Supplementary Material

Proof of Lemma 3

Proof.

Part 1. Let $m \geq \frac{4}{\mu_{\text {min }}}$. Recall the definitions of $\widehat{P}_{i j}, N_{i j}, N_{i j}^{(1)}$ from Eq. (3). In the following, we will make the dependence of these quantities on the training sample explicit; specifically, for any $\omega \in(\mathcal{X} \times\{0,1\})^{m}$, we will write the corresponding quantities as $\widehat{P}_{i j}(\omega), N_{i j}(\omega)$, and $N_{i j}^{(1)}(\omega)$, respectively.
Clearly, for any $\omega, \omega^{\prime} \in(\mathcal{X} \times\{0,1\})^{m}$, since $\widehat{P}_{i j}(\omega), \widehat{P}_{i j}\left(\omega^{\prime}\right) \in[0,1]$, we have

$$
\left|\widehat{P}_{i j}(\omega)-\widehat{P}_{i j}\left(\omega^{\prime}\right)\right| \leq 1
$$

We will prove the result for the case $i<j$; the case $i>j$ can be proved similarly. Assume $i<j$, and let $B_{i j}$ be the following 'bad' event:

$$
B_{i j}=\left\{\omega \in(\mathcal{X} \times\{0,1\})^{m}: N_{i j}(\omega) \leq \frac{m \mu_{i j}}{2}\right\}
$$

Then by a straightforward application of Hoeffding's inequality, we have

$$
\mathbf{P}\left(S \in B_{i j}\right) \leq \exp \left(-m \mu_{i j}^{2} / 2\right) \leq \exp \left(-m \mu_{\min }^{2} / 2\right)
$$

Now consider $\omega, \omega^{\prime} \in(\mathcal{X} \times\{0,1\})^{m}$ such that $\omega \notin B_{i j}$, and ω, ω^{\prime} differ only in one element. We can have the following cases:
(1) $N_{i j}\left(\omega^{\prime}\right)=N_{i j}(\omega)$ and $N_{i j}^{(1)}\left(\omega^{\prime}\right)=N_{i j}^{(1)}(\omega)$
(2) $N_{i j}\left(\omega^{\prime}\right)=N_{i j}(\omega)$ and $N_{i j}^{(1)}\left(\omega^{\prime}\right)=N_{i j}^{(1)}(\omega)+1$
(3) $N_{i j}\left(\omega^{\prime}\right)=N_{i j}(\omega)$ and $N_{i j}^{(1)}\left(\omega^{\prime}\right)=N_{i j}^{(1)}(\omega)-1$
(4) $N_{i j}\left(\omega^{\prime}\right)=N_{i j}(\omega)+1$ and $N_{i j}^{(1)}\left(\omega^{\prime}\right)=N_{i j}^{(1)}(\omega)+1$
(5) $N_{i j}\left(\omega^{\prime}\right)=N_{i j}(\omega)+1$ and $N_{i j}^{(1)}\left(\omega^{\prime}\right)=N_{i j}^{(1)}(\omega)$
(6) $N_{i j}\left(\omega^{\prime}\right)=N_{i j}(\omega)-1$ and $N_{i j}^{(1)}\left(\omega^{\prime}\right)=N_{i j}^{(1)}(\omega)-1$
(7) $N_{i j}\left(\omega^{\prime}\right)=N_{i j}(\omega)-1$ and $N_{i j}^{(1)}\left(\omega^{\prime}\right)=N_{i j}^{(1)}(\omega)$

We will consider each of these cases separately, and will show that in each case, the difference $\left|\widehat{P}_{i j}(\omega)-\widehat{P}_{i j}\left(\omega^{\prime}\right)\right|$ is upper bounded by $\frac{2}{m \mu_{\text {min }}}$.

- Case (1): $N_{i j}\left(\omega^{\prime}\right)=N_{i j}(\omega)$ and $N_{i j}^{(1)}\left(\omega^{\prime}\right)=N_{i j}^{(1)}(\omega)$

In this case nothing changes with respect to the pair (i, j) and hence

$$
\left|\widehat{P}_{i j}(\omega)-\widehat{P}_{i j}\left(\omega^{\prime}\right)\right|=0
$$

- Case (2): $N_{i j}\left(\omega^{\prime}\right)=N_{i j}(\omega)$ and $N_{i j}^{(1)}\left(\omega^{\prime}\right)=N_{i j}^{(1)}(\omega)+1$

In this case we have

$$
\begin{aligned}
\left|\widehat{P}_{i j}(\omega)-\widehat{P}_{i j}\left(\omega^{\prime}\right)\right| & =\left|\frac{N_{i j}^{(1)}(\omega)}{N_{i j}(\omega)}-\frac{N_{i j}^{(1)}(\omega)+1}{N_{i j}(\omega)}\right| \\
& =\frac{1}{N_{i j}(\omega)} \\
& \leq \frac{2}{m \mu_{i j}} \leq \frac{2}{m \mu_{\min }}
\end{aligned}
$$

- Case (3): $N_{i j}\left(\omega^{\prime}\right)=N_{i j}(\omega)$ and $N_{i j}^{(1)}\left(\omega^{\prime}\right)=N_{i j}^{(1)}(\omega)-1$

In this case we have

$$
\begin{aligned}
\left|\widehat{P}_{i j}(\omega)-\widehat{P}_{i j}\left(\omega^{\prime}\right)\right| & =\left|\frac{N_{i j}^{(1)}(\omega)}{N_{i j}(\omega)}-\frac{N_{i j}^{(1)}(\omega)-1}{N_{i j}(\omega)}\right| \\
& =\frac{1}{N_{i j}(\omega)} \leq \frac{2}{m \mu_{i j}} \leq \frac{2}{m \mu_{\min }}
\end{aligned}
$$

- Case (4): $\quad N_{i j}\left(\omega^{\prime}\right)=N_{i j}(\omega)+1$ and $N_{i j}^{(1)}\left(\omega^{\prime}\right)=N_{i j}^{1}(\omega)+1$

In this case we have

$$
\begin{aligned}
\left|\widehat{P}_{i j}(\omega)-\widehat{P}_{i j}\left(\omega^{\prime}\right)\right| & =\left|\frac{N_{i j}^{(1)}(\omega)}{N_{i j}(\omega)}-\frac{N_{i j}^{(1)}(\omega)+1}{N_{i j}(\omega)+1}\right| \\
& =\left|\frac{N_{i j}(\omega)-N_{i j}^{(1)}(\omega)}{N_{i j}(\omega)\left(N_{i j}(\omega)+1\right)}\right| \leq\left|\frac{N_{i j}(\omega)}{N_{i j}(\omega)\left(N_{i j}(\omega)+1\right)}\right| \\
& \leq \frac{1}{N_{i j}(\omega)} \leq \frac{2}{m \mu_{i j}} \leq \frac{2}{m \mu_{\min }}
\end{aligned}
$$

- Case (5): $\quad N_{i j}\left(\omega^{\prime}\right)=N_{i j}(\omega)+1$ and $N_{i j}^{(1)}\left(\omega^{\prime}\right)=N_{i j}^{(1)}(\omega)$

In this case we have

$$
\begin{aligned}
\left|\widehat{P}_{i j}(\omega)-\widehat{P}_{i j}\left(\omega^{\prime}\right)\right| & =\left|\frac{N_{i j}^{(1)}(\omega)}{N_{i j}(\omega)}-\frac{N_{i j}^{(1)}(\omega)}{N_{i j}(\omega)+1}\right| \\
& =\left|\frac{N_{i j}^{(1)}(\omega)}{N_{i j}(\omega)\left(N_{i j}(\omega)+1\right)}\right| \leq\left|\frac{N_{i j}(\omega)}{N_{i j}(\omega)\left(N_{i j}(\omega)+1\right)}\right| \\
& \leq \frac{1}{N_{i j}(\omega)} \leq \frac{2}{m \mu_{i j}} \leq \frac{2}{m \mu_{\min }}
\end{aligned}
$$

- Case (6): $\quad N_{i j}\left(\omega^{\prime}\right)=N_{i j}(\omega)-1$ and $N_{i j}^{(1)}\left(\omega^{\prime}\right)=N_{i j}^{(1)}(\omega)-1$

In this case we have

$$
\begin{aligned}
\left|\widehat{P}_{i j}(\omega)-\widehat{P}_{i j}\left(\omega^{\prime}\right)\right| & =\left|\frac{N_{i j}^{(1)}(\omega)}{N_{i j}(\omega)}-\frac{N_{i j}^{(1)}(\omega)-1}{N_{i j}(\omega)-1}\right| \\
& =\left|\frac{N_{i j}(\omega)-N_{i j}^{(1)}(\omega)}{N_{i j}(\omega)\left(N_{i j}(\omega)-1\right)}\right| \\
& \leq \frac{1}{N_{i j}(\omega)} \leq \frac{2}{m \mu_{i j}} \leq \frac{2}{m \mu_{\min }}
\end{aligned}
$$

Note that in this case $N_{i j}(\omega)-1$ cannot equal 0 because $m \geq \frac{4}{\mu_{\min }}$ which guarantees that for $\omega \notin B_{i j}$, $N_{i j}(\omega) \geq 2$. Also the final step follows because this case can happen only when $N_{i j}^{(1)}(\omega) \geq 1$ and so we can upper bound $\frac{\left(N_{i j}(\omega)-N_{i j}^{(1)}(\omega)\right)}{\left(N_{i j}(\omega)-1\right)}$ by 1

- Case (7): $\quad N_{i j}\left(\omega^{\prime}\right)=N_{i j}(\omega)-1$ and $N_{i j}^{(1)}\left(\omega^{\prime}\right)=N_{i j}^{(1)}(\omega)$

In this case we have

$$
\begin{aligned}
\left|\widehat{P}_{i j}(\omega)-\widehat{P}_{i j}\left(\omega^{\prime}\right)\right| & =\left|\frac{N_{i j}^{(1)}(\omega)}{N_{i j}(\omega)}-\frac{N_{i j}^{(1)}(\omega)}{N_{i j}(\omega)-1}\right| \\
& =\left|\frac{N_{i j}^{(1)}(\omega)}{N_{i j}(\omega)\left(N_{i j}(\omega)-1\right)}\right| \\
& \leq \frac{1}{N_{i j}(\omega)} \leq \frac{2}{m \mu_{i j}} \leq \frac{2}{m \mu_{\min }}
\end{aligned}
$$

Again, $N_{i j}(\omega)-1$ cannot equal 0 because $m \geq \frac{4}{\mu_{\min }}$ which guarantees that for $\omega \notin B_{i j}, N_{i j}(\omega) \geq 2$. Also note that this case can occur only when $N_{i j}^{(1)}(\omega) \leq N_{i j}(\omega)-1$ which is used to upper bound $\frac{N_{i j}^{(1)}}{N_{i j}(\omega)-1}$ by 1.

Thus we have the required bound in all possible cases.
Part 2. This follows directly from Part 1 and Theorem 2.
Part 3. Let $m \geq \frac{1}{\mu_{\min }} \ln \left(\frac{1}{\epsilon}\right)$. We have,

$$
\mathbf{E}\left[\widehat{P}_{i j}\right]=P_{i j}\left(1-\left(1-\mu_{i j}\right)^{m}\right)
$$

This gives

$$
\left|\mathbf{E}\left[\widehat{P}_{i j}\right]-P_{i j}\right|=P_{i j}\left(1-\mu_{i j}\right)^{m} \leq\left(1-\mu_{\min }\right)^{m} \leq e^{-m \mu_{\min }} \leq \epsilon
$$

where the last inequality follows from the given condition on m.
Part 4. Let m satisfy the given condition. Then

$$
\begin{aligned}
\mathbf{P}\left(\left|\widehat{P}_{i j}-P_{i j}\right| \geq \epsilon\right) & \leq \mathbf{P}\left(\left|\widehat{P}_{i j}-\mathbf{E}\left[\widehat{P}_{i j}\right]\right|+\left|\mathbf{E}\left[\widehat{P}_{i j}\right]-P_{i j}\right| \geq \epsilon\right), \quad \text { by triangle inequality } \\
& \leq \mathbf{P}\left(\left|\widehat{P}_{i j}-\mathbf{E}\left[\widehat{P}_{i j}\right]\right| \geq \frac{\epsilon}{2}\right), \quad \text { by Part } 3, \text { since } m \geq \frac{1}{\mu_{\min }} \ln \left(\frac{2}{\epsilon}\right) \\
& \leq 4 \exp \left(\frac{-m \epsilon^{2} \mu_{\min }^{2}}{128}\right), \quad \text { by Part } 2 .
\end{aligned}
$$

Part 5. Let $m \geq \frac{1}{\mu_{\min } P_{\min }} \ln \left(\frac{n(n-1)}{\delta}\right)$. Then

$$
\begin{aligned}
\mathbf{P}\left(\exists(i \neq j): \widehat{P}_{i j}=0\right) & \leq \sum_{i=1}^{n} \sum_{j \neq i} \mathbf{P}\left(\widehat{P}_{i j}=0\right), \quad \text { by union bound } \\
& =\sum_{i=1}^{n} \sum_{j \neq i}\left(1-\mu_{i j} P_{i j}\right)^{m} \\
& \leq n(n-1)\left(1-\mu_{\min } P_{\min }\right)^{m} \\
& \leq n(n-1) e^{-m \mu_{\min } P_{\min }} \\
& \leq \delta
\end{aligned}
$$

where the last inequality follows from the given condition on m.

This completes the proof of the lemma.

Proof of Lemma 6

Proof. We will first show the forward direction. Assume that the preference matrix \mathbf{P} satisfies the time-reversibility condition. Let \mathbf{Q} be the time-reversible Markov chain corresponding to \mathbf{P}, with stationary distribution $\boldsymbol{\pi}$; since \mathbf{Q} is irreducible and aperiodic, we have $\pi_{i}>0 \forall i$. Now let $i \neq j$. By time reversibility and definition of $Q_{i j}$,

$$
\pi_{i} P_{i j}=\pi_{j} P_{j i}
$$

We also have

$$
P_{j i}=1-P_{i j}
$$

Solving for $P_{i j}$, this gives

$$
P_{i j}=\frac{\pi_{j}}{\pi_{i}+\pi_{j}}
$$

Thus \mathbf{P} satisfies the BTL condition with vector $\mathbf{w}=\pi \in \mathbb{R}_{+}^{n}$. This proves the forward direction.
To show the reverse direction, assume that the preference matrix \mathbf{P} satisfies the BTL condition with vector $\mathbf{w} \in \mathbb{R}_{+}^{n}$, so that $w_{i}>0 \forall i$ and $P_{i j}=\frac{w_{j}}{w_{i}+w_{j}} \forall i \neq j$. Let \mathbf{Q} be the Markov chain constructed from \mathbf{P} as in Eq. (6). Then it is easy to see that the vector $\boldsymbol{\pi}$ given by $\pi_{i}=\frac{w_{i}}{\sum_{k=1}^{n} w_{k}}$ satisfies

$$
\pi_{i} Q_{i j}=\pi_{j} Q_{j i} \forall i, j \in[n]
$$

from which it follows that $\boldsymbol{\pi}$ is also the stationary probability vector of \mathbf{Q}. Therefore \mathbf{P} satisfies the time-reversibility condition, thus proving the reverse direction.

Proof of Theorem 7

The proof of Theorem 7 builds on techniques of (Negahban et al., 2012). We first state below four lemmas that are used in the proof: two of these are due to Negahban et al. (Negahban et al., 2012); proofs for the remaining two are included below. The statements of the lemmas and corresponding proofs require some additional notation as summarized below:
Additional notation. In what follows, for a matrix $\mathbf{Q} \in \mathbb{R}^{n \times n}$, we will denote by $\|\mathbf{Q}\|_{F}=\left(\sum_{i=1}^{n} \sum_{j=1}^{n} Q_{i j}^{2}\right)^{1 / 2}$ the Frobenius norm of \mathbf{Q}, by $\|\mathbf{Q}\|_{2}=\max _{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{Q} \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}$ the spectral norm of \mathbf{Q}, and by $\lambda_{(2)}(\mathbf{Q})$ the second-largest eigenvalue of \mathbf{Q} in absolute value.
Lemma 21. Let (μ, \mathbf{P}) be such that $\mu_{\min }>0$. Let \mathbf{Q} be defined as in Eq. (6). Let $0<\epsilon \leq 8$ and $\delta \in(0,1]$. If

$$
m \geq \max \left(\frac{256 n}{\epsilon^{2} \mu_{\min }^{2}} \ln \left(\frac{8 n^{2}}{\delta}\right), B\left(\mu_{\min }\right)\right)
$$

then with probability at least $1-\delta$ (over the random draw of $S \sim(\mu, \mathbf{P})^{m}$ from which $\widehat{\mathbf{P}}$ is constructed), the empirical Markov chain $\widehat{\mathbf{Q}}$ constructed by the rank centrality algorithm satisfies

$$
\|\widehat{\mathbf{Q}}-\mathbf{Q}\|_{2} \leq \epsilon
$$

Proof of Lemma 21. Let m satisfy the given condition. We have,

$$
\begin{align*}
&\|\mathbf{E}[\widehat{\mathbf{Q}}]-\mathbf{Q}\|_{F}^{2}=\sum_{i=1}^{n} \sum_{j \neq i}\left(\mathbf{E}\left[\widehat{Q}_{i j}\right]-Q_{i j}\right)^{2}+\sum_{i=1}^{n}\left(\mathbf{E}\left[\widehat{Q}_{i i}\right]-Q_{i i}\right)^{2} \\
&=\sum_{i=1}^{n} \sum_{j \neq i}\left(\frac{1}{n}\left(\mathbf{E}\left[\widehat{P}_{i j}\right]-P_{i j}\right)\right)^{2}+\sum_{i=1}^{n}\left(\frac{1}{n} \sum_{k \neq i}\left(\mathbf{E}\left[\widehat{P}_{i k}\right]-P_{i k}\right)\right)^{2} \\
& \leq \frac{(n-1)}{n}\left(\frac{\epsilon}{2 \sqrt{n-1}}\right)^{2}+\frac{(n-1)^{2}}{n}\left(\frac{\epsilon}{2 \sqrt{n-1}}\right)^{2} \\
& \quad \text { by Lemma 3 (part 3), since } m \geq \frac{256 n}{\epsilon^{2} \mu_{\min }^{2}} \ln \left(\frac{8 n^{2}}{\delta}\right) \geq \frac{1}{\mu_{\min }} \ln \left(\frac{2 \sqrt{n-1}}{\epsilon}\right) \\
&=(n-1)\left(\frac{\epsilon}{2 \sqrt{n-1}}\right)^{2} \\
&= \frac{\epsilon^{2}}{4} . \tag{10}
\end{align*}
$$

Now,

$$
\begin{aligned}
\mathbf{P}\left(\|\widehat{\mathbf{Q}}-\mathbf{Q}\|_{2} \geq \epsilon\right) & \leq \mathbf{P}\left(\|\widehat{\mathbf{Q}}-\mathbf{Q}\|_{F} \geq \epsilon\right) \text {, since Frobenius norm upper bounds spectral norm } \\
& \leq \mathbf{P}\left(\|\widehat{\mathbf{Q}}-\mathbf{E}[\widehat{\mathbf{Q}}]\|_{F}+\|\mathbf{E}[\widehat{\mathbf{Q}}]-\mathbf{Q}\|_{F} \geq \epsilon\right. \text {, by triangle inequality } \\
& \leq \mathbf{P}\left(\|\widehat{\mathbf{Q}}-\mathbf{E}[\widehat{\mathbf{Q}}]\|_{F} \geq \frac{\epsilon}{2}\right), \quad \text { by Eq. (10) } \\
& =\mathbf{P}\left(\|\widehat{\mathbf{Q}}-\mathbf{E}[\widehat{\mathbf{Q}}]\|_{F}^{2} \geq \frac{\epsilon^{2}}{4}\right) \\
& =\mathbf{P}\left(\sum_{i=1}^{n} \sum_{j \neq i}\left(\widehat{Q}_{i j}-\mathbf{E}\left[\widehat{Q}_{i j}\right]\right)^{2}+\sum_{i=1}^{n}\left(\widehat{Q}_{i i}-\mathbf{E}\left[\widehat{Q}_{i i}\right]\right)^{2} \geq \frac{\epsilon^{2}}{4}\right) \\
& \leq \mathbf{P}\left(\sum_{i=1}^{n} \sum_{j \neq i}\left(\widehat{Q}_{i j}-\mathbf{E}\left[\widehat{Q}_{i j}\right]\right)^{2} \geq \frac{\epsilon^{2}}{8}\right)+\mathbf{P}\left(\sum_{i=1}^{n}\left(\widehat{Q}_{i i}-\mathbf{E}\left[\widehat{Q}_{i i}\right]\right)^{2} \geq \frac{\epsilon^{2}}{8}\right) \\
& \leq \sum_{i=1}^{n} \sum_{j \neq i} \mathbf{P}\left(\left|\widehat{Q}_{i j}-\mathbf{E}\left[\widehat{Q}_{i j}\right]\right| \geq \frac{\epsilon}{(\sqrt{8}) n}\right)+\sum_{i=1}^{n} \mathbf{P}\left(\left|\widehat{Q}_{i i}-\mathbf{E}\left[\widehat{Q}_{i i}\right]\right| \geq \frac{\epsilon}{\sqrt{8 n}}\right) \\
& =\sum_{i=1}^{n} \sum_{j \neq i} \mathbf{P}\left(\frac{1}{n}\left|\widehat{P}_{i j}-\mathbf{E}\left[\widehat{P}_{i j}\right]\right| \geq \frac{\epsilon}{(\sqrt{8}) n}\right)+\sum_{i=1}^{n} \mathbf{P}\left(\frac{1}{n}\left|\sum_{k \neq i}\left(\widehat{P}_{i k}-\mathbf{E}\left[\widehat{P}_{i k}\right]\right)\right| \geq \frac{\epsilon}{\sqrt{8 n}}\right) \\
& \leq \sum_{i=1}^{n} \sum_{j \neq i} \mathbf{P}\left(\left|\widehat{P}_{i j}-\mathbf{E}\left[\widehat{P}_{i j}\right]\right| \geq \frac{\epsilon}{\sqrt{8}}\right)+\sum_{i=1}^{n} \mathbf{P}\left(\frac{1}{n} \sum_{k \neq i}\left|\widehat{P}_{i k}-\mathbf{E}\left[\widehat{P}_{i k}\right]\right| \geq \frac{\epsilon}{\sqrt{8 n}}\right) \\
& \leq \sum_{i=1}^{n} \sum_{j \neq i} \mathbf{P}\left(\left|\widehat{P}_{i j}-\mathbf{E}\left[\widehat{P}_{i j}\right]\right| \geq \frac{\epsilon}{\sqrt{8}}\right)+\sum_{i=1}^{n} \sum_{k \neq i} \mathbf{P}\left(\left|\widehat{P}_{i k}-\mathbf{E}\left[\widehat{P}_{i k}\right]\right| \geq \frac{\epsilon}{\sqrt{8 n}}\right) \\
& \leq 4 n^{2} \exp \left(\frac{-m \epsilon^{2} \mu_{\min }^{2}}{256}\right)+4 n^{2} \exp \left(\frac{-m \epsilon^{2} \mu_{\min }^{2}}{256 n}\right), \quad \text { by Lemma 3(part 2)} \\
& \leq \frac{\delta}{2}+\frac{\delta}{2}=\delta, \operatorname{since} m \geq \frac{256 n}{\epsilon^{2} \mu_{\min }^{2}} \ln \left(\frac{8 n^{2}}{\delta}\right) .
\end{aligned}
$$

This proves the result.
Lemma 22 ((Negahban et al., 2012)). Let \mathbf{Q} and $\widetilde{\mathbf{Q}}$ be time-reversible Markov chains defined on the same transition probability graph $G=([n], E)$, with stationary probability vectors π and $\widetilde{\pi}$, respectively. Let $\alpha=\min _{(i, j) \in E} \frac{\pi_{i} Q_{i j}}{\widetilde{\pi}_{i} \hat{Q}_{i j}}$ and $\beta=\max _{i} \frac{\pi_{i}}{\tilde{\pi}_{i}}$. Then

$$
1-\lambda_{(2)}(\mathbf{Q}) \geq \frac{\alpha}{\beta}\left(1-\lambda_{(2)}(\widetilde{\mathbf{Q}})\right)
$$

Lemma 23. Let $\mathbf{Q} \in[0,1]^{n \times n}$ be the transition probability matrix of a time-reversible Markov chain with $Q_{i j}>0 \forall i, j$, and let $\boldsymbol{\pi}$ be the stationary probability vector of \mathbf{Q}. Let $Q_{\min }=\min _{i, j} Q_{i j}, \pi_{\max }=\max _{i} \pi_{i}$, and $\pi_{\min }=\min _{i} \pi_{i}$. Then the spectral gap of \mathbf{Q} satisfies

$$
1-\lambda_{(2)}(\mathbf{Q}) \geq n\left(\frac{\pi_{\min }}{\pi_{\max }}\right) Q_{\min }
$$

Proof of Lemma 23. Since $Q_{i j}>0 \forall i, j$, the chain \mathbf{Q} is defined on the complete directed graph $G=([n],[n] \times[n])$. Define a time-reversible Markov chain $\widetilde{\mathbf{Q}}$ on the same graph as follows:

$$
\widetilde{Q}_{i j}=\frac{1}{n} \forall i, j \in[n] .
$$

This has stationary probability vector $\widetilde{\pi}$ given by $\widetilde{\pi}_{i}=\frac{1}{n} \forall i$. Now, using the notation of Lemma 22 , we have

$$
\begin{aligned}
\alpha & =n^{2} \pi_{\min } Q_{\min } \\
\beta & =n \pi_{\max } .
\end{aligned}
$$

Moreover, $\lambda_{(2)}(\widetilde{\mathbf{Q}})=0$. By Lemma 22, we therefore have

$$
1-\lambda_{(2)}(\mathbf{Q}) \geq \frac{n^{2} \pi_{\min } Q_{\min }}{n \pi_{\max }}=n\left(\frac{\pi_{\min }}{\pi_{\max }}\right) Q_{\min }
$$

Lemma 24 ((Negahban et al., 2012)). Let \mathbf{Q} be a time-reversible Markov chain with stationary probability vector $\boldsymbol{\pi}$. Let $\widehat{\mathbf{Q}}$ be any other Markov chain, and let \mathbf{q}_{t} denote the state distribution of $\widehat{\mathbf{Q}}$ at time t when started with initial distribution \mathbf{q}_{0}. Let $\pi_{\max }=\max _{i} \pi_{i}, \pi_{\min }=\min _{i} \pi_{i}$, and $\rho=\lambda_{(2)}(\mathbf{Q})+\|\widehat{\mathbf{Q}}-\mathbf{Q}\|_{2} \sqrt{\frac{\pi_{\max }}{\pi_{\min }}}$. Then

$$
\frac{\left\|\mathbf{q}_{t}-\boldsymbol{\pi}\right\|_{2}}{\|\boldsymbol{\pi}\|_{2}} \leq \rho^{t} \frac{\left\|\mathbf{q}_{0}-\boldsymbol{\pi}\right\|_{2}}{\|\boldsymbol{\pi}\|_{2}} \sqrt{\frac{\pi_{\max }}{\pi_{\min }}}+\frac{1}{1-\rho}\|\widehat{\mathbf{Q}}-\mathbf{Q}\|_{2} \sqrt{\frac{\pi_{\max }}{\pi_{\min }}}
$$

We are now ready to prove Theorem 7:

Proof of Theorem 7. Let m satisfy the given condition. Then by Lemma 21, we have with probability at least $1-\frac{\delta}{2}$, the empirical Markov chain $\widehat{\mathbf{Q}}$ constructed by the rank centrality algorithm satisfies

$$
\begin{equation*}
\|\widehat{\mathbf{Q}}-\mathbf{Q}\|_{2} \leq \frac{\epsilon}{2}\left(\frac{\pi_{\min }}{\pi_{\max }}\right)^{3 / 2} P_{\min } \tag{11}
\end{equation*}
$$

In this case, since \mathbf{Q} is time-reversible with $Q_{i j}>0 \forall i, j$ and $Q_{\min }=\min _{i, j} Q_{i j}=\frac{P_{\min }}{n}$, by Lemma 23 and Eq. (11), we have

$$
\begin{align*}
\rho=\lambda_{(2)}(\mathbf{Q})+\|\widehat{\mathbf{Q}}-\mathbf{Q}\|_{2} \sqrt{\frac{\pi_{\max }}{\pi_{\min }}} & \leq 1-\left(\frac{\pi_{\min }}{\pi_{\max }}\right) P_{\min }+\frac{\epsilon}{2}\left(\frac{\pi_{\min }}{\pi_{\max }}\right) P_{\min } \\
& \leq 1-\frac{1}{2}\left(\frac{\pi_{\min }}{\pi_{\max }}\right) P_{\min } \tag{12}
\end{align*}
$$

Next, since $m \geq \frac{1024 n}{\epsilon^{2} P_{\min }^{2} \mu_{\min }^{2}}\left(\frac{\pi_{\max }}{\pi_{\min }}\right)^{3} \ln \left(\frac{16 n^{2}}{\delta}\right) \geq \frac{1}{\mu_{\min } P_{\min }} \ln \left(\frac{2 n(n-1)}{\delta}\right)$, by Lemma 3 (part 5), we have that with probability at least $1-\frac{\delta}{2}, \widehat{P}_{i j}>0 \forall i \neq j$, and therefore $\widehat{\mathbf{Q}}$ is an irreducible and aperiodic Markov chain.
Putting the above two statements together, with probability at least $1-\delta$, we have that $\widehat{\mathbf{Q}}$ is an irreducible, aperiodic Markov chain satisfying Eqs. (11-12), and the score vector $\widehat{\boldsymbol{\pi}}$ output by the rank centrality algorithm is the stationary probability vector of $\widehat{\mathbf{Q}}$. In this case, by Lemma 24 , we have that for any initial distribution \mathbf{q}_{0} of $\widehat{\mathbf{Q}}$,

$$
\begin{aligned}
\frac{\|\widehat{\boldsymbol{\pi}}-\boldsymbol{\pi}\|_{2}}{\|\boldsymbol{\pi}\|_{2}}=\lim _{t \rightarrow \infty} \frac{\left\|\mathbf{q}_{t}-\boldsymbol{\pi}\right\|_{2}}{\|\boldsymbol{\pi}\|_{2}} & \leq \lim _{t \rightarrow \infty} \rho^{t} \frac{\left\|\mathbf{q}_{0}-\boldsymbol{\pi}\right\|_{2}}{\|\boldsymbol{\pi}\|_{2}} \sqrt{\frac{\pi_{\max }}{\pi_{\min }}}+\frac{1}{1-\rho}\|\widehat{\mathbf{Q}}-\mathbf{Q}\|_{2} \sqrt{\frac{\pi_{\max }}{\pi_{\min }}} \\
& =\frac{1}{1-\rho}\|\widehat{\mathbf{Q}}-\mathbf{Q}\|_{2} \sqrt{\frac{\pi_{\max }}{\pi_{\min }}}, \text { since } \rho<1, \text { by Eq. (12) } \\
& \leq \epsilon, \text { by Eqs. (11-12). }
\end{aligned}
$$

The result follows since $\|\boldsymbol{\pi}\|_{2} \leq 1$, which gives $\|\widehat{\boldsymbol{\pi}}-\boldsymbol{\pi}\|_{2} \leq \frac{\|\hat{\boldsymbol{\pi}}-\boldsymbol{\pi}\|_{2}}{\|\boldsymbol{\pi}\|_{2}}$.

Proof of Corollary 8

Proof. Let $\epsilon=\frac{r_{\min }}{3}$. By definition of $r_{\min }$, we have $r_{\min } \leq 1$, and therefore $\epsilon \leq \frac{1}{3}<1$. Therefore if m satisfies the given condition, then by Theorem 7, we have with probability at least $1-\delta$,

$$
\|\widehat{\boldsymbol{\pi}}-\boldsymbol{\pi}\|_{2} \leq \frac{r_{\min }}{3}
$$

But

$$
\begin{aligned}
\|\widehat{\boldsymbol{\pi}}-\boldsymbol{\pi}\|_{2} \leq \frac{r_{\mathrm{min}}}{3} & \Longrightarrow\|\widehat{\boldsymbol{\pi}}-\boldsymbol{\pi}\|_{\infty} \leq \frac{r_{\min }}{3}, \text { since } L_{2} \text { norm upper bounds } L_{\infty} \text { norm } \\
& \Longrightarrow\left|\widehat{\pi}_{i}-\pi_{i}\right| \leq \frac{r_{\min }}{3} \forall i \\
& \Longrightarrow\left\{\forall i, j: \pi_{j}>\pi_{i} \Longrightarrow \widehat{\pi}_{j}>\widehat{\pi}_{i}\right\}, \quad \text { by definition of } r_{\text {min }} \\
& \Longrightarrow\left\{\forall i, j: P_{i j}>P_{j i} \Longrightarrow \widehat{\pi}_{j}>\widehat{\pi}_{i}\right\}, \quad \text { by time-reversibility condition on } \mathbf{P} \\
& \Longrightarrow \operatorname{argsort}(\widehat{\boldsymbol{\pi}}) \subseteq \operatorname{argmin}_{\sigma \in \mathcal{S}_{n}} \operatorname{er}_{\mu, \mathbf{P}}^{\mathrm{PD}}[\sigma] \\
& \Longrightarrow \widehat{\sigma} \in \operatorname{argmin}_{\sigma \in \mathcal{S}_{n}} \operatorname{er}_{\mu, \mathbf{P}}^{\mathrm{PD}}[\sigma] .
\end{aligned}
$$

Thus we have that with probability at least $1-\delta$,

$$
\widehat{\sigma} \in \operatorname{argmin}_{\sigma \in \mathcal{S}_{n}} \operatorname{er}_{\mu, \mathbf{P}}^{\mathrm{PD}}[\sigma]
$$

This proves the result.

Proof of Lemma 9

Proof. Let \mathbf{Q} be as defined in Eq. (6), and let π be the stationary probability vector of Q. From Section 6, we know that \mathbf{P} satisfies the time-reversibility condition, and therefore any permutation that ranks items according to decreasing order of scores π_{i} is an optimal permutation w.r.t. the pairwise disagreement error, i.e. we have

$$
\operatorname{argsort}(\boldsymbol{\pi}) \subseteq \operatorname{argmin}_{\sigma \in \mathcal{S}_{n}} \operatorname{er}_{\mu, \mathbf{P}}^{\mathrm{PD}}[\sigma]
$$

We will show that $\operatorname{argsort}\left(\mathbf{f}^{*}\right)=\operatorname{argsort}(\boldsymbol{\pi})$, which will imply the result. We have,

$$
\begin{aligned}
f_{i}^{*}=-\frac{1}{n} \sum_{k=1}^{n} Y_{i k}=\frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{P_{k i}}{P_{i k}}\right) & =\frac{1}{n} \ln \left(\prod_{k=1}^{n} \frac{P_{k i}}{P_{i k}}\right) \\
& =\frac{1}{n} \ln \left(\prod_{k=1}^{n} \frac{\pi_{i}}{\pi_{k}}\right), \quad \text { by time-reversibility } \\
& =\ln \pi_{i}-\frac{1}{n} \ln \left(\pi_{1} \cdot \ldots \cdot \pi_{n}\right)
\end{aligned}
$$

The second term on the right-hand side is a constant, and $\ln (\cdot)$ is a strictly monotonically increasing function; therefore \mathbf{f}^{*} induces the same orderings as $\boldsymbol{\pi}$, i.e. $\operatorname{argsort}\left(\mathbf{f}^{*}\right)=\operatorname{argsort}(\boldsymbol{\pi})$.

Proof of Theorem 10

The proof makes use of the following technical lemma:
Lemma 25. Let $0<u, u^{\prime}<1$. Let $0<\epsilon<u$. Then

$$
\left|u-u^{\prime}\right| \leq \epsilon \Longrightarrow\left|\ln (u)-\ln \left(u^{\prime}\right)\right| \leq \frac{\epsilon}{u-\epsilon}
$$

Proof. Let $\left|u-u^{\prime}\right| \leq \epsilon$. Thus $u^{\prime} \in(u-\epsilon, u+\epsilon)$. Now, since $\ln (\cdot)$ is a concave function, we have

$$
\ln (y) \leq \ln (x)+\frac{1}{x}(y-x) \forall x, y>0
$$

Taking $x=u$ and $y=u+\epsilon$ gives

$$
\ln (u+\epsilon) \leq \ln (u)+\frac{\epsilon}{u}
$$

taking $x=u-\epsilon$ and $y=u$ gives

$$
\ln (u) \leq \ln (u-\epsilon)+\frac{\epsilon}{u-\epsilon}
$$

Combining both, and using the fact that $\ln (\cdot)$ is a monotonically increasing function, we get

$$
\ln (u)-\frac{\epsilon}{u-\epsilon} \leq \ln (u-\epsilon) \leq \ln (u) \leq \ln (u+\epsilon) \leq \ln (u)+\frac{\epsilon}{u}
$$

For $\epsilon<u$, we have $\frac{\epsilon}{u-\epsilon}>\frac{\epsilon}{u}$. Thus, since $u^{\prime} \in(u-\epsilon, u+\epsilon)$, we have either

$$
\ln (u)-\frac{\epsilon}{u-\epsilon} \leq \ln (u-\epsilon) \leq \ln \left(u^{\prime}\right) \leq \ln (u)
$$

or

$$
\ln (u) \leq \ln \left(u^{\prime}\right) \leq \ln (u+\epsilon) \leq \ln (u)+\frac{\epsilon}{u}<\ln (u)+\frac{\epsilon}{u-\epsilon}
$$

in both cases, we get $\left|\ln (u)-\ln \left(u^{\prime}\right)\right| \leq \frac{\epsilon}{u-\epsilon}$, thus proving the result.

Proof of Theorem 10. Let m satisfy the given condition. Since $m \geq \frac{128}{P_{\min }^{2} \mu_{\min }^{2}}\left(1+\frac{2}{\epsilon}\right)^{2} \ln \left(\frac{16 n^{2}}{\delta}\right) \geq \frac{1}{\mu_{\min } P_{\min }} \ln \left(\frac{2 n(n-1)}{\delta}\right)$, by Lemma 3 (part 5), we have with probability at least $1-\frac{\delta}{2}, \widehat{P}_{i j}>0 \forall i \neq j$. In this case, we have

$$
\widehat{Y}_{i j}= \begin{cases}\ln \left(\frac{\widehat{P}_{i j}}{\widehat{P}_{j i}}\right) & \text { if } i \neq j \\ 0 & \text { otherwise }\end{cases}
$$

and $\widehat{E}=\mathcal{X}$. As discussed in (Jiang et al., 2011), the score vector $\widehat{\mathbf{f}}$ output by the least squares algorithm in this case is given by

$$
\widehat{f}_{i}=-\frac{1}{n} \sum_{k=1}^{n} \widehat{Y}_{i k}=\frac{1}{n} \sum_{k \neq i} \ln \left(\frac{\widehat{P}_{k i}}{\widehat{P}_{i k}}\right)
$$

Moreover, since $P_{i j} \in(0,1) \forall i \neq j$, we also have

$$
f_{i}^{*}==-\frac{1}{n} \sum_{k=1}^{n} Y_{i k}=\frac{1}{n} \sum_{k \neq i} \ln \left(\frac{P_{k i}}{P_{i k}}\right)
$$

Next, we have

$$
\begin{aligned}
& \mathbf{P}\left(\exists i:\left|\frac{1}{n} \sum_{k \neq i} \ln \left(\frac{\widehat{P}_{k i}}{\widehat{P}_{i k}}\right)-\frac{1}{n} \sum_{k \neq i} \ln \left(\frac{P_{k i}}{P_{i k}}\right)\right| \geq \epsilon\right) \\
& \quad \leq \sum_{i=1}^{n} \mathbf{P}\left(\frac{1}{n} \sum_{k \neq i}\left|\ln \left(\frac{\widehat{P}_{k i}}{\widehat{P}_{i k}}\right)-\ln \left(\frac{P_{k i}}{P_{i k}}\right)\right| \geq \epsilon\right), \quad \text { by union bound and triangle inequality } \\
& \quad \leq \sum_{i=1}^{n} \mathbf{P}\left(\exists k \neq i:\left|\ln \left(\frac{\widehat{P}_{k i}}{\widehat{P}_{i k}}-\ln \left(\frac{P_{k i}}{P_{i k}}\right)\right)\right| \geq \epsilon\right), \\
& \\
& \leq \sum_{i=1}^{n} \sum_{k \neq i} \mathbf{P}\left(\left|\ln \left(\frac{\widehat{P}_{k i}}{\widehat{P}_{i k}}\right)-\ln \left(\frac{P_{k i}}{P_{i k}}\right)\right| \geq \epsilon\right), \quad \text { by union bound } \\
& \\
& \leq \sum_{i=1}^{n} \sum_{k \neq i} \mathbf{P}\left(\left|\ln \widehat{P}_{k i}-\ln P_{k i}\right|+\left|\ln \widehat{P}_{i k}-\ln P_{i k}\right| \geq \epsilon\right) \\
& \\
& \leq 2 \sum_{i=1}^{n} \sum_{k \neq i} \mathbf{P}\left(\left|\ln \widehat{P}_{k i}-\ln P_{k i}\right| \geq \frac{\epsilon}{2}\right) \\
& \quad \leq 2 \sum_{i=1}^{n} \sum_{k \neq i} \mathbf{P}\left(\left|\widehat{P}_{k i}-P_{k i}\right| \geq \frac{\epsilon P_{\min }}{2+\epsilon}\right), \quad \text { by Lemma } 25 \\
& \\
& \leq 8 n^{2} \exp \left(\frac{-m \epsilon^{2} P_{\min }^{2} \mu_{\min }^{2}}{128(2+\epsilon)^{2}}\right), \quad \text { by Lemma } 3(\text { part } 4) \\
& \\
& \quad \leq \frac{\delta}{2}, \operatorname{since} m \geq \frac{128}{P_{\min }^{2} \mu_{\min }^{2}}\left(1+\frac{2}{\epsilon}\right)^{2} \ln \left(\frac{16 n^{2}}{\delta}\right) .
\end{aligned}
$$

In other words, with probability at least $1-\frac{\delta}{2}$, we have

$$
\max _{i}\left|\frac{1}{n} \sum_{k \neq i} \ln \left(\frac{\widehat{P}_{k i}}{\widehat{P}_{i k}}\right)-\frac{1}{n} \sum_{k \neq i} \ln \left(\frac{P_{k i}}{P_{i k}}\right)\right| \leq \epsilon
$$

Putting the above statements together, we have that with probability at least $1-\delta$,

$$
\left\|\widehat{\mathbf{f}}-\mathbf{f}^{*}\right\|_{\infty}=\max _{i}\left|\widehat{f}_{i}-f_{i}^{*}\right|=\max _{i}\left|\frac{1}{n} \sum_{k \neq i} \ln \left(\frac{\widehat{P}_{k i}}{\widehat{P}_{i k}}\right)-\frac{1}{n} \sum_{k \neq i} \ln \left(\frac{P_{k i}}{P_{i k}}\right)\right| \leq \epsilon
$$

This proves the result.

Proof of Corollary 11

Proof. Let $\epsilon=\frac{r_{\text {min }}}{3}$. By definition of $r_{\text {min }}$, we have $r_{\min } \leq n$, and therefore $\epsilon \leq \frac{n}{3} \leq(4 \sqrt{2}) n$. Therefore if m satisfies the given condition, then by Theorem 10, we have with probability at least $1-\delta$,

$$
\left\|\widehat{\mathbf{f}}-\mathbf{f}^{*}\right\|_{\infty} \leq \frac{r_{\min }}{3}
$$

But

$$
\begin{aligned}
\left\|\widehat{\mathbf{f}}-\mathbf{f}^{*}\right\|_{\infty} \leq \frac{r_{\min }}{3} & \Longrightarrow\left|\widehat{f_{i}}-f_{i}^{*}\right| \leq \frac{r_{\min }}{3} \forall i \\
& \Longrightarrow\left\{\forall i, j: f_{j}^{*}>f_{i}^{*} \Longrightarrow \widehat{f}_{j}>\widehat{f}_{i}\right\}, \quad \text { by definition of } r_{\min } \\
& \Longrightarrow\left\{\forall i, j: P_{i j}>P_{j i} \Longrightarrow \widehat{f}_{j}>\widehat{f}_{i}\right\}, \text { by Lemma } 9 \\
& \Longrightarrow{\operatorname{argsort}(\widehat{\mathbf{f}}) \subseteq \operatorname{argmin}_{\sigma \in \mathcal{S}_{n}} \operatorname{er}_{\mu, \mathbf{P}}^{\mathrm{PD}}[\sigma]} \Longrightarrow \widehat{\sigma} \Longrightarrow \operatorname{argmin}_{\sigma \in \mathcal{S}_{n}} \operatorname{er}_{\mu, \mathbf{P}}^{\mathrm{PD}}[\sigma]
\end{aligned}
$$

Thus we have that with probability at least $1-\delta$,

$$
\widehat{\sigma} \in \operatorname{argmin}_{\sigma \in \mathcal{S}_{n}} \operatorname{er}_{\mu, \mathbf{P}}^{\mathrm{PD}}[\sigma]
$$

This proves the result.

Proof of Lemma 13

Proof. Let $\mathbf{P} \in[0,1]^{n \times n}$ satisfy the BTL condition with vector $\mathbf{w} \in \mathbb{R}_{+}^{n}$, so that $w_{i}>0 \forall i$ and $P_{i j}=\frac{w_{j}}{w_{i}+w_{j}} \forall i \neq j$. Then we have

$$
\begin{aligned}
P_{i j}>P_{j i} & \Longrightarrow w_{j}>w_{i} \\
& \Longrightarrow \frac{w_{j}}{w_{j}+w_{k}}>\frac{w_{i}}{w_{i}+w_{k}} \forall k \\
& \Longrightarrow \sum_{k=1}^{n} \frac{w_{j}}{w_{j}+w_{k}}>\sum_{k=1}^{n} \frac{w_{i}}{w_{i}+w_{k}} \\
& \Longrightarrow \sum_{k=1}^{n} P_{k j}>\sum_{k=1}^{n} P_{k i}
\end{aligned}
$$

Thus \mathbf{P} satisfies the LN condition.

Proof of Theorem 14

Proof. Let m satisfy the given condition. We have,

$$
\begin{aligned}
\mathbf{P}\left(\left\|\widehat{\mathbf{f}}-\mathbf{f}^{*}\right\|_{\infty} \geq \epsilon\right) & =\mathbf{P}\left(\exists i:\left|\widehat{f}_{i}-f_{i}^{*}\right| \geq \epsilon\right) \\
& \leq \sum_{i=1}^{n} \mathbf{P}\left(\left|\widehat{f}_{i}-f_{i}^{*}\right| \geq \epsilon\right), \quad \text { by union bound } \\
& =\sum_{i=1}^{n} \mathbf{P}\left(\left|\frac{1}{n} \sum_{k=1}^{n}\left(\widehat{P}_{k i}-P_{k i}\right)\right| \geq \epsilon\right), \quad \text { by definition of } \widehat{f}_{i} \text { and } f_{i}^{*} \\
& \leq \sum_{i=1}^{n} \mathbf{P}\left(\frac{1}{n} \sum_{k=1}^{n}\left|\widehat{P}_{k i}-P_{k i}\right| \geq \epsilon\right) \\
& \leq \sum_{i=1}^{n} \mathbf{P}\left(\exists k:\left|\widehat{P}_{k i}-P_{k i}\right| \geq \epsilon\right) \\
& \leq \sum_{i=1}^{n} \sum_{k=1}^{n} \mathbf{P}\left(\left|\widehat{P}_{k i}-P_{k i}\right| \geq \epsilon\right), \quad \text { by union bound } \\
& \left.\leq 4 n^{2} \exp \left(\frac{-m \epsilon^{2} \mu_{\min }^{2}}{128}\right), \quad \text { by Lemma } 3 \text { (part } 4\right) \\
& \leq \delta, \operatorname{since} m \geq \frac{128}{\epsilon^{2} \mu_{\min }^{2}} \ln \left(\frac{4 n^{2}}{\delta}\right) .
\end{aligned}
$$

This proves the result.

Proof of Corollary 15

Proof. Let $\epsilon=\frac{r_{\min }}{3}$. By definition of $r_{\min }$, we have $r_{\min } \leq n$, and therefore $\epsilon \leq \frac{n}{3} \leq(4 \sqrt{2}) n$. Therefore if m satisfies the given condition, then by Theorem 14, we have with probability at least $1-\delta$,

$$
\left\|\widehat{\mathbf{f}}-\mathbf{f}^{*}\right\|_{\infty} \leq \frac{r_{\min }}{3}
$$

But

$$
\begin{aligned}
\left\|\widehat{\mathbf{f}}-\mathbf{f}^{*}\right\|_{\infty} \leq \frac{r_{\min }}{3} & \Longrightarrow\left|\widehat{f_{i}}-f_{i}^{*}\right| \leq \frac{r_{\min }}{3} \forall i \\
& \Longrightarrow\left\{\forall i, j: f_{j}^{*}>f_{i}^{*} \Longrightarrow \widehat{f}_{j}>\widehat{f}_{i}\right\}, \quad \text { by definition of } r_{\text {min }} \\
& \Longrightarrow\left\{\forall i, j: P_{i j}>P_{j i} \Longrightarrow \widehat{f}_{j}>\widehat{f}_{i}\right\}, \quad \text { by extended low-noise condition on } \mathbf{P} \\
& \Longrightarrow \operatorname{argsort}(\widehat{\mathbf{f}}) \subseteq \operatorname{argmin}_{\sigma \in \mathcal{S}_{n}} \operatorname{er}_{\mu, \mathbf{P}}^{\mathrm{PD}}[\sigma] \\
& \Longrightarrow \widehat{\sigma} \in \operatorname{argmin}_{\sigma \in \mathcal{S}_{n}} \operatorname{er}_{\mu, \mathbf{P}}^{\mathrm{PD}}[\sigma]
\end{aligned}
$$

Thus we have that with probability at least $1-\delta$,

$$
\widehat{\sigma} \in \operatorname{argmin}_{\sigma \in \mathcal{S}_{n}} \operatorname{er}_{\mu, \mathbf{P}}^{\mathrm{PD}}[\sigma] .
$$

This proves the result.

Proof of Theorem 16

Proof. We have

$$
\widehat{\boldsymbol{\theta}} \in \arg \min _{\boldsymbol{\theta} \in \mathbb{R}^{n}} \sum_{i<j}\left(\ln \left(1+\exp \left(\theta_{j}-\theta_{i}\right)\right)-\widehat{P}_{i j}\left(\theta_{j}-\theta_{i}\right)\right) .
$$

Setting the gradient of the above objective to $\mathbf{0}$ gives:

$$
\begin{equation*}
\forall i: \quad \sum_{k=1}^{n} \widehat{P}_{k i}=\sum_{k \neq i} \frac{\exp \left(\widehat{\theta}_{i}\right)}{\exp \left(\widehat{\theta}_{k}\right)+\exp \left(\widehat{\theta}_{i}\right)}=\sum_{k=1}^{n} P_{k i}^{\widehat{\theta}} \tag{13}
\end{equation*}
$$

where we denote

$$
P_{i j}^{\widehat{\boldsymbol{\theta}}}=\left\{\begin{array}{cl}
\frac{\exp \left(\widehat{\theta}_{j}\right)}{\frac{\exp \left(\widehat{\theta}_{i}\right)+\exp \left(\widehat{\theta}_{j}\right)}{}} & \text { if } i<j \\
1-P_{j i}^{\boldsymbol{\theta}} & \text { if } i>j \\
0 & \text { if } i=j
\end{array}\right.
$$

Now, we have for any $0<\epsilon<4 \sqrt{2}$, if $m \geq \max \left(B\left(\mu_{\min }\right), \frac{1}{\mu_{\text {min }}} \ln \left(\frac{2}{\epsilon}\right)\right)$, then

$$
\begin{aligned}
\mathbf{P}\left(\exists i:\left|\frac{1}{n} \sum_{k=1}^{n}\left(P_{k i}-P_{k i}^{\widehat{\boldsymbol{\theta}}}\right)\right| \geq \epsilon\right) & =\mathbf{P}\left(\exists i:\left|\frac{1}{n} \sum_{k=1}^{n}\left(P_{k i}-\widehat{P}_{k i}\right)\right| \geq \epsilon\right) \text {, by Eq. (13) } \\
& \leq \sum_{i=1}^{n} \mathbf{P}\left(\left|\frac{1}{n} \sum_{k=1}^{n}\left(P_{k i}-\widehat{P}_{k i}\right)\right| \geq \epsilon\right) \\
& \leq \sum_{i=1}^{n} \mathbf{P}\left(\frac{1}{n} \sum_{k=1}^{n}\left|P_{k i}-\widehat{P}_{k i}\right| \geq \epsilon\right) \\
& \leq \sum_{i=1}^{n} \mathbf{P}\left(\exists k:\left|P_{k i}-\widehat{P}_{k i}\right| \geq \epsilon\right) \\
& \leq \sum_{i=1}^{n} \sum_{k=1}^{n} \mathbf{P}\left(\left|P_{k i}-\widehat{P}_{k i}\right| \geq \epsilon\right) \\
& \leq 4 n^{2} \exp \left(\frac{-m \epsilon^{2} \mu_{\min }^{2}}{128}\right), \quad \text { by Lemma 3 (part 4). }
\end{aligned}
$$

Setting $\epsilon=\frac{r_{\text {min }}}{3}$, we get that if m satisfies the given condition, then with probability at least $1-\delta$,

$$
\begin{equation*}
\left|\frac{1}{n} \sum_{k=1}^{n}\left(P_{k j}-P_{k j}^{\widehat{\boldsymbol{\theta}}}\right)\right| \leq \frac{r_{\min }}{3} \forall i \tag{14}
\end{equation*}
$$

By definition of $r_{\min }$, this means that with probability at least $1-\delta$, we have for all $i \neq j$,

$$
\begin{equation*}
\sum_{k=1}^{n} P_{k j}^{\widehat{\boldsymbol{\theta}}}>\sum_{k=1}^{n} P_{k i}^{\widehat{\boldsymbol{\theta}}} \Longleftrightarrow \sum_{k=1}^{n} P_{k j}>\sum_{k=1}^{n} P_{k i} \Longleftrightarrow f_{j}^{*}>f_{i}^{*} \tag{15}
\end{equation*}
$$

Also, it is easy to verify that for all $i \neq j$,

$$
\begin{equation*}
\widehat{w}_{j}>\widehat{w}_{i} \Longleftrightarrow \widehat{\theta}_{j}>\widehat{\theta}_{i} \Longleftrightarrow \sum_{k=1}^{n} P_{k j}^{\widehat{\theta}}>\sum_{k=1}^{n} P_{k i}^{\widehat{\theta}} \tag{16}
\end{equation*}
$$

Combining Eqs. (15-16), we have that with probability at least $1-\delta$,

$$
\operatorname{argsort}(\widehat{\mathbf{w}})=\operatorname{argsort}\left(\mathbf{f}^{*}\right)
$$

Since $\operatorname{argsort}\left(\mathbf{f}^{*}\right) \subseteq \operatorname{argmin}_{\sigma \in \mathcal{S}_{n}} \operatorname{er}_{\mu, \mathbf{P}}^{\mathrm{PD}}[\sigma]$, we thus have with probability at least $1-\delta$,

$$
\widehat{\sigma} \in \operatorname{argmin}_{\sigma \in \mathcal{S}_{n}} \operatorname{er}_{\mu, \mathbf{P}}^{\mathrm{PD}}[\sigma]
$$

This proves the result.

Proof of Proposition 19

Proof. Suppose \mathbf{P} satisfies the GLN condition with vector $\boldsymbol{\alpha} \in \mathbb{R}^{n}$. Then clearly, since $P_{i j} \neq \frac{1}{2} \forall i \neq j$, we have $\forall i<j$:

$$
\begin{gathered}
z_{i j}=1 \Longrightarrow P_{j i}>P_{i j} \Longrightarrow \sum_{k=1}^{n} \alpha_{k} P_{k i}>\sum_{k=1}^{n} \alpha_{k} P_{k j} \Longrightarrow \boldsymbol{\alpha}^{\top}\left(\mathbf{P}_{i}-\mathbf{P}_{j}\right)>0 \\
z_{i j}=-1 \Longrightarrow P_{i j}>P_{j i} \Longrightarrow \sum_{k=1}^{n} \alpha_{k} P_{k j}>\sum_{k=1}^{n} \alpha_{k} P_{k i} \Longrightarrow \boldsymbol{\alpha}^{\top}\left(\mathbf{P}_{i}-\mathbf{P}_{j}\right)<0
\end{gathered}
$$

Thus S_{P} is linearly separable by the hyperplane $\boldsymbol{\alpha}$ passing through the origin.
Conversely, suppose that $S_{\mathbf{P}}$ is linearly separable by a hyperplane passing through the origin. Then $\exists \boldsymbol{\alpha} \in \mathbb{R}^{n}$ s.t. $z_{i j} \boldsymbol{\alpha}^{\top}\left(\mathbf{P}_{i}-\mathbf{P}_{j}\right)>0 \forall i<j$. Thus we have $\forall i<j$:

$$
\begin{gathered}
P_{i j}>P_{j i} \Longrightarrow z_{i j}=-1 \Longrightarrow \boldsymbol{\alpha}^{\top}\left(\mathbf{P}_{i}-\mathbf{P}_{j}\right)<0 \Longrightarrow \sum_{k=1}^{n} \alpha_{k} P_{k j}>\sum_{k=1}^{n} \alpha_{k} P_{k i} \\
P_{j i}>P_{i j} \Longrightarrow z_{i j}=1 \Longrightarrow \boldsymbol{\alpha}^{\top}\left(\mathbf{P}_{i}-\mathbf{P}_{j}\right)>0 \Longrightarrow \sum_{k=1}^{n} \alpha_{k} P_{k i}>\sum_{k=1}^{n} \alpha_{k} P_{k j}
\end{gathered}
$$

Thus \mathbf{P} satisfies the GLN condition.

Proof of Theorem 20

Proof. Let m satisfy the given conditions. We first show that with probability at least $1-\frac{\delta}{2}$, every label $\operatorname{sign}\left(\widehat{P}_{j i}-\widehat{P}_{i j}\right)$ in $S_{\widehat{\mathbf{P}}}$ is the same as the corresponding label $\operatorname{sign}\left(P_{j i}-P_{i j}\right)$ in $S_{\mathbf{P}}$. We have,

$$
\begin{aligned}
\mathbf{P}\left(\exists i \neq j:\left|\widehat{P}_{i j}-P_{i j}\right| \geq \gamma\right) \leq & \sum_{i \neq j} \mathbf{P}\left(\left|\widehat{P}_{i j}-P_{i j}\right| \geq \gamma\right), \quad \text { by union bound } \\
\leq & 4 n^{2} \exp \left(\frac{-m \gamma^{2} \mu_{\min }^{2}}{128}\right), \quad \text { by Lemma 3 (part 4) } \\
& \quad\left(\text { since } m \geq \frac{128}{\gamma^{2} \mu_{\min }^{2}} \log \left(\frac{8 n^{2}}{\delta}\right) \geq \frac{1}{\mu_{\min }} \ln \left(\frac{2}{\gamma}\right)\right) \\
\leq & \frac{\delta}{2}, \quad \text { since } m \geq \frac{128}{\gamma^{2} \mu_{\min }^{2}} \log \left(\frac{8 n^{2}}{\delta}\right) .
\end{aligned}
$$

Thus we have that with probability at least $1-\frac{\delta}{2}$,

$$
\left|\widehat{P}_{i j}-P_{i j}\right| \leq \gamma \quad \forall i \neq j
$$

By definition of γ, this yields that with probability at least $1-\frac{\delta}{2}$,

$$
\widehat{P}_{i j}>\widehat{P}_{j i} \Longleftrightarrow P_{i j}>P_{j i} \quad \forall i \neq j
$$

i.e. with probability at least $1-\frac{\delta}{2}$,

$$
\operatorname{sign}\left(\widehat{P}_{j i}-\widehat{P}_{i j}\right)=\operatorname{sign}\left(P_{j i}-P_{i j}\right) \quad \forall i<j
$$

Next, we show that with probability at least $1-\frac{\delta}{2}$, every point $\left(\widehat{\mathbf{P}}_{i}-\widehat{\mathbf{P}}_{j}\right)$ in $S_{\widehat{\mathbf{P}}}$ falls on the same side of the hyperplane given by $\boldsymbol{\alpha}$ as the corresponding point $\left(\mathbf{P}_{i}-\mathbf{P}_{j}\right)$ in $S_{\mathbf{P}}$. We have,

$$
\begin{aligned}
\mathbf{P} & \left(\exists(i<j):\left\|\left(\widehat{\mathbf{P}}_{i}-\widehat{\mathbf{P}}_{j}\right)-\left(\mathbf{P}_{i}-\mathbf{P}_{j}\right)\right\|_{2} \geq \frac{r_{\min }^{\boldsymbol{\alpha}}}{2}\right) \\
& =\mathbf{P}\left(\exists(i<j):\left\|\left(\widehat{\mathbf{P}}_{i}-\mathbf{P}_{i}\right)-\left(\widehat{\mathbf{P}}_{j}-\mathbf{P}_{j}\right)\right\|_{2} \geq \frac{r_{\min }^{\boldsymbol{\alpha}}}{2}\right) \\
& \leq \sum_{i<j} \mathbf{P}\left(\left\|\left(\widehat{\mathbf{P}}_{i}-\mathbf{P}_{i}\right)-\left(\widehat{\mathbf{P}}_{j}-\mathbf{P}_{j}\right)\right\|_{2} \geq \frac{r_{\min }^{\alpha}}{2}\right), \quad \text { by union bound } \\
& \leq \sum_{i<j}\left(\mathbf{P}\left(\left\|\widehat{\mathbf{P}}_{i}-\mathbf{P}_{i}\right\|_{2} \geq \frac{r_{\min }^{\boldsymbol{\alpha}}}{4}\right)+\mathbf{P}\left(\left\|\widehat{\mathbf{P}}_{j}-\mathbf{P}_{j}\right\|_{2} \geq \frac{r_{\min }^{\boldsymbol{\alpha}}}{4}\right)\right) \\
& \leq \sum_{i<j}\left(\mathbf{P}\left(\exists k:\left|\widehat{P}_{k i}-P_{k i}\right| \geq \frac{r_{\min }^{\boldsymbol{\alpha}}}{4 \sqrt{n}}\right)+\mathbf{P}\left(\exists k:\left|\widehat{P}_{k j}-P_{k j}\right| \geq \frac{r_{\min }^{\boldsymbol{\alpha}}}{4 \sqrt{n}}\right)\right) \\
& \leq \sum_{i<j}\left(\sum_{k} \mathbf{P}\left(\left|\widehat{P}_{k i}-P_{k i}\right| \geq \frac{r_{\min }^{\alpha}}{4 \sqrt{n}}\right)+\sum_{k} \mathbf{P}\left(\left|\widehat{P}_{k j}-P_{k j}\right| \geq \frac{r_{\min }^{\alpha}}{4 \sqrt{n}}\right)\right) \\
& \leq 8 n^{3} \exp \left(\frac{-m\left(r_{\min }^{\boldsymbol{\alpha}}\right)^{2} \mu_{\min }^{2}}{2048 n}\right), \quad \text { by Lemma } 3(\text { part } 4) \\
& \left(\text { since } m \geq \frac{2048 n}{\left(r_{\min }^{\alpha}\right)^{2} \mu_{\min }^{2}} \log \left(\frac{16 n^{3}}{\delta}\right) \geq \frac{1}{\mu_{\min }} \ln \left(\frac{8 \sqrt{n}}{r_{\min }^{\alpha}}\right)\right) \\
& \leq \frac{\delta}{2}, \operatorname{since} m \geq \frac{2048 n}{\left(r_{\min }^{\alpha}\right)^{2} \mu_{\min }^{2}} \log \left(\frac{16 n^{3}}{\delta}\right) .
\end{aligned}
$$

Thus with probability at least $1-\frac{\delta}{2}$,

$$
\left\|\left(\widehat{\mathbf{P}}_{i}-\widehat{\mathbf{P}}_{j}\right)-\left(\mathbf{P}_{i}-\mathbf{P}_{j}\right)\right\|_{2} \leq \frac{r_{\min }^{\alpha}}{2} \quad \forall i<j
$$

By definition, $r_{\mathrm{min}}^{\boldsymbol{\alpha}}$ is the smallest Euclidean distance of any point $\left(\mathbf{P}_{i}-\mathbf{P}_{j}\right)$ to the hyperplane defined by $\boldsymbol{\alpha}$; therefore we get that with probability at least $1-\frac{\delta}{2}$, all points $\left(\widehat{\mathbf{P}}_{i}-\widehat{\mathbf{P}}_{j}\right)$ fall on the same side of the hyperplane $\boldsymbol{\alpha}$ as the corresponding points $\left(\mathbf{P}_{i}-\mathbf{P}_{j}\right)$.
Combining the above statements yields that with probability at least $1-\delta$, the dataset $S_{\widehat{\mathbf{P}}}$ is also linearly separable by $\boldsymbol{\alpha}$; in this case, the SVM-RankAggregation algorithm produces a vector $\widehat{\boldsymbol{\alpha}}$ that correctly classifies all examples in $S_{\widehat{\mathbf{P}}}$, i.e. satisfies $z_{i j} \widehat{\boldsymbol{\alpha}}^{\top}\left(\widehat{\mathbf{P}}_{i}-\widehat{\mathbf{P}}_{j}\right)>0 \forall i<j$ (where $z_{i j}=\operatorname{sign}\left(P_{j i}-P_{i j}\right)$), and it can be verified that $\widehat{\boldsymbol{\alpha}}$ must then also satisfy $z_{i j} \widehat{\boldsymbol{\alpha}}^{\top}\left(\mathbf{P}_{i}-\mathbf{P}_{j}\right)>0 \forall i<j$, so that $\operatorname{argsort}(\widehat{\boldsymbol{\alpha}}) \subseteq \operatorname{argmin}_{\sigma \in \mathcal{S}_{n}} \operatorname{er}_{\mu, \mathbf{P}}^{\mathrm{PD}}[\sigma]$. This yields that with probability at least $1-\delta$,

$$
\widehat{\sigma} \in \operatorname{argmin}_{\sigma \in \mathcal{S}_{n}} \operatorname{er}_{\mu, \mathbf{P}}^{\mathrm{PD}}[\sigma] .
$$

