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Proof of Lemma 3

Proof.

Part 1. Let m ≥ 4
µmin

. Recall the definitions of P̂ij , Nij , N
(1)
ij from Eq. (3). In the following, we will make the

dependence of these quantities on the training sample explicit; specifically, for any ω ∈ (X × {0, 1})m, we will write
the corresponding quantities as P̂ij(ω), Nij(ω), and N (1)

ij (ω), respectively.

Clearly, for any ω, ω′ ∈ (X × {0, 1})m, since P̂ij(ω), P̂ij(ω′) ∈ [0, 1], we have

|P̂ij(ω)− P̂ij(ω′)| ≤ 1 .

We will prove the result for the case i < j; the case i > j can be proved similarly. Assume i < j, and let Bij be the
following ‘bad’ event:

Bij =
{
ω ∈ (X × {0, 1})m : Nij(ω) ≤ mµij

2

}
.

Then by a straightforward application of Hoeffding’s inequality, we have

P(S ∈ Bij) ≤ exp(−mµ2
ij/2) ≤ exp(−mµ2

min/2) .

Now consider ω, ω′ ∈ (X × {0, 1})m such that ω /∈ Bij , and ω, ω′ differ only in one element. We can have the
following cases:

(1) Nij(ω′) = Nij(ω) and N (1)
ij (ω′) = N

(1)
ij (ω)

(2) Nij(ω′) = Nij(ω) and N (1)
ij (ω′) = N

(1)
ij (ω) + 1

(3) Nij(ω′) = Nij(ω) and N (1)
ij (ω′) = N

(1)
ij (ω)− 1

(4) Nij(ω′) = Nij(ω) + 1 and N (1)
ij (ω′) = N

(1)
ij (ω) + 1

(5) Nij(ω′) = Nij(ω) + 1 and N (1)
ij (ω′) = N

(1)
ij (ω)

(6) Nij(ω′) = Nij(ω)− 1 and N (1)
ij (ω′) = N

(1)
ij (ω)− 1

(7) Nij(ω′) = Nij(ω)− 1 and N (1)
ij (ω′) = N

(1)
ij (ω)

We will consider each of these cases separately, and will show that in each case, the difference |P̂ij(ω)− P̂ij(ω′)| is
upper bounded by 2

mµmin
.

– Case (1): Nij(ω′) = Nij(ω) and N (1)
ij (ω′) = N

(1)
ij (ω)

In this case nothing changes with respect to the pair (i, j) and hence

|P̂ij(ω)− P̂ij(ω′)| = 0

– Case (2): Nij(ω′) = Nij(ω) and N (1)
ij (ω′) = N

(1)
ij (ω) + 1

In this case we have

|P̂ij(ω)− P̂ij(ω′)| =

∣∣∣∣∣N
(1)
ij (ω)

Nij(ω)
−
N

(1)
ij (ω) + 1

Nij(ω)

∣∣∣∣∣
=

1

Nij(ω)

≤ 2

mµij
≤ 2

mµmin
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– Case (3): Nij(ω′) = Nij(ω) and N (1)
ij (ω′) = N

(1)
ij (ω)− 1

In this case we have

|P̂ij(ω)− P̂ij(ω′)| =

∣∣∣∣∣N
(1)
ij (ω)

Nij(ω)
−
N

(1)
ij (ω)− 1

Nij(ω)

∣∣∣∣∣
=

1

Nij(ω)
≤ 2

mµij
≤ 2

mµmin

– Case (4): Nij(ω
′) = Nij(ω) + 1 and N (1)

ij (ω′) = N1
ij(ω) + 1

In this case we have

|P̂ij(ω)− P̂ij(ω′)| =

∣∣∣∣∣N
(1)
ij (ω)

Nij(ω)
−
N

(1)
ij (ω) + 1

Nij(ω) + 1

∣∣∣∣∣
=

∣∣∣∣∣ Nij(ω)−N
(1)
ij (ω)

Nij(ω)(Nij(ω) + 1)

∣∣∣∣∣ ≤
∣∣∣∣ Nij(ω)

Nij(ω)(Nij(ω) + 1)

∣∣∣∣
≤ 1

Nij(ω)
≤ 2

mµij
≤ 2

mµmin

– Case (5): Nij(ω
′) = Nij(ω) + 1 and N (1)

ij (ω′) = N
(1)
ij (ω)

In this case we have

|P̂ij(ω)− P̂ij(ω′)| =

∣∣∣∣∣N
(1)
ij (ω)

Nij(ω)
−

N
(1)
ij (ω)

Nij(ω) + 1

∣∣∣∣∣
=

∣∣∣∣∣ N
(1)
ij (ω)

Nij(ω)(Nij(ω) + 1)

∣∣∣∣∣ ≤
∣∣∣∣ Nij(ω)

Nij(ω)(Nij(ω) + 1)

∣∣∣∣
≤ 1

Nij(ω)
≤ 2

mµij
≤ 2

mµmin

– Case (6): Nij(ω
′) = Nij(ω)− 1 and N (1)

ij (ω′) = N
(1)
ij (ω)− 1

In this case we have

|P̂ij(ω)− P̂ij(ω′)| =

∣∣∣∣∣N
(1)
ij (ω)

Nij(ω)
−
N

(1)
ij (ω)− 1

Nij(ω)− 1

∣∣∣∣∣
=

∣∣∣∣∣ Nij(ω)−N
(1)
ij (ω)

Nij(ω)(Nij(ω)− 1)

∣∣∣∣∣
≤ 1

Nij(ω)
≤ 2

mµij
≤ 2

mµmin

Note that in this case Nij(ω) − 1 cannot equal 0 because m ≥ 4
µmin

which guarantees that for ω /∈ Bij ,

Nij(ω) ≥ 2. Also the final step follows because this case can happen only when N (1)
ij (ω) ≥ 1 and so we can

upper bound
(Nij(ω)−N(1)

ij (ω))

(Nij(ω)−1) by 1

– Case (7): Nij(ω
′) = Nij(ω)− 1 and N (1)

ij (ω′) = N
(1)
ij (ω)
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In this case we have

|P̂ij(ω)− P̂ij(ω′)| =

∣∣∣∣∣N
(1)
ij (ω)

Nij(ω)
−

N
(1)
ij (ω)

Nij(ω)− 1

∣∣∣∣∣
=

∣∣∣∣∣ N
(1)
ij (ω)

Nij(ω)(Nij(ω)− 1)

∣∣∣∣∣
≤ 1

Nij(ω)
≤ 2

mµij
≤ 2

mµmin

Again, Nij(ω)− 1 cannot equal 0 because m ≥ 4
µmin

which guarantees that for ω /∈ Bij , Nij(ω) ≥ 2. Also note

that this case can occur only when N (1)
ij (ω) ≤ Nij(ω)− 1 which is used to upper bound

N
(1)
ij

Nij(ω)−1 by 1.

Thus we have the required bound in all possible cases.

Part 2. This follows directly from Part 1 and Theorem 2.

Part 3. Let m ≥ 1
µmin

ln
(
1
ε

)
. We have,

E[P̂ij ] = Pij(1− (1− µij)m) .

This gives ∣∣E[P̂ij ]− Pij
∣∣ = Pij(1− µij)m ≤ (1− µmin)

m ≤ e−mµmin ≤ ε ,

where the last inequality follows from the given condition on m.

Part 4. Let m satisfy the given condition. Then

P
(∣∣P̂ij − Pij∣∣ ≥ ε) ≤ P

(∣∣P̂ij −E[P̂ij ]
∣∣+ ∣∣E[P̂ij ]− Pij

∣∣ ≥ ε) , by triangle inequality

≤ P
(∣∣P̂ij −E[P̂ij ]

∣∣ ≥ ε

2

)
, by Part 3, since m ≥ 1

µmin
ln
(
2
ε

)
≤ 4 exp

(−mε2µ2
min

128

)
, by Part 2.

Part 5. Let m ≥ 1
µminPmin

ln
(n(n−1)

δ

)
. Then

P
(
∃(i 6= j) : P̂ij = 0

)
≤

n∑
i=1

∑
j 6=i

P
(
P̂ij = 0

)
, by union bound

=

n∑
i=1

∑
j 6=i

(1− µijPij)m

≤ n(n− 1)
(
1− µminPmin

)m
≤ n(n− 1) e−mµminPmin

≤ δ ,

where the last inequality follows from the given condition on m.

This completes the proof of the lemma.
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Proof of Lemma 6

Proof. We will first show the forward direction. Assume that the preference matrix P satisfies the time-reversibility
condition. Let Q be the time-reversible Markov chain corresponding to P, with stationary distribution π; since Q is
irreducible and aperiodic, we have πi > 0 ∀i. Now let i 6= j. By time reversibility and definition of Qij ,

πiPij = πjPji .

We also have
Pji = 1− Pij .

Solving for Pij , this gives
Pij =

πj
πi + πj

.

Thus P satisfies the BTL condition with vector w = π ∈ Rn+. This proves the forward direction.

To show the reverse direction, assume that the preference matrix P satisfies the BTL condition with vector w ∈ Rn+, so
that wi > 0 ∀i and Pij =

wj

wi+wj
∀i 6= j. Let Q be the Markov chain constructed from P as in Eq. (6). Then it is easy to

see that the vector π given by πi = wi∑n
k=1 wk

satisfies

πiQij = πjQji ∀i, j ∈ [n] ,

from which it follows that π is also the stationary probability vector of Q. Therefore P satisfies the time-reversibility
condition, thus proving the reverse direction.

Proof of Theorem 7

The proof of Theorem 7 builds on techniques of (Negahban et al., 2012). We first state below four lemmas that are used
in the proof: two of these are due to Negahban et al. (Negahban et al., 2012); proofs for the remaining two are included
below. The statements of the lemmas and corresponding proofs require some additional notation as summarized below:

Additional notation. In what follows, for a matrix Q ∈ Rn×n, we will denote by ‖Q‖F =
(∑n

i=1

∑n
j=1Q

2
ij

)1/2
the Frobenius norm of Q, by ‖Q‖2 = maxx∈Rn,x 6=0

‖Qx‖2
‖x‖2 the spectral norm of Q, and by λ(2)(Q) the second-largest

eigenvalue of Q in absolute value.
Lemma 21. Let (µ,P) be such that µmin > 0. Let Q be defined as in Eq. (6). Let 0 < ε ≤ 8 and δ ∈ (0, 1]. If

m ≥ max

(
256n

ε2µ2
min

ln
(8n2
δ

)
, B(µmin)

)
,

then with probability at least 1 − δ (over the random draw of S ∼ (µ,P)m from which P̂ is constructed), the empirical
Markov chain Q̂ constructed by the rank centrality algorithm satisfies

‖Q̂−Q‖2 ≤ ε .

Proof of Lemma 21. Let m satisfy the given condition. We have,∥∥E[Q̂]−Q
∥∥2
F

=

n∑
i=1

∑
j 6=i

(
E[Q̂ij ]−Qij

)2
+

n∑
i=1

(
E[Q̂ii]−Qii

)2
=

n∑
i=1

∑
j 6=i

( 1
n

(
E[P̂ij ]− Pij

))2
+

n∑
i=1

(
1

n

∑
k 6=i

(
E[P̂ik]− Pik

))2

≤ (n− 1)

n

( ε

2
√
n− 1

)2
+

(n− 1)2

n

( ε

2
√
n− 1

)2
,

by Lemma 3 (part 3), since m ≥ 256n
ε2µ2

min
ln
(
8n2

δ

)
≥ 1

µmin
ln
(
2
√
n−1
ε

)
= (n− 1)

( ε

2
√
n− 1

)2
=

ε2

4
. (10)
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Now,

P
(
‖Q̂−Q‖2 ≥ ε

)
≤ P

(
‖Q̂−Q‖F ≥ ε

)
, since Frobenius norm upper bounds spectral norm

≤ P
(∥∥Q̂−E[Q̂]

∥∥
F
+
∥∥E[Q̂]−Q

∥∥
F
≥ ε
)
, by triangle inequality

≤ P
(∥∥Q̂−E[Q̂]

∥∥
F
≥ ε

2

)
, by Eq. (10)

= P
(∥∥Q̂−E[Q̂]

∥∥2
F
≥ ε2

4

)
= P

( n∑
i=1

∑
j 6=i

(
Q̂ij −E[Q̂ij ]

)2
+

n∑
i=1

(
Q̂ii −E[Q̂ii]

)2 ≥ ε2

4

)

≤ P

( n∑
i=1

∑
j 6=i

(
Q̂ij −E[Q̂ij ]

)2 ≥ ε2

8

)
+P

( n∑
i=1

(
Q̂ii −E[Q̂ii]

)2 ≥ ε2

8

)

≤
n∑
i=1

∑
j 6=i

P

(∣∣Q̂ij −E[Q̂ij ]
∣∣ ≥ ε

(
√
8)n

)
+

n∑
i=1

P

(∣∣Q̂ii −E[Q̂ii]
∣∣ ≥ ε√

8n

)

=

n∑
i=1

∑
j 6=i

P

(
1

n

∣∣P̂ij −E[P̂ij ]
∣∣ ≥ ε

(
√
8)n

)
+

n∑
i=1

P

(
1

n

∣∣∣∣∑
k 6=i

(
P̂ik −E[P̂ik]

)∣∣∣∣ ≥ ε√
8n

)

≤
n∑
i=1

∑
j 6=i

P

(∣∣P̂ij −E[P̂ij ]
∣∣ ≥ ε√

8

)
+

n∑
i=1

P

(
1

n

∑
k 6=i

∣∣P̂ik −E[P̂ik]
∣∣ ≥ ε√

8n

)

≤
n∑
i=1

∑
j 6=i

P

(∣∣P̂ij −E[P̂ij ]
∣∣ ≥ ε√

8

)
+

n∑
i=1

∑
k 6=i

P

(∣∣P̂ik −E[P̂ik]
∣∣ ≥ ε√

8n

)

≤ 4n2 exp
(−mε2µ2

min

256

)
+ 4n2 exp

(−mε2µ2
min

256n

)
, by Lemma 3 (part 2)

≤ δ

2
+
δ

2
= δ , since m ≥ 256n

ε2µ2
min

ln
(
8n2

δ

)
.

This proves the result.

Lemma 22 ((Negahban et al., 2012)). Let Q and Q̃ be time-reversible Markov chains defined on the same transition
probability graph G = ([n], E), with stationary probability vectors π and π̃, respectively. Let α = min(i,j)∈E

πiQij

π̃iQ̃ij
and

β = maxi
πi

π̃i
. Then

1− λ(2)(Q) ≥ α

β

(
1− λ(2)(Q̃)

)
.

Lemma 23. Let Q ∈ [0, 1]n×n be the transition probability matrix of a time-reversible Markov chain with Qij > 0 ∀i, j,
and let π be the stationary probability vector of Q. Let Qmin = mini,j Qij , πmax = maxi πi, and πmin = mini πi. Then
the spectral gap of Q satisfies

1− λ(2)(Q) ≥ n
( πmin

πmax

)
Qmin .

Proof of Lemma 23. Since Qij > 0 ∀i, j, the chain Q is defined on the complete directed graph G = ([n], [n] × [n]).
Define a time-reversible Markov chain Q̃ on the same graph as follows:

Q̃ij =
1

n
∀i, j ∈ [n] .

This has stationary probability vector π̃ given by π̃i = 1
n ∀i. Now, using the notation of Lemma 22, we have

α = n2πminQmin

β = nπmax .
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Moreover, λ(2)(Q̃) = 0. By Lemma 22, we therefore have

1− λ(2)(Q) ≥ n2πminQmin

nπmax
= n

( πmin

πmax

)
Qmin .

Lemma 24 ((Negahban et al., 2012)). Let Q be a time-reversible Markov chain with stationary probability vector π. Let
Q̂ be any other Markov chain, and let qt denote the state distribution of Q̂ at time t when started with initial distribution
q0. Let πmax = maxi πi, πmin = mini πi, and ρ = λ(2)(Q) + ‖Q̂−Q‖2

√
πmax

πmin
. Then

‖qt − π‖2
‖π‖2

≤ ρt
‖q0 − π‖2
‖π‖2

√
πmax

πmin
+

1

1− ρ
‖Q̂−Q‖2

√
πmax

πmin
.

We are now ready to prove Theorem 7:

Proof of Theorem 7. Let m satisfy the given condition. Then by Lemma 21, we have with probability at least 1 − δ
2 , the

empirical Markov chain Q̂ constructed by the rank centrality algorithm satisfies

‖Q̂−Q‖2 ≤
ε

2

( πmin

πmax

)3/2
Pmin . (11)

In this case, since Q is time-reversible with Qij > 0 ∀i, j and Qmin = mini,j Qij =
Pmin

n , by Lemma 23 and Eq. (11), we
have

ρ = λ(2)(Q) + ‖Q̂−Q‖2
√
πmax

πmin
≤ 1−

( πmin

πmax

)
Pmin +

ε

2

( πmin

πmax

)
Pmin

≤ 1− 1

2

( πmin

πmax

)
Pmin . (12)

Next, since m ≥ 1024n
ε2P 2

minµ
2
min

(
πmax

πmin

)3
ln
(
16n2

δ

)
≥ 1

µminPmin
ln
( 2n(n−1)

δ

)
, by Lemma 3 (part 5), we have that with proba-

bility at least 1− δ
2 , P̂ij > 0 ∀i 6= j, and therefore Q̂ is an irreducible and aperiodic Markov chain.

Putting the above two statements together, with probability at least 1−δ, we have that Q̂ is an irreducible, aperiodic Markov
chain satisfying Eqs. (11-12), and the score vector π̂ output by the rank centrality algorithm is the stationary probability
vector of Q̂. In this case, by Lemma 24, we have that for any initial distribution q0 of Q̂,

‖π̂ − π‖2
‖π‖2

= lim
t→∞

‖qt − π‖2
‖π‖2

≤ lim
t→∞

ρt
‖q0 − π‖2
‖π‖2

√
πmax

πmin
+

1

1− ρ
‖Q̂−Q‖2

√
πmax

πmin

=
1

1− ρ
‖Q̂−Q‖2

√
πmax

πmin
, since ρ < 1, by Eq. (12)

≤ ε , by Eqs. (11-12).

The result follows since ‖π‖2 ≤ 1, which gives ‖π̂ − π‖2 ≤ ‖π̂−π‖2‖π‖2 .

Proof of Corollary 8

Proof. Let ε = rmin

3 . By definition of rmin, we have rmin ≤ 1, and therefore ε ≤ 1
3 < 1. Therefore if m satisfies the given

condition, then by Theorem 7, we have with probability at least 1− δ,

‖π̂ − π‖2 ≤
rmin

3
.
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But

‖π̂ − π‖2 ≤
rmin

3
=⇒ ‖π̂ − π‖∞ ≤

rmin

3
, since L2 norm upper bounds L∞ norm

=⇒ |π̂i − πi| ≤
rmin

3
∀i

=⇒
{
∀i, j : πj > πi =⇒ π̂j > π̂i

}
, by definition of rmin

=⇒
{
∀i, j : Pij > Pji =⇒ π̂j > π̂i

}
, by time-reversibility condition on P

=⇒ argsort(π̂) ⊆ argminσ∈SnerPD
µ,P[σ]

=⇒ σ̂ ∈ argminσ∈SnerPD
µ,P[σ] .

Thus we have that with probability at least 1− δ,

σ̂ ∈ argminσ∈SnerPD
µ,P[σ] .

This proves the result.

Proof of Lemma 9

Proof. Let Q be as defined in Eq. (6), and let π be the stationary probability vector of Q. From Section 6, we know that
P satisfies the time-reversibility condition, and therefore any permutation that ranks items according to decreasing order
of scores πi is an optimal permutation w.r.t. the pairwise disagreement error, i.e. we have

argsort(π) ⊆ argminσ∈SnerPD
µ,P[σ] .

We will show that argsort(f∗) = argsort(π), which will imply the result. We have,

f∗i = − 1

n

n∑
k=1

Yik =
1

n

n∑
k=1

ln
(Pki
Pik

)
=

1

n
ln

( n∏
k=1

Pki
Pik

)

=
1

n
ln

( n∏
k=1

πi
πk

)
, by time-reversibility

= lnπi −
1

n
ln(π1 · . . . · πn) .

The second term on the right-hand side is a constant, and ln(·) is a strictly monotonically increasing function; therefore f∗

induces the same orderings as π, i.e. argsort(f∗) = argsort(π).

Proof of Theorem 10

The proof makes use of the following technical lemma:

Lemma 25. Let 0 < u, u′ < 1. Let 0 < ε < u. Then

|u− u′| ≤ ε =⇒
∣∣ ln(u)− ln(u′)

∣∣ ≤ ε

u− ε
.

Proof. Let |u− u′| ≤ ε. Thus u′ ∈ (u− ε, u+ ε). Now, since ln(·) is a concave function, we have

ln(y) ≤ ln(x) +
1

x
(y − x) ∀x, y > 0 .

Taking x = u and y = u+ ε gives
ln(u+ ε) ≤ ln(u) +

ε

u
;

taking x = u− ε and y = u gives
ln(u) ≤ ln(u− ε) + ε

u− ε
.
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Combining both, and using the fact that ln(·) is a monotonically increasing function, we get

ln(u)− ε

u− ε
≤ ln(u− ε) ≤ ln(u) ≤ ln(u+ ε) ≤ ln(u) +

ε

u
.

For ε < u, we have ε
u−ε >

ε
u . Thus, since u′ ∈ (u− ε, u+ ε), we have either

ln(u)− ε

u− ε
≤ ln(u− ε) ≤ ln(u′) ≤ ln(u)

or

ln(u) ≤ ln(u′) ≤ ln(u+ ε) ≤ ln(u) +
ε

u
< ln(u) +

ε

u− ε
;

in both cases, we get
∣∣ ln(u)− ln(u′)

∣∣ ≤ ε
u−ε , thus proving the result.

Proof of Theorem 10. Letm satisfy the given condition. Sincem ≥ 128
P 2

minµ
2
min

(
1+ 2

ε

)2
ln
(
16n2

δ

)
≥ 1

µminPmin
ln
( 2n(n−1)

δ

)
,

by Lemma 3 (part 5), we have with probability at least 1− δ
2 , P̂ij > 0 ∀i 6= j. In this case, we have

Ŷij =

{
ln
(
P̂ij

P̂ji

)
if i 6= j

0 otherwise,

and Ê = X . As discussed in (Jiang et al., 2011), the score vector f̂ output by the least squares algorithm in this case is
given by

f̂i = − 1

n

n∑
k=1

Ŷik =
1

n

∑
k 6=i

ln
( P̂ki
P̂ik

)
.

Moreover, since Pij ∈ (0, 1) ∀i 6= j, we also have

f∗i = = − 1

n

n∑
k=1

Yik =
1

n

∑
k 6=i

ln
(Pki
Pik

)
.
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Next, we have

P

(
∃i :

∣∣∣∣ 1n∑
k 6=i

ln
( P̂ki
P̂ik

)
− 1

n

∑
k 6=i

ln
(Pki
Pik

)∣∣∣∣ ≥ ε)

≤
n∑
i=1

P

(
1

n

∑
k 6=i

∣∣∣ ln( P̂ki
P̂ik

)
− ln

(Pki
Pik

)∣∣∣ ≥ ε) , by union bound and triangle inequality

≤
n∑
i=1

P

(
∃k 6= i :

∣∣∣ ln( P̂ki
P̂ik
− ln

(Pki
Pik

))∣∣∣ ≥ ε) ,
≤

n∑
i=1

∑
k 6=i

P

(∣∣∣ ln( P̂ki
P̂ik

)
− ln

(Pki
Pik

)∣∣∣ ≥ ε) , by union bound

≤
n∑
i=1

∑
k 6=i

P

(∣∣ ln P̂ki − lnPki
∣∣+ ∣∣ ln P̂ik − lnPik

∣∣ ≥ ε)

≤ 2

n∑
i=1

∑
k 6=i

P

(∣∣ ln P̂ki − lnPki
∣∣ ≥ ε

2

)

≤ 2

n∑
i=1

∑
k 6=i

P

(∣∣P̂ki − Pki∣∣ ≥ εPmin

2 + ε

)
, by Lemma 25

≤ 8n2 exp
(−mε2P 2

minµ
2
min

128(2 + ε)2

)
, by Lemma 3 (part 4)

(since m ≥ 128
P 2

minµ
2
min

(
1 + 2

ε

)2
ln
(
16n2

δ

)
≥ 1

µmin
ln
( 2(2+ε)
εPmin

)
)

≤ δ

2
, since m ≥ 128

P 2
minµ

2
min

(
1 + 2

ε

)2
ln
(
16n2

δ

)
.

In other words, with probability at least 1− δ
2 , we have

max
i

∣∣∣∣ 1n∑
k 6=i

ln
( P̂ki
P̂ik

)
− 1

n

∑
k 6=i

ln
(Pki
Pik

)∣∣∣∣ ≤ ε .

Putting the above statements together, we have that with probability at least 1− δ,

‖f̂ − f∗‖∞ = max
i

∣∣f̂i − f∗i ∣∣ = max
i

∣∣∣∣ 1n∑
k 6=i

ln
( P̂ki
P̂ik

)
− 1

n

∑
k 6=i

ln
(Pki
Pik

)∣∣∣∣ ≤ ε .

This proves the result.

Proof of Corollary 11

Proof. Let ε = rmin

3 . By definition of rmin, we have rmin ≤ n, and therefore ε ≤ n
3 ≤ (4

√
2)n. Therefore if m satisfies

the given condition, then by Theorem 10, we have with probability at least 1− δ,

‖f̂ − f∗‖∞ ≤
rmin

3
.

But

‖f̂ − f∗‖∞ ≤
rmin

3
=⇒ |f̂i − f∗i | ≤

rmin

3
∀i

=⇒
{
∀i, j : f∗j > f∗i =⇒ f̂j > f̂i

}
, by definition of rmin

=⇒
{
∀i, j : Pij > Pji =⇒ f̂j > f̂i

}
, by Lemma 9

=⇒ argsort(f̂) ⊆ argminσ∈SnerPD
µ,P[σ]

=⇒ σ̂ ∈ argminσ∈SnerPD
µ,P[σ] .
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Thus we have that with probability at least 1− δ,

σ̂ ∈ argminσ∈SnerPD
µ,P[σ] .

This proves the result.

Proof of Lemma 13

Proof. Let P ∈ [0, 1]n×n satisfy the BTL condition with vector w ∈ Rn+, so that wi > 0 ∀i and Pij =
wj

wi+wj
∀i 6= j.

Then we have

Pij > Pji =⇒ wj > wi

=⇒ wj
wj + wk

>
wi

wi + wk
∀k

=⇒
n∑
k=1

wj
wj + wk

>

n∑
k=1

wi
wi + wk

=⇒
n∑
k=1

Pkj >

n∑
k=1

Pki .

Thus P satisfies the LN condition.

Proof of Theorem 14

Proof. Let m satisfy the given condition. We have,

P
(
‖f̂ − f∗‖∞ ≥ ε

)
= P

(
∃i : |f̂i − f∗i | ≥ ε

)
≤

n∑
i=1

P
(
|f̂i − f∗i | ≥ ε

)
, by union bound

=

n∑
i=1

P

(∣∣∣∣ 1n
n∑
k=1

(
P̂ki − Pki

)∣∣∣∣ ≥ ε) , by definition of f̂i and f∗i

≤
n∑
i=1

P

(
1

n

n∑
k=1

∣∣P̂ki − Pki∣∣ ≥ ε)

≤
n∑
i=1

P
(
∃k :

∣∣P̂ki − Pki∣∣ ≥ ε)
≤

n∑
i=1

n∑
k=1

P
(∣∣P̂ki − Pki∣∣ ≥ ε) , by union bound

≤ 4n2 exp
(−mε2µ2

min

128

)
, by Lemma 3 (part 4)

(since m ≥ 128
ε2µ2

min
ln
(
4n2

δ

)
≥ 1

µmin
ln
(
2n
ε

)
)

≤ δ , since m ≥ 128
ε2µ2

min
ln
(
4n2

δ

)
.

This proves the result.

Proof of Corollary 15

Proof. Let ε = rmin

3 . By definition of rmin, we have rmin ≤ n, and therefore ε ≤ n
3 ≤ (4

√
2)n. Therefore if m satisfies

the given condition, then by Theorem 14, we have with probability at least 1− δ,

‖f̂ − f∗‖∞ ≤
rmin

3
.
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But

‖f̂ − f∗‖∞ ≤
rmin

3
=⇒ |f̂i − f∗i | ≤

rmin

3
∀i

=⇒
{
∀i, j : f∗j > f∗i =⇒ f̂j > f̂i

}
, by definition of rmin

=⇒
{
∀i, j : Pij > Pji =⇒ f̂j > f̂i

}
, by extended low-noise condition on P

=⇒ argsort(f̂) ⊆ argminσ∈SnerPD
µ,P[σ]

=⇒ σ̂ ∈ argminσ∈SnerPD
µ,P[σ] .

Thus we have that with probability at least 1− δ,

σ̂ ∈ argminσ∈SnerPD
µ,P[σ] .

This proves the result.

Proof of Theorem 16

Proof. We have
θ̂ ∈ arg min

θ∈Rn

∑
i<j

(
ln(1 + exp(θj − θi))− P̂ij(θj − θi)

)
.

Setting the gradient of the above objective to 0 gives:

∀i :
n∑
k=1

P̂ki =
∑
k 6=i

exp(θ̂i)

exp(θ̂k) + exp(θ̂i)
=

n∑
k=1

P θ̂
ki , (13)

where we denote

P θ̂
ij =


exp(θ̂j)

exp(θ̂i)+exp(θ̂j)
if i < j

1− P θ̂
ji if i > j

0 if i = j.

Now, we have for any 0 < ε < 4
√
2, if m ≥ max

(
B(µmin),

1
µmin

ln( 2ε )
)
, then

P
(
∃i :

∣∣∣ 1
n

n∑
k=1

(
Pki − P θ̂

ki

)∣∣∣ ≥ ε) = P
(
∃i :

∣∣∣ 1
n

n∑
k=1

(
Pki − P̂ki

)∣∣∣ ≥ ε) , by Eq. (13)

≤
n∑
i=1

P
(∣∣∣ 1
n

n∑
k=1

(
Pki − P̂ki

)∣∣∣ ≥ ε)
≤

n∑
i=1

P
( 1
n

n∑
k=1

∣∣Pki − P̂ki∣∣ ≥ ε)
≤

n∑
i=1

P
(
∃k :

∣∣Pki − P̂ki∣∣ ≥ ε)
≤

n∑
i=1

n∑
k=1

P
(∣∣Pki − P̂ki∣∣ ≥ ε)

≤ 4n2 exp
(−mε2µ2

min

128

)
, by Lemma 3 (part 4).

Setting ε = rmin

3 , we get that if m satisfies the given condition, then with probability at least 1− δ,∣∣∣ 1
n

n∑
k=1

(
Pkj − P θ̂

kj

)∣∣∣ ≤ rmin

3
∀i . (14)
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By definition of rmin, this means that with probability at least 1− δ, we have for all i 6= j,

n∑
k=1

P θ̂
kj >

n∑
k=1

P θ̂
ki ⇐⇒

n∑
k=1

Pkj >

n∑
k=1

Pki ⇐⇒ f∗j > f∗i . (15)

Also, it is easy to verify that for all i 6= j,

ŵj > ŵi ⇐⇒ θ̂j > θ̂i ⇐⇒
n∑
k=1

P θ̂
kj >

n∑
k=1

P θ̂
ki (16)

Combining Eqs. (15-16), we have that with probability at least 1− δ,

argsort(ŵ) = argsort(f∗) .

Since argsort(f∗) ⊆ argminσ∈SnerPD
µ,P[σ], we thus have with probability at least 1− δ,

σ̂ ∈ argminσ∈SnerPD
µ,P[σ] .

This proves the result.

Proof of Proposition 19

Proof. Suppose P satisfies the GLN condition with vector α ∈ Rn. Then clearly, since Pij 6= 1
2 ∀i 6= j, we have ∀i < j:

zij = 1 =⇒ Pji > Pij =⇒
n∑
k=1

αkPki >

n∑
k=1

αkPkj =⇒ α>(Pi −Pj) > 0

zij = −1 =⇒ Pij > Pji =⇒
n∑
k=1

αkPkj >

n∑
k=1

αkPki =⇒ α>(Pi −Pj) < 0 .

Thus SP is linearly separable by the hyperplane α passing through the origin.

Conversely, suppose that SP is linearly separable by a hyperplane passing through the origin. Then ∃α ∈ Rn s.t.
zijα

>(Pi −Pj) > 0 ∀i < j. Thus we have ∀i < j:

Pij > Pji =⇒ zij = −1 =⇒ α>(Pi −Pj) < 0 =⇒
n∑
k=1

αkPkj >

n∑
k=1

αkPki

Pji > Pij =⇒ zij = 1 =⇒ α>(Pi −Pj) > 0 =⇒
n∑
k=1

αkPki >

n∑
k=1

αkPkj .

Thus P satisfies the GLN condition.

Proof of Theorem 20

Proof. Let m satisfy the given conditions. We first show that with probability at least 1− δ
2 , every label sign(P̂ji− P̂ij) in

SP̂ is the same as the corresponding label sign(Pji − Pij) in SP. We have,

P
(
∃i 6= j :

∣∣P̂ij − Pij∣∣ ≥ γ) ≤
∑
i6=j

P
(∣∣P̂ij − Pij∣∣ ≥ γ) , by union bound

≤ 4n2 exp
(−mγ2µ2

min

128

)
, by Lemma 3 (part 4)

(since m ≥ 128
γ2µ2

min
log( 8n

2

δ ) ≥ 1
µmin

ln( 2γ ))

≤ δ

2
, since m ≥ 128

γ2µ2
min

log( 8n
2

δ ).
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Thus we have that with probability at least 1− δ
2 ,

|P̂ij − Pij | ≤ γ ∀i 6= j .

By definition of γ, this yields that with probability at least 1− δ
2 ,

P̂ij > P̂ji ⇐⇒ Pij > Pji ∀i 6= j ,

i.e. with probability at least 1− δ
2 ,

sign(P̂ji − P̂ij) = sign(Pji − Pij) ∀i < j .

Next, we show that with probability at least 1 − δ
2 , every point (P̂i − P̂j) in SP̂ falls on the same side of the hyperplane

given by α as the corresponding point (Pi −Pj) in SP. We have,

P
(
∃(i < j) : ‖(P̂i − P̂j)− (Pi −Pj)‖2 ≥

rαmin

2

)
= P

(
∃(i < j) : ‖(P̂i −Pi)− (P̂j −Pj)‖2 ≥

rαmin

2

)
≤

∑
i<j

P
(
‖(P̂i −Pi)− (P̂j −Pj)‖2 ≥

rαmin

2

)
, by union bound

≤
∑
i<j

(
P
(
‖P̂i −Pi‖2 ≥

rαmin

4

)
+P

(
‖P̂j −Pj‖2 ≥

rαmin

4

))

≤
∑
i<j

(
P
(
∃k : |P̂ki − Pki| ≥

rαmin

4
√
n

)
+P

(
∃k : |P̂kj − Pkj | ≥

rαmin

4
√
n

))

≤
∑
i<j

(∑
k

P
(
|P̂ki − Pki| ≥

rαmin

4
√
n

)
+
∑
k

P
(
|P̂kj − Pkj | ≥

rαmin

4
√
n

))

≤ 8n3 exp
(−m(rαmin)

2µ2
min

2048n

)
, by Lemma 3 (part 4)

(since m ≥ 2048n
(rαmin)

2µ2
min

log( 16n
3

δ ) ≥ 1
µmin

ln( 8
√
n

rαmin
))

≤ δ

2
, since m ≥ 2048n

(rαmin)
2µ2

min
log( 16n

3

δ ).

Thus with probability at least 1− δ
2 ,

‖(P̂i − P̂j)− (Pi −Pj)‖2 ≤
rαmin

2
∀i < j .

By definition, rαmin is the smallest Euclidean distance of any point (Pi−Pj) to the hyperplane defined by α; therefore we
get that with probability at least 1− δ

2 , all points (P̂i− P̂j) fall on the same side of the hyperplane α as the corresponding
points (Pi −Pj).

Combining the above statements yields that with probability at least 1 − δ, the dataset SP̂ is also linearly separable by
α; in this case, the SVM-RankAggregation algorithm produces a vector α̂ that correctly classifies all examples in SP̂, i.e.
satisfies zijα̂

>(P̂i − P̂j) > 0 ∀i < j (where zij = sign(Pji − Pij)), and it can be verified that α̂ must then also satisfy
zijα̂

>(Pi −Pj) > 0 ∀i < j, so that argsort(α̂) ⊆ argminσ∈SnerPD
µ,P[σ]. This yields that with probability at least 1− δ,

σ̂ ∈ argminσ∈SnerPD
µ,P[σ] .


