Inpainting: Reconstruction errors (MSE) on dif-
ferent amounts (90%, 80%, and 50%) of missing pixels

5.5. Scalability

To assess the scalability of our method, we run an exper-
iment on a large but sparsely observed synthetic tensor
dataset of size 1000 × 1000 × 1000 having 1 billion cells
but sparsely observed such that only 1 million entries are
known. For this dataset, we vary the number of observa-
tions from 0.2 million to 1 million and run the MGP-CPt

with a fixed truncation level (so R and K stay fixed and
only N varies) for 200 iterations in each case. Even when
using an unoptimized MATLAB implementation, using our
method we are able to deal with datasets of this scale in
a reasonable amount of time. As shown in Figure 4, our
method scales linearly with the number of observations.
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Figure 4. Linear scalability on a large-scale but sparse tensor

6. Conclusion
We have developed a flexible and scalable nonparametric
Bayesian framework for analyzing multiway tensor data.
Our framework is flexible as it does not require the ten-
sor rank to be specified beforehand. The model can adapt
its complexity (the rank of the decomposition which can
grow or shrink as inference progresses) as apppropriate for
the data under consideration. Our framework can natu-
rally handle both continuous and binary datasets using suit-
able likelihood models. Bayesian inference can be effi-
ciently done in both cases using closed-form Gibbs sam-
pling which scales linearly in the number of observations
in the tensor. Our model in the binary data case provides
an efficient nonparametric Bayesian multi-way generaliza-
tion of latent-space embedding based stochastic blockmod-
els for link-prediction (Miller et al., 2009). Most existing
works on this topic are limited to matrices or specially-
structured 3-way tensors only. Finally, although in this
work we considered the CP decomposition with two spe-
cific likelihood models, integrating our tensor decomposi-
tion framework with other task-specific objectives (e.g., su-
pervised classification or ranking for multiway data) could
be another future avenue of work.

Acknowledgements: The research reported here was
funded in part by ARO, DARPA, DOE, NGA and ONR.
The authors would like to thank Feng Yan, Zenglin Xu,
and Alan Qi for helpful discussions and sharing their code.



Scalable Bayesian Low-Rank Decomposition of Incomplete Multiway Tensors

References
Acar, E., Dunlavy, D. M., Kolda, T. G., and Mørup, M. Scalable

tensor factorizations for incomplete data. Chemometrics and
Intelligent Laboratory Systems, 2011.

Bazerque, J., Mateos, G., and Giannakis, G. Rank regularization
and bayesian inference for tensor completion and extrapola-
tion. arXiv preprint arXiv:1301.7619, 2013.

Bhattacharya, A. and Dunson, D. Sparse bayesian infinite factor
models. Biometrika, 2011.

Bordes, A., Glorot, X., Weston, J., and Bengio, Y. A seman-
tic matching energy function for learning with multi-relational
data. Machine Learning, 2012.

Chu, W. and Ghahramani, Z. Probabilistic models for incomplete
multi-dimensional arrays. In AISTATS, 2009.

Cichocki, A. Tensor decompositions: A new concept in brain data
analysis? arXiv preprint arXiv:1305.0395, 2013.

de Silva, V. and Lim, L. Tensor rank and the ill-posedness of the
best low-rank approximation problem. SIAM J. Matrix Analy-
sis Applications, 2008.

Dunson, D. and Xing, C. Nonparametric bayes modeling of mul-
tivariate categorical data. JASA, 2012.

Eckart, C. and Young, G. The approximation of one matrix by
another of lower rank. Psychometrika, 1936.

Griffiths, Thomas L and Ghahramani, Zoubin. The indian buffet
process: An introduction and review. JMLR, 2011.

Hastad, J. Tensor rank is NP-complete. Journal of Algorithms,
1990.

Jenatton, R., Le Roux, N., Bordes, A., and Obozinski, G. A latent
factor model for highly multi-relational data. In NIPS, 2012.

Kolda, T. G. and Bader, B. W. Tensor decompositions and appli-
cations. SIAM review, 2009.

Lazega, E. The collegial phenomenon: The social mechanisms
of cooperation among peers in a corporate law partnership.
Oxford University Press on Demand, 2001.

Miller, K., Jordan, M. I., and Griffiths, T. L. Nonparametric latent
feature models for link prediction. In NIPS, 2009.

Mørup, M. and Hansen, L. K. Automatic relevance determination
for multi-way models. Journal of Chemometrics, 2009.

Nickel, M. and Tresp, V. Logistic tensor factorization for multi-
relational data. arXiv preprint arXiv:1306.2084, 2013.

Nickel, M., Tresp, V., and Kriegel, H. A three-way model for
collective learning on multi-relational data. In ICML, 2011.

Polson, N., Scott, J., and Windle, J. Bayesian inference
for logistic models using Polya-Gamma latent variables,
http://arxiv.org/abs/1205.0310, 2012. URL http://arxiv.
org/abs/1205.0310.

Tomioka, R., Hayashi, K., and Kashima, H. Estimation of
low-rank tensors via convex optimization. arXiv preprint
arXiv:1010.0789, 2010.

Wang, Y. and Carin, L. Levy measure decompositions for the beta
and gamma processes. In ICML, 2012.

Xiong, L., Chen, X., Huang, T., Schneider, J. G., and Carbonell,
J. G. Temporal collaborative filtering with bayesian probabilis-
tic tensor factorization. In SDM, 2010.

Xu, Z., Yan, F., and Qi, Y. Bayesian nonparametric models for
multiway data analysis. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2013.

Yoshii, K., Tomioka, R., Mochihashi, D., and Goto, M. Infinite
positive semidefinite tensor factorization for source separation
of mixture signals. In ICML, 2013.

Zhao, Q., Zhang, L., and Cichocki, A. Bayesian cp factoriza-
tion of incomplete tensors with automatic rank determination.
arXiv preprint arXiv:1401.6497, 2014.

Zhou, J., Bhattacharya, A., Herring, A., and Dunson, D.
Bayesian factorizations of big sparse tensors. arXiv preprint
arXiv:1306.1598, 2013.

http://arxiv.org/abs/1205.0310
http://arxiv.org/abs/1205.0310

