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Supplementary Material
Proof of Lemma 3

Proof.

Part 1. Let m > ui-n’ Recall the definitions of ﬁij, Nij, Ni(jl) from Eq. (3). In the following, we will make the

dependence of these quantities on the training sample explicit; specifically, for any w € (X x {0,1})™, we will write
the corresponding quantities as P;;(w), N;;(w), and Ni(jl) (w), respectively.

Clearly, for any w,w’ € (X x {0,1})™, since ﬁij(w),ﬁij(w’) € [0, 1], we have

o

|Pyj(w) — Py(w') < 1.

We will prove the result for the case ¢ < j; the case ¢ > j can be proved similarly. Assume ¢ < j, and let B;; be the
following ‘bad’ event:

B = {w € (X x {0,1)™ : Nyj(w) < %}
Then by a straightforward application of Hoeffding’s inequality, we have

Now consider w,w’ € (X x {0,1})™ such that w ¢ B;;, and w,w’ differ only in one element. We can have the
following cases:

(1) Nij(w') = Nij(w) and N} (@) = N ()

(2) Nyj(o') = Nij(w) and N (@) = NP () + 1

(3) Nij(w') = Nij(w) and N} (@) = N} () — 1

4) Nij(w') = Nij(w) + Land N (') = NP (w) + 1
(5) Nij(w') = Nij(w) + Land N (w') = NP (w)

(6) Nij(w') = Nij(w) — 1and NP (@) = N () — 1
(7) Nij(w') = Nij(w) — Land N (w') = NP (w)

We will consider each of these cases separately, and will show that in each case, the difference |]3,] (w) — ]37J (wh] is
upper bounded by —2

Mpmin

— Case (1): Nyj(w') = Nij(w) and N (w') = NP (w)
In this case nothing changes with respect to the pair (¢, j) and hence
[Pij () = Pyg(w)] =0
- Case (2): N;;(w') = N;j(w) and Ni(jl)(w’) = Ni(jl)(w) +1

In this case we have
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- Case (3): N;;(w') = N;j(w) and Ni(Jl)(w’) = Ni(jl)(w) -1

In this case we have

S VP NP ) -1
|HM—%W”+NN®_ Nij()
1 2 2

- < <
Nij(w) = mpi; — Mibmin

— Case (4): Nyj(w') = Nyj(w) + 1and N (w') = NL(w) +1

In this case we have

_ N’L] (w) - Nl(jl) (UJ) < ‘ Nij((.d)
Nij(w)(Nij(w) +1) | 7 | Nij(w) (Nij(w) + 1)
1 2 2

— Case (5): Nyj(w') = Nyj(w) + Land NJ) (') = NI (w)

In this case we have

|1Pj(w) — Piy(w)] =

. NPw) NP w)

Nij (@) (Nij(w) +1) | 7 | Nij (w) (Nij(w) +1)
1 2 2
< < <

Nij(w) = mp; — Mptmin
1 1
— Case (6): Nyj(w') = Nyj(w) — Land N (w') = N (w) — 1

In this case we have

A ~ NP w) NP w) -1
|PZ(OJ)_-PZJ(W)| ‘ Nlj(w) - Nij(CU)_l

Nij(w) = NI (w)
Nij(w)(Nij(w) = 1)
1 < 2 < 2
NZ(W) - mi;; o Mmin

IN

Note that in this case V;; (w) — 1 cannot equal 0 because m >

which guarantees that for w ¢ B;j,

Hmin

N;;(w) > 2. Also the final step follows because this case can happen only when Ni(jl) (w) > 1 and so we can
(Nij ()= N{ (@)

upper bound W by 1

— Case (7): Nyj(w') = Niyj(w) — Land NJ) (') = NI (w)
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In this case we have

VP @) NP w)
T Nylw) T Nylw) -1

(1)
_ Nij (w)
Nij(w)(Nij(w) — 1)
1 2 2
< <
Nij (UJ) mil;; Mmin

IN

Again, N;j(w) — 1 cannot equal 0 because m >

which guarantees that for w ¢ B;;, N;;(w) > 2. Also note
N
N,;]‘ (U.J)f 1

Hmin

that this case can occur only when Ni(j )(w) < N;j(w) — 1 which is used to upper bound by 1.
Thus we have the required bound in all possible cases.

Part 2. This follows directly from Part 1 and Theorem 2.

Part 3. Letm 2

L In (1). We have,

E[P;] = Pij(1—(1— pi;)™).
This gives

|E[P;;] — Pij| = Pij(1 = pij)™ < (1= pimin)™ < € min < e,

where the last inequality follows from the given condition on m.

Part 4. Let m satisfy the given condition. Then

P(‘Igij — Pij| > e) < P<|13¢j - E[ﬁ”H + |E[]3,]] - P,-j‘ > e) , by triangle inequality
< P(‘f’” ~E[P]| > %) , by Part 3, since m > -~ 1In (2)
—me2,
< 4 ( IIllIl) , P 2.
< exp BT by Part

Part 5. Let m > L In (”("5_1)). Then
m

min Pmin

Z Z P (]3” =0), by union bound
i=1 j£i

= ZZ — pii P,

i=1 j#i

n(n - 1 ( - //Lmln mln)m
n(n — 1) e~ mHmin Pin

9,

((?é]) U_O)

IN

IN

INIA

where the last inequality follows from the given condition on m.

This completes the proof of the lemma. O
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Proof of Lemma 6

Proof. We will first show the forward direction. Assume that the preference matrix P satisfies the time-reversibility
condition. Let Q be the time-reversible Markov chain corresponding to P, with stationary distribution 7r; since Q is
irreducible and aperiodic, we have 7; > 0 Vi. Now let 7 # j. By time reversibility and definition of Q;;,

7T1'Pij = 7'('ij2' .

We also have

Pji =1- Pij .
Solving for F;;, this gives
Py=—"
’ T + 5

Thus P satisfies the BTL condition with vector w = v € R?}. This proves the forward direction.

To show the reverse direction ~assume that the preference matrix P satisfies the BTL condition with vector w € R, so
that w; > 0 Vi and P;; = o +w Vi # j. Let Q be the Markov chain constructed from P as in Eq. (6). Then it is easy to

see that the vector 7 given by m; = ST S - satisfies
miQiy = mjQyi Vi, j € [n],

from which it follows that 7r is also the stationary probability vector of Q. Therefore P satisfies the time-reversibility
condition, thus proving the reverse direction. O

Proof of Theorem 7

The proof of Theorem 7 builds on techniques of (Negahban et al., 2012). We first state below four lemmas that are used
in the proof: two of these are due to Negahban et al. (Negahban et al., 2012); proofs for the remaining two are included
below. The statements of the lemmas and corresponding proofs require some additional notation as summarized below:

Additional notation. In what follows, for a matrix Q € R™*", we will denote by Q[ = (X7, Y7, )1/ ?

the Frobenius norm of Q, by ||Ql|2 = maxxer» x£0 Hﬁ:‘;””z the spectral norm of Q, and by A(2)(Q) the second-largest

eigenvalue of Q) in absolute value.
Lemma 21. Let (p, P) be such that pimin > 0. Let Q be defined as in Eq. (6). Let 0 < ¢ < 8and § € (0,1]. If

2 2
m > max <2562n1n (8%), B(,umin)> ,

6'LLInll'l

then with probability at least 1 — § (over the random draw of S ~ (1, P)™ from which P is constructed), the empirical
Markov chain Q constructed by the rank centrality algorithm satisfies

||Q— Qll2 <e.

Proof of Lemma 21. Let m satisfy the given condition. We have,

n

Z ST (EQy] - Qi) + > (BlQu] — Qi)
i=1 j£i i=1
22

(R -r) 3 (23 iR p)

i i=1 k#i

[EQI-Ql; =

=1 j

‘H\

IN

nnl)(2\/7%)2 (n;l) (2\/7%)27

by Lemma 3 (part 3), since i > 225" In (%) >-1 In (2 "_1)

min Hmin

= <"—1>(2¢%)2
2

- < (10)

m
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Now,
P(||Q—QH2 Ze) < P(||Q Q||F>e) since Frobenius norm upper bounds spectral norm
< P(|Q-EQ]||,+]|EQ - Q|,>¢), bytiangle inequality
< P(|Q-EQ][|,>3). byEa(0)
~ 2 _ €
~ p(ja-E@>5)
n 9 n 9 62
= P(Z (sz [Qv]]) + (Qm E[QMD 24)
i=1 ji i=1
- 2 _ € WINPPN ~ 2 €
i=1 j#i i=1
" ~ PN € - N €
< P ii — BE|Qi]| > + P i — BE|Qi]| >
< YY (|Q] Qull2 ey, ) + P (120 Bl 2 )
- 1, = ~ € - 1 ~ €
= P(—|P; — E[P;]| > +> P - Py, — E[P; >
2.2 (1P - BtRul > 57 ) 2 (n§< Bl | )
- ~ ~ € i 1 ~ €
< P(|P; —E[FP]|>2—|+)> P Py — E|Pyl| >
- ~ ~ € - €
< P(|Pj —E[Pj|| 2 —= | + P( |Pi — E[Pi|| >
Y 22
< 4n2exp (%)—i—hﬂexp (%)7 by Lemma 3 (part 2)
< g+g = §, sincem > 322"1 n (8 52).
This proves the result. O

Lemma 22 ((Negahban et al., 2012)). Let Q and (:2 be time-reversible Markov chains defined on the same transition
probability graph G = ([n], E), with stationary probability vectors 7 and T, respectively. Let o = min; j)c ng and
TiQij

B = max; Z-. Then
k2

a ~
1-22(Q) = E(l -22)(Q)).
Lemma 23. Let Q € [0, 1]"*" be the transition probability matrix of a time-reversible Markov chain with Q;; > 0 Vi, j,
and let T be the stationary probability vector of Q. Let Qin = min; j Qij, Tmax = Max; m;, and Tmin = min; m;. Then
the spectral gap of Q satisfies

1= ) (Q) 2 7 (22 ) Qun.

7Tl’l’laX

Proof of Lemma 23. Since (Q);; > 0 Vi, j, the chain Q is defined on the complete directed graph G = ([n], [n] x [n]).
Define a time-reversible Markov chain Q on the same graph as follows:

_ 1
Qij:ﬁ Vi, j € [n].

This has stationary probability vector 7 given by 7; = % Vi. Now, using the notation of Lemma 22, we have

2
= TN Tmin Qmin

[0
B = N Tmax -
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Moreover, A(2) (Q) = 0. By Lemma 22, we therefore have

1= Ap(Q) > Ml (Toin)o

nﬂ-IIlaX 7TIl’laX

O
Lemma 24 ((Negahban et al., 2012)). Ler Q be a time-reversible Markov chain with stationary probability vector m. Let

Q be any other Markov chain, and let q; denote the state distribution of Q at time t when started with initial distribution
qo. Let Tax = Max; mj, Tmin = ming m;, and p = \(2)(Q) + ||Q Qll2/>=2x. Then

H(lt_ﬂ'H2 t||q0_7r||2 71-max 7dex
< y a-q
T = Ve 1ol QT

We are now ready to prove Theorem 7:

Proof of Theorem 7. Let m satisfy the given condition. Then by Lemma 21, we have with probability at least 1 — g, the
empirical Markov chain Q constructed by the rank centrality algorithm satisfies

IQ-Ql. < f(wm‘“)s/szm. (11)

2 max

In this case, since Q is time-reversible with Q);; > 0 Vi, j and Qmin = min; ; Q;; = P;“Li" , by Lemma 23 and Eq. (11), we
have

Tmax Tmin € ( Tmin
p =A@+ Q- Qllay /™ < 1= (2 P+ 5 (2 ) P
1 min
< - ( 2R P (12)
2 7Tmax

Next, since m > —i24n (%)3 In (M) > L 1In (2”(2_1)) , by Lemma 3 (part 5), we have that with proba-

esz“;L Tmin 0 =~ HminPmin

bility at least 1 — 5, PZJ > 0 Vi # j, and therefore Q is an irreducible and aperiodic Markov chain.

min

Putting the above two statements together, with probability at least 1 —¢, we have that Q is an irreducible, aperiodic Markov
chain satisfying Eqs. (11-12), and the score vector 7 output by the rank centrality algorithm is the stationary probability
vector of Q. In this case, by Lemma 24, we have that for any initial distribution qg of Q,

Il = =l — lim llae = =ll2 < lim o ldo — 7|2 \/m HQ Qls o
Hﬂ-”? t—o0 Hﬂ-HQ t—oo ||7T||2 Tmin Tmin
= 7||Q Qll2y/ ™2 Since p < 1, by Eq. (12)
Trmln
< €, by Egs. (11-12).
The result follows since ||7||2 < 1, which gives || — || < lm—mlz 0

lI7l2

Proof of Corollary 8

condition, then by Theorem 7, we have with probability at least 1 — 4,

Proof. Lete = T'g‘“ . By definition of 7, we have i, < 1, and therefore € < % < 1. Therefore if m satisfies the given

Tmin

|7 — 72 < 3
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But
|7 — 7|2 < Tmin It — 7]|oo < % , since Ly norm upper bounds L, norm
|ﬁz _ 771“ < T'min Vi

{w, jimp s m o= 7> %} by definition of 7min
{Vi, j: Py >Py; = ;> %i} , by time-reversibility condition on P

argsort(7) C argmin, ¢, et} [0]

el

0 € argmin, g er, po].
Thus we have that with probability at least 1 — 6,
o € argmin, g er’ ]?P [o].
This proves the result. O

Proof of Lemma 9

Proof. Let Q be as defined in Eq. (6), and let 7v be the stationary probability vector of Q. From Section 6, we know that
P satisfies the time-reversibility condition, and therefore any permutation that ranks items according to decreasing order
of scores 7; is an optimal permutation w.r.t. the pairwise disagreement error, i.e. we have

argsort(r) C argmin, g er, p[o].

We will show that argsort(f*) = argsort(7r), which will imply the result. We have,

*_1”'_1” Py 1 P
fi = —n;ﬁk—n;ln(ﬂk) = nln(ljp{)

k=1
1 n T . [
= —In H — |, by time-reversibility
n Tk
k=1
= Inm——1 e TR) -
nm; = n(my Tn)

The second term on the right-hand side is a constant, and In(-) is a strictly monotonically increasing function; therefore £*
induces the same orderings as m, i.e. argsort(f*) = argsort(). O

Proof of Theorem 10

The proof makes use of the following technical lemma:
Lemma 25. Let 0 < u,u’ < 1. Let 0 < € < u. Then

€

Ul <e = |1 —In(u)] < .
lu—u'| <e ’n(u) n(u)‘ T

Proof. Let|u —u/| < e. Thus v’ € (u — €,u + €). Now, since In(+) is a concave function, we have
1
In(y) <In(z) + —(y — =) Va,y > 0.
x

Taking z = u and y = u + € gives

In(u+¢€) < In(u)+ % ;

taking x = u — e and y = u gives
€

In(u) < 1n(u—6)+u_€.
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Combining both, and using the fact that In(-) is a monotonically increasing function, we get
In(u—¢€) < In(u) < In(u+e€) < In(u) + <.
U

ln(u)—uie <

For € < u, we have < > <. Thus, since v’ € (u — €,u + ¢€), we have either
In(u) — < < In(u—¢€) < In(u’) In(u)
u—€

IN

or

thus proving the result.

€
u—e’

in both cases, we get | In(u) — In(u)| <

P (142) In (152) > ;Lo In (22520,

Proof of Theorem 10. Let m satisfy the given condition. Since m >
by Lemma 3 (part 5), we have with probability at least 1 — g, ]Sij > 0 Vi # j. In this case, we have

iy

)

) ifi ]

~ In (
ij = i )
0 otherwise,

and E = X. As discussed in (Jiang et al., 2011), the score vector f output by the least squares algorithm in this case is

given by
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Next, we have

P(Eli:

#
. 1 Py; Py . . . .
< Z P| - Z ‘ In ( ) —1In ( iz ) ‘ > €|, byunion bound and triangle inequality

RICEEPEIIED

ki

ik

IA
(1
o
LI
>
Y
~
=
N—— /N
)z
\
=)
/
z
N—
N—
vV
[}
N———

n ~
Py; P,
< Z P(‘ln(f’ —ln( k’))>e), by union bound
i=1 ki P Pir
< Z P(|1n]3ki—lnPki|—|—|ln137;k—lnP¢k|26)
i1 ki

IA
N

|'M3
w

<|1n13kilnPki| > ;)

6-Pmin
2+ €

IA
[\
\'M:
w

<|16;ﬂ — P;ﬂ-| > ) , by Lemma 25

—me2P2. 2.
min/min b L 3 t4
—128(2 o2 ) , by Lemma 3 (part 4)

(since m > 52 (14 2)2n (1) > L (22£90))

min/'min

IN

8n? exp (

1)
3 sincemZPQng2 (1+%)2ln(¥}‘2).

min/min

<

In other words, with probability at least 1 — g, we have

1 1

—Zln( )——Zln( ) < e.

" i " i

Putting the above statements together, we have that with probability at least 1 — 4,

1 Py 1 Py
Ly (H) o Ly (B )‘ <.
Mim hwl o i Mk

This proves the result. O

Py
Py,

Py;
Py

max
%

%

[E— £l = max|fi— f7| = max

Proof of Corollary 11

Proof. Lete = Tan By definition of i, we have r,in < n, and therefore € < % < (4\/5)11 Therefore if m satisfies

the given condition, then by Theorem 10, we have with probability at least 1 — 4,

IF— £ < T
3

But
) * Tmin i * T'min .

— {w, ji s = > f} by definition of 7min

== {Vi,j: P > Pj; = f; > ﬁ}, by Lemma 9
= argsort(f) C argmin, g et p[o]

— 0 €argmin, g er, p[o].
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Thus we have that with probability at least 1 — 6,

This proves the result.

Proof of Lemma 13

Proof. Let P € [0,1]™*™ satisfy the BTL condition with vector w € R}, so that w; > 0 Vi and P;; =

Then we have

Thus P satisfies the LN condition.

Proof of Theorem 14

o € argmin, g erfL]?P [o].

.PZ">Pj' - wj; > Wy
wy w;
= J L Vk
w; + Wy w; + wg
diD D) D
Pt wj + W st wW; + W

n n
- Zpkj >ZP]€1
k=1 k=1

Proof. Let m satisfy the given condition. We have,

P(|[f — £ > ¢)

This proves the result.

Proof of Corollary 15

k=
n ~
Z | Pri — Pri| > 6)

IA
™
i
~
SEES

i=1 k=1
n
< S P(3k:| P Pl =)
i=1
n n
< Z ZP(’sz Pk1| > e) , by union bound
i=1 k=1
2 —me*un;
< 4n“exp (Tgmm) , by Lemma 3 (part 4)
(since m > Ezll??in In (%) > #%
< §, sincem > 621;28 In (%).

min

> e) , by definition of ﬁ and f;

O
wffwj Vi # 7.
O
O

Proof. Lete = Tr:“;“. By definition of rp,;,, we have r;, < n, and therefore e < % < (4\/§)n Therefore if m satisfies

the given condition, then by Theorem 14, we have with probability at least 1 — 4,

N .
f— £ < 22
I - £l < 72
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But

£, <
[ loo < =5

el

Thus we have that with probability at least 1 — 6,

Tmin N Tmin .
i— [l <=V
Fi gl s T
{Vi,j L= f > f} by definition of rmin
{Vi, Jj: Py > Py = f] > ﬁ} , by extended low-noise condition on P

argsort(?) C argmin, g erZ]?P [o]

~ . D
G € argmin, g er, p[0].

-~ . PD
0 € argmin, g er, plo].

This proves the result.

Proof of Theorem 16
Proof. We have

6 € arg enel%@% Z (ln(l +exp(0; — 6;)) — ﬁij(ﬁj - 91)) .

1<J

Setting the gradient of the above objective to O gives:

D Pu= )
k=1

"zt exp(ek) + exp

where we denote

P =

)

Now, we have for any 0 < € < 4v/2, if m > max (B(min)

-

R o
P(3i: ‘n;(ﬂﬂ- e

n
exp
E kz )
k=1

exp(@))

oo @) rexp@y) 10T
9 . . .

1-Fj ifi>j

0 ifi=j.

IN

IN

IN

<

<

L n(2)), then

1 « ~
- 1; (Pri — Pri)

> e) . byEq. (13)

=

ZZP(|P]€’L *ﬁkz‘| > €)

1=1 k=1

An? (%) by Lemma 3 (part 4)
n” exp 138 , by Lemma 3 (part 4).

Setting € = ~3i», we get that if m satisfies the given condition, then with probability at least 1 — 4,

1< 5
\;;Eij(f%j-—fﬂi)
k=1

Tmin Vi

3

IN

13)

(14)
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By definition of r.,;,, this means that with probability at least 1 — §, we have for all ¢ £ 7,

n n n n
S PESY Pl = Y Py>) Puo= > (15)
k=1 k=1 k=1 k=1
Also, it is easy to verify that for all ¢ # j,
@j>@<:>§j>§i<:>ZP,g>ZP,Z (16)
k=1 k=1

Combining Egs. (15-16), we have that with probability at least 1 — 4,
argsort(w) = argsort(f*) .

Since argsort(f*) C argmin, s er} p[o], we thus have with probability at least 1 — 4,

o € argmin, g erﬁ]?P [o].
This proves the result. U

Proof of Proposition 19

Proof. Suppose P satisfies the GLN condition with vector o« € R™. Then clearly, since P;; # % Vi # j, we have Vi < j:

n n
Zij = 1 = Pji > Pij — Zakpki > ZakPk.j — OLT(Pi — Pj) >0
k=1 k=1

zij=—-1 = P; >P;; = Zakij > ZakPki — aT(Pi — Pj) <0.
k=1 k=1
Thus Sp is linearly separable by the hyperplane a passing through the origin.

Conversely, suppose that Sp is linearly separable by a hyperplane passing through the origin. Then dJa € R” s.t.
zijal (P; —P;) > 0Vi < j. Thus we have Vi < j:

n n
]Dij > Pji = Zijj = -1 — aT(Pi — Pj) <0 = Zakpkj > ZakPk,-
k=1 k=1

Pji > f)ij = Zzijj = 1 = aT(Pi —Pj) >0 = ZakPki > Zakij.
k=1 k=1

Thus P satisfies the GLN condition. O

Proof of Theorem 20

~

Proof. Let m satisfy the given conditions. We first show that with probability at least 1 — 2, every label sign(ﬁji —P;;)in
Sp is the same as the corresponding label sign(P;; — Pj;) in Sp. We have,

P(HZ#]’ﬁ”—RAZ’y) < ZP(‘ﬁm—P’LJ’Z’y), byunionbound
i#j
2 —my’ug
< 4n“exp (TS"““) , by Lemma 3 (part 4)
. n2
(since m > ngigin log(37-) > Hnlm ln(%))
0 ) n2
< 7 since m > 72li§in log(ST).
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Thus we have that with probability at least 1 — 3,
|Pij — Pyl <~ Vi#j.
By definition of +, this yields that with probability at least 1 — g,
ﬁij>ﬁji<:>Pij>Pji VZ#],

i.e. with probability at least 1 — %,

~

sign(Pj,; — ﬁ”) = sign(Pﬂ — R]) Vi < 7.

Next, we show that with probability at least 1 — 5, every point (P P, ;) in Sp falls on the same side of the hyperplane
given by « as the corresponding point (P; — P; ) in Sp. We have,

a

. . 3 5 Tmin
P(3(i <j): (B —P)) = (P, = P))f2 > “2z)
. o S i
= P(3 <) (P = Pi) — (P, — P[> > ")
< ZP(H(f’i—P) (P — P, > 2) by union bound
1<J
< mln rnln
< 3 (P(1P: - Pill > ) 4 p(1B; - Py o> ) )
1<]g
-~ a
< ZE(P(%:P,“ Pl > \F)—FP(HI{: Py — P,W|>4f)>
< ;(ZPOPM Pk1|241\n/12) ZP(‘PM ij|> %))
< 8n’exp (%), by Lemma 3 (part 4)
(since m > %log(w" ) > umm ln(r‘/ﬁ))
0 : 2048 n 1603
S 5, Slncem > ( ;lnlll)zullllnl g(T).
Thus with probability at least 1 — g,
D D Tﬁlin . .
I(P; = Pj) — (Py = Py)lls < 5% Vi<j.

By definition, ;. is the smallest Euclidean distance of any point (P; — P ) to the hyperplane defined by a; therefore we

get that with probabllity at least 1 — g, all points (13z -P ;) fall on the same side of the hyperplane « as the corresponding
points (P; — P;).

Combining the above statements yields that with probability at least 1 — ¢, the dataset Sp is also linearly separable by
«; in this case, the SVM-RankAggregation algorithm produces a vector & that correctly classifies all examples in S5, i.e.
satisfies zijaT(fz — f’]) > 0 Vi < j (where z;; = sign(P;; — ”)) and it can be verified that & must then also satisfy
zijc’iT(PZ- —P;) > 0Vi < j, so that argsort(ar) C argmin, .5 er“ Do [o]. This yields that with probability at least 1 — 4,

0 € argmin, 5 er, plo].



