Supplementary Material

Proof of Lemma 3

Proof.

Part 1. Let $m \geq \frac{4}{\mu_{\min}}$. Recall the definitions of \widehat{P}_{ij} , N_{ij} , $N_{ij}^{(1)}$ from Eq. (3). In the following, we will make the dependence of these quantities on the training sample explicit; specifically, for any $\omega \in (\mathcal{X} \times \{0,1\})^m$, we will write the corresponding quantities as $\widehat{P}_{ij}(\omega)$, $N_{ij}(\omega)$, and $N_{ij}^{(1)}(\omega)$, respectively.

Clearly, for any $\omega, \omega' \in (\mathcal{X} \times \{0,1\})^m$, since $\widehat{P}_{ij}(\omega), \widehat{P}_{ij}(\omega') \in [0,1]$, we have

$$|\widehat{P}_{ij}(\omega) - \widehat{P}_{ij}(\omega')| \le 1$$
.

We will prove the result for the case i < j; the case i > j can be proved similarly. Assume i < j, and let B_{ij} be the following 'bad' event:

$$B_{ij} = \left\{ \omega \in (\mathcal{X} \times \{0, 1\})^m : N_{ij}(\omega) \le \frac{m\mu_{ij}}{2} \right\}.$$

Then by a straightforward application of Hoeffding's inequality, we have

$$\mathbf{P}(S \in B_{ij}) \le \exp(-m\mu_{ij}^2/2) \le \exp(-m\mu_{\min}^2/2).$$

Now consider $\omega, \omega' \in (\mathcal{X} \times \{0,1\})^m$ such that $\omega \notin B_{ij}$, and ω, ω' differ only in one element. We can have the following cases:

(1)
$$N_{ij}(\omega') = N_{ij}(\omega)$$
 and $N_{ij}^{(1)}(\omega') = N_{ij}^{(1)}(\omega)$

(2)
$$N_{ij}(\omega') = N_{ij}(\omega)$$
 and $N_{ij}^{(1)}(\omega') = N_{ij}^{(1)}(\omega) + 1$

(3)
$$N_{ij}(\omega') = N_{ij}(\omega)$$
 and $N_{ij}^{(1)}(\omega') = N_{ij}^{(1)}(\omega) - 1$

(4)
$$N_{ij}(\omega') = N_{ij}(\omega) + 1$$
 and $N_{ij}^{(1)}(\omega') = N_{ij}^{(1)}(\omega) + 1$

(5)
$$N_{ij}(\omega')=N_{ij}(\omega)+1$$
 and $N_{ij}^{(1)}(\omega')=N_{ij}^{(1)}(\omega)$

(6)
$$N_{ij}(\omega') = N_{ij}(\omega) - 1$$
 and $N_{ij}^{(1)}(\omega') = N_{ij}^{(1)}(\omega) - 1$

(7)
$$N_{ij}(\omega') = N_{ij}(\omega) - 1$$
 and $N_{ij}^{(1)}(\omega') = N_{ij}^{(1)}(\omega)$

We will consider each of these cases separately, and will show that in each case, the difference $|\widehat{P}_{ij}(\omega) - \widehat{P}_{ij}(\omega')|$ is upper bounded by $\frac{2}{m\mu_{\min}}$.

- Case (1):
$$N_{ij}(\omega') = N_{ij}(\omega)$$
 and $N_{ij}^{(1)}(\omega') = N_{ij}^{(1)}(\omega)$

In this case nothing changes with respect to the pair (i, j) and hence

$$|\widehat{P}_{ij}(\omega) - \widehat{P}_{ij}(\omega')| = 0$$

– Case (2):
$$N_{ij}(\omega')=N_{ij}(\omega)$$
 and $N_{ij}^{(1)}(\omega')=N_{ij}^{(1)}(\omega)+1$

In this case we have

$$|\widehat{P}_{ij}(\omega) - \widehat{P}_{ij}(\omega')| = \left| \frac{N_{ij}^{(1)}(\omega)}{N_{ij}(\omega)} - \frac{N_{ij}^{(1)}(\omega) + 1}{N_{ij}(\omega)} \right|$$
$$= \frac{1}{N_{ij}(\omega)}$$
$$\leq \frac{2}{m\mu_{ij}} \leq \frac{2}{m\mu_{\min}}$$

- Case (3): $N_{ij}(\omega') = N_{ij}(\omega)$ and $N_{ij}^{(1)}(\omega') = N_{ij}^{(1)}(\omega) - 1$

In this case we have

$$|\widehat{P}_{ij}(\omega) - \widehat{P}_{ij}(\omega')| = \left| \frac{N_{ij}^{(1)}(\omega)}{N_{ij}(\omega)} - \frac{N_{ij}^{(1)}(\omega) - 1}{N_{ij}(\omega)} \right|$$
$$= \frac{1}{N_{ij}(\omega)} \le \frac{2}{m\mu_{ij}} \le \frac{2}{m\mu_{\min}}$$

– Case (4): $N_{ij}(\omega')=N_{ij}(\omega)+1$ and $N_{ij}^{(1)}(\omega')=N_{ij}^{1}(\omega)+1$

In this case we have

$$|\widehat{P}_{ij}(\omega) - \widehat{P}_{ij}(\omega')| = \left| \frac{N_{ij}^{(1)}(\omega)}{N_{ij}(\omega)} - \frac{N_{ij}^{(1)}(\omega) + 1}{N_{ij}(\omega) + 1} \right|$$

$$= \left| \frac{N_{ij}(\omega) - N_{ij}^{(1)}(\omega)}{N_{ij}(\omega)(N_{ij}(\omega) + 1)} \right| \le \left| \frac{N_{ij}(\omega)}{N_{ij}(\omega)(N_{ij}(\omega) + 1)} \right|$$

$$\le \frac{1}{N_{ij}(\omega)} \le \frac{2}{m\mu_{ij}} \le \frac{2}{m\mu_{\min}}$$

– Case (5): $N_{ij}(\omega')=N_{ij}(\omega)+1$ and $N_{ij}^{(1)}(\omega')=N_{ij}^{(1)}(\omega)$

In this case we have

$$|\widehat{P}_{ij}(\omega) - \widehat{P}_{ij}(\omega')| = \left| \frac{N_{ij}^{(1)}(\omega)}{N_{ij}(\omega)} - \frac{N_{ij}^{(1)}(\omega)}{N_{ij}(\omega) + 1} \right|$$

$$= \left| \frac{N_{ij}^{(1)}(\omega)}{N_{ij}(\omega)(N_{ij}(\omega) + 1)} \right| \le \left| \frac{N_{ij}(\omega)}{N_{ij}(\omega)(N_{ij}(\omega) + 1)} \right|$$

$$\le \frac{1}{N_{ij}(\omega)} \le \frac{2}{m\mu_{ij}} \le \frac{2}{m\mu_{\min}}$$

– Case (6): $N_{ij}(\omega')=N_{ij}(\omega)-1$ and $N_{ij}^{(1)}(\omega')=N_{ij}^{(1)}(\omega)-1$

In this case we have

$$|\widehat{P}_{ij}(\omega) - \widehat{P}_{ij}(\omega')| = \left| \frac{N_{ij}^{(1)}(\omega)}{N_{ij}(\omega)} - \frac{N_{ij}^{(1)}(\omega) - 1}{N_{ij}(\omega) - 1} \right|$$

$$= \left| \frac{N_{ij}(\omega) - N_{ij}^{(1)}(\omega)}{N_{ij}(\omega)(N_{ij}(\omega) - 1)} \right|$$

$$\leq \frac{1}{N_{ij}(\omega)} \leq \frac{2}{m\mu_{ij}} \leq \frac{2}{m\mu_{\min}}$$

Note that in this case $N_{ij}(\omega)-1$ cannot equal 0 because $m\geq \frac{4}{\mu_{\min}}$ which guarantees that for $\omega\notin B_{ij}$, $N_{ij}(\omega)\geq 2$. Also the final step follows because this case can happen only when $N_{ij}^{(1)}(\omega)\geq 1$ and so we can upper bound $\frac{(N_{ij}(\omega)-N_{ij}^{(1)}(\omega))}{(N_{ij}(\omega)-1)}$ by 1

- Case (7):
$$N_{ij}(\omega') = N_{ij}(\omega) - 1$$
 and $N_{ij}^{(1)}(\omega') = N_{ij}^{(1)}(\omega)$

In this case we have

$$|\widehat{P}_{ij}(\omega) - \widehat{P}_{ij}(\omega')| = \left| \frac{N_{ij}^{(1)}(\omega)}{N_{ij}(\omega)} - \frac{N_{ij}^{(1)}(\omega)}{N_{ij}(\omega) - 1} \right|$$

$$= \left| \frac{N_{ij}^{(1)}(\omega)}{N_{ij}(\omega)(N_{ij}(\omega) - 1)} \right|$$

$$\leq \frac{1}{N_{ij}(\omega)} \leq \frac{2}{m\mu_{ij}} \leq \frac{2}{m\mu_{\min}}$$

Again, $N_{ij}(\omega)-1$ cannot equal 0 because $m\geq \frac{4}{\mu_{\min}}$ which guarantees that for $\omega\notin B_{ij}$, $N_{ij}(\omega)\geq 2$. Also note that this case can occur only when $N_{ij}^{(1)}(\omega)\leq N_{ij}(\omega)-1$ which is used to upper bound $\frac{N_{ij}^{(1)}}{N_{ij}(\omega)-1}$ by 1.

Thus we have the required bound in all possible cases.

Part 2. This follows directly from Part 1 and Theorem 2.

Part 3. Let $m \geq \frac{1}{\mu_{\min}} \ln \left(\frac{1}{\epsilon} \right)$. We have,

$$\mathbf{E}[\hat{P}_{ij}] = P_{ij}(1 - (1 - \mu_{ij})^m).$$

This gives

$$|\mathbf{E}[\hat{P}_{ij}] - P_{ij}| = P_{ij}(1 - \mu_{ij})^m \le (1 - \mu_{\min})^m \le e^{-m\mu_{\min}} \le \epsilon,$$

where the last inequality follows from the given condition on m.

Part 4. Let m satisfy the given condition. Then

$$\begin{split} \mathbf{P}\Big(\big|\widehat{P}_{ij} - P_{ij}\big| \geq \epsilon\Big) & \leq & \mathbf{P}\Big(\big|\widehat{P}_{ij} - \mathbf{E}[\widehat{P}_{ij}]\big| + \big|\mathbf{E}[\widehat{P}_{ij}] - P_{ij}\big| \geq \epsilon\Big) \,, \quad \text{by triangle inequality} \\ & \leq & \mathbf{P}\Big(\big|\widehat{P}_{ij} - \mathbf{E}[\widehat{P}_{ij}]\big| \geq \frac{\epsilon}{2}\Big) \,, \quad \text{by Part 3, since } m \geq \frac{1}{\mu_{\min}} \ln\left(\frac{2}{\epsilon}\right) \\ & \leq & 4 \exp\left(\frac{-m\epsilon^2 \mu_{\min}^2}{128}\right), \quad \text{by Part 2.} \end{split}$$

Part 5. Let $m \ge \frac{1}{\mu_{\min} P_{\min}} \ln \left(\frac{n(n-1)}{\delta} \right)$. Then

$$\begin{split} \mathbf{P}\Big(\exists (i\neq j): \widehat{P}_{ij} = 0\Big) & \leq & \sum_{i=1}^n \sum_{j\neq i} \mathbf{P}\big(\widehat{P}_{ij} = 0\big)\,, \quad \text{by union bound} \\ & = & \sum_{i=1}^n \sum_{j\neq i} (1 - \mu_{ij} P_{ij})^m \\ & \leq & n(n-1) \big(1 - \mu_{\min} P_{\min}\big)^m \\ & \leq & n(n-1) \, e^{-m\mu_{\min} P_{\min}} \\ & \leq & \delta\,. \end{split}$$

where the last inequality follows from the given condition on m.

This completes the proof of the lemma.

Proof of Lemma 6

Proof. We will first show the forward direction. Assume that the preference matrix **P** satisfies the time-reversibility condition. Let **Q** be the time-reversible Markov chain corresponding to **P**, with stationary distribution π ; since **Q** is irreducible and aperiodic, we have $\pi_i > 0 \ \forall i$. Now let $i \neq j$. By time reversibility and definition of Q_{ij} ,

$$\pi_i P_{ij} = \pi_j P_{ji}$$
.

We also have

$$P_{ii} = 1 - P_{ij} .$$

Solving for P_{ij} , this gives

$$P_{ij} = \frac{\pi_j}{\pi_i + \pi_j} \,.$$

Thus **P** satisfies the BTL condition with vector $\mathbf{w} = \boldsymbol{\pi} \in \mathbb{R}^n_+$. This proves the forward direction.

To show the reverse direction, assume that the preference matrix \mathbf{P} satisfies the BTL condition with vector $\mathbf{w} \in \mathbb{R}^n_+$, so that $w_i > 0 \ \forall i$ and $P_{ij} = \frac{w_j}{w_i + w_j} \ \forall i \neq j$. Let \mathbf{Q} be the Markov chain constructed from \mathbf{P} as in Eq. (6). Then it is easy to see that the vector $\boldsymbol{\pi}$ given by $\pi_i = \frac{w_i}{\sum_{k=1}^n w_k}$ satisfies

$$\pi_i Q_{ij} = \pi_j Q_{ji} \ \forall i, j \in [n],$$

from which it follows that π is also the stationary probability vector of \mathbf{Q} . Therefore \mathbf{P} satisfies the time-reversibility condition, thus proving the reverse direction.

Proof of Theorem 7

The proof of Theorem 7 builds on techniques of (Negahban et al., 2012). We first state below four lemmas that are used in the proof: two of these are due to Negahban et al. (Negahban et al., 2012); proofs for the remaining two are included below. The statements of the lemmas and corresponding proofs require some additional notation as summarized below:

Additional notation. In what follows, for a matrix $\mathbf{Q} \in \mathbb{R}^{n \times n}$, we will denote by $\|\mathbf{Q}\|_F = \left(\sum_{i=1}^n \sum_{j=1}^n Q_{ij}^2\right)^{1/2}$ the Frobenius norm of \mathbf{Q} , by $\|\mathbf{Q}\|_2 = \max_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{Q}\mathbf{x}\|_2}{\|\mathbf{x}\|_2}$ the spectral norm of \mathbf{Q} , and by $\lambda_{(2)}(\mathbf{Q})$ the second-largest eigenvalue of \mathbf{Q} in absolute value.

Lemma 21. Let (μ, \mathbf{P}) be such that $\mu_{\min} > 0$. Let \mathbf{Q} be defined as in Eq. (6). Let $0 < \epsilon \le 8$ and $\delta \in (0, 1]$. If

$$m \, \geq \, \, \max \left(\frac{256 \, n}{\epsilon^2 \mu_{\min}^2} \ln \left(\frac{8n^2}{\delta} \right), \, B(\mu_{\min}) \right) \, ,$$

then with probability at least $1 - \delta$ (over the random draw of $S \sim (\mu, \mathbf{P})^m$ from which $\widehat{\mathbf{P}}$ is constructed), the empirical Markov chain $\widehat{\mathbf{Q}}$ constructed by the rank centrality algorithm satisfies

$$\|\widehat{\mathbf{Q}} - \mathbf{Q}\|_2 \le \epsilon$$
.

Proof of Lemma 21. Let m satisfy the given condition. We have,

$$\begin{aligned} \left\| \mathbf{E}[\widehat{\mathbf{Q}}] - \mathbf{Q} \right\|_{F}^{2} &= \sum_{i=1}^{n} \sum_{j \neq i} \left(\mathbf{E}[\widehat{Q}_{ij}] - Q_{ij} \right)^{2} + \sum_{i=1}^{n} \left(\mathbf{E}[\widehat{Q}_{ii}] - Q_{ii} \right)^{2} \\ &= \sum_{i=1}^{n} \sum_{j \neq i} \left(\frac{1}{n} \left(\mathbf{E}[\widehat{P}_{ij}] - P_{ij} \right) \right)^{2} + \sum_{i=1}^{n} \left(\frac{1}{n} \sum_{k \neq i} \left(\mathbf{E}[\widehat{P}_{ik}] - P_{ik} \right) \right)^{2} \\ &\leq \frac{(n-1)}{n} \left(\frac{\epsilon}{2\sqrt{n-1}} \right)^{2} + \frac{(n-1)^{2}}{n} \left(\frac{\epsilon}{2\sqrt{n-1}} \right)^{2}, \\ &\text{by Lemma 3 (part 3), since } m \geq \frac{256n}{\epsilon^{2} \mu_{\min}^{2}} \ln\left(\frac{8n^{2}}{\delta} \right) \geq \frac{1}{\mu_{\min}} \ln\left(\frac{2\sqrt{n-1}}{\epsilon} \right) \\ &= (n-1) \left(\frac{\epsilon}{2\sqrt{n-1}} \right)^{2} \\ &= \frac{\epsilon^{2}}{4}. \end{aligned} \tag{10}$$

Now.

$$\begin{split} \mathbf{P} \big(\| \widehat{\mathbf{Q}} - \mathbf{Q} \|_2 \geq \epsilon \big) & \leq & \mathbf{P} \big(\| \widehat{\mathbf{Q}} - \mathbf{E} \|_F \geq \epsilon \big) \,, \text{ since Frobenius norm upper bounds spectral norm} \\ & \leq & \mathbf{P} \big(\| \widehat{\mathbf{Q}} - \mathbf{E} [\widehat{\mathbf{Q}}] \|_F + \| \mathbf{E} [\widehat{\mathbf{Q}}] - \mathbf{Q} \|_F \geq \epsilon \big) \,, \text{ by triangle inequality} \\ & \leq & \mathbf{P} \big(\| \widehat{\mathbf{Q}} - \mathbf{E} [\widehat{\mathbf{Q}}] \|_F \geq \frac{\epsilon}{2} \big) \,, \text{ by Eq. (10)} \\ & = & \mathbf{P} \bigg(\| \widehat{\mathbf{Q}} - \mathbf{E} [\widehat{\mathbf{Q}}] \|_F^2 \geq \frac{\epsilon^2}{4} \bigg) \\ & = & \mathbf{P} \bigg(\sum_{i=1}^n \sum_{j \neq i} \big(\widehat{Q}_{ij} - \mathbf{E} [\widehat{Q}_{ij}] \big)^2 + \sum_{i=1}^n \big(\widehat{Q}_{ii} - \mathbf{E} [\widehat{Q}_{ii}] \big)^2 \geq \frac{\epsilon^2}{4} \bigg) \\ & \leq & \mathbf{P} \bigg(\sum_{i=1}^n \sum_{j \neq i} \big(\widehat{Q}_{ij} - \mathbf{E} [\widehat{Q}_{ij}] \big)^2 \geq \frac{\epsilon^2}{8} \bigg) + \mathbf{P} \bigg(\sum_{i=1}^n \big(\widehat{Q}_{ii} - \mathbf{E} [\widehat{Q}_{ii}] \big)^2 \geq \frac{\epsilon^2}{8} \bigg) \\ & \leq & \sum_{i=1}^n \sum_{j \neq i} \mathbf{P} \bigg(|\widehat{Q}_{ij} - \mathbf{E} [\widehat{Q}_{ij}]| \geq \frac{\epsilon}{(\sqrt{8})n} \bigg) + \sum_{i=1}^n \mathbf{P} \bigg(|\widehat{Q}_{ii} - \mathbf{E} [\widehat{Q}_{ii}]| \geq \frac{\epsilon}{\sqrt{8n}} \bigg) \\ & = & \sum_{i=1}^n \sum_{j \neq i} \mathbf{P} \bigg(|\widehat{P}_{ij} - \mathbf{E} [\widehat{P}_{ij}]| \geq \frac{\epsilon}{(\sqrt{8})n} \bigg) + \sum_{i=1}^n \mathbf{P} \bigg(\frac{1}{n} \bigg| \sum_{k \neq i} \big(\widehat{P}_{ik} - \mathbf{E} [\widehat{P}_{ik}] \big) \bigg| \geq \frac{\epsilon}{\sqrt{8n}} \bigg) \\ & \leq & \sum_{i=1}^n \sum_{j \neq i} \mathbf{P} \bigg(|\widehat{P}_{ij} - \mathbf{E} [\widehat{P}_{ij}]| \geq \frac{\epsilon}{\sqrt{8}} \bigg) + \sum_{i=1}^n \mathbf{P} \bigg(|\widehat{P}_{ik} - \mathbf{E} [\widehat{P}_{ik}]| \geq \frac{\epsilon}{\sqrt{8n}} \bigg) \\ & \leq & \sum_{i=1}^n \sum_{j \neq i} \mathbf{P} \bigg(|\widehat{P}_{ij} - \mathbf{E} [\widehat{P}_{ij}]| \geq \frac{\epsilon}{\sqrt{8}} \bigg) + \sum_{i=1}^n \sum_{k \neq i} \mathbf{P} \bigg(|\widehat{P}_{ik} - \mathbf{E} [\widehat{P}_{ik}]| \geq \frac{\epsilon}{\sqrt{8n}} \bigg) \\ & \leq & 4n^2 \exp \bigg(\frac{-m\epsilon^2 \mu_{\min}^2}{256} \bigg) + 4n^2 \exp \bigg(\frac{-m\epsilon^2 \mu_{\min}^2}{256n} \bigg), \quad \text{by Lemma 3 (part 2)} \\ & \leq & \frac{\delta}{2} + \frac{\delta}{2} = \delta, \quad \text{since } m \geq \frac{256n}{\epsilon^2 \mu_{\min}^2} \ln \bigg(\frac{8n^2}{\delta} \bigg). \end{split}$$

This proves the result.

Lemma 22 ((Negahban et al., 2012)). Let \mathbf{Q} and $\widetilde{\mathbf{Q}}$ be time-reversible Markov chains defined on the same transition probability graph G = ([n], E), with stationary probability vectors $\boldsymbol{\pi}$ and $\widetilde{\boldsymbol{\pi}}$, respectively. Let $\alpha = \min_{(i,j) \in E} \frac{\pi_i Q_{ij}}{\widetilde{\pi}_i \widetilde{Q}_{ij}}$ and $\beta = \max_i \frac{\pi_i}{\widetilde{\pi}_i}$. Then

$$1 - \lambda_{(2)}(\mathbf{Q}) \geq \frac{\alpha}{\beta} (1 - \lambda_{(2)}(\widetilde{\mathbf{Q}})).$$

Lemma 23. Let $\mathbf{Q} \in [0,1]^{n \times n}$ be the transition probability matrix of a time-reversible Markov chain with $Q_{ij} > 0 \ \forall i,j$, and let π be the stationary probability vector of \mathbf{Q} . Let $Q_{\min} = \min_{i,j} Q_{ij}$, $\pi_{\max} = \max_i \pi_i$, and $\pi_{\min} = \min_i \pi_i$. Then the spectral gap of \mathbf{Q} satisfies

 $1 - \lambda_{(2)}(\mathbf{Q}) \ge n \left(\frac{\pi_{\min}}{\pi_{\max}}\right) Q_{\min}.$

Proof of Lemma 23. Since $Q_{ij} > 0 \ \forall i, j$, the chain \mathbf{Q} is defined on the complete directed graph $G = ([n], [n] \times [n])$. Define a time-reversible Markov chain $\widetilde{\mathbf{Q}}$ on the same graph as follows:

$$\widetilde{Q}_{ij} = \frac{1}{n} \ \forall i, j \in [n] .$$

This has stationary probability vector $\widetilde{\pi}$ given by $\widetilde{\pi}_i = \frac{1}{n} \ \forall i$. Now, using the notation of Lemma 22, we have

$$\alpha = n^2 \pi_{\min} Q_{\min}$$

$$\beta = n \pi_{\max}.$$

Moreover, $\lambda_{(2)}(\widetilde{\mathbf{Q}}) = 0$. By Lemma 22, we therefore have

$$1 - \lambda_{(2)}(\mathbf{Q}) \geq \frac{n^2 \pi_{\min} Q_{\min}}{n \pi_{\max}} = n \left(\frac{\pi_{\min}}{\pi_{\max}} \right) Q_{\min}.$$

Lemma 24 ((Negahban et al., 2012)). Let \mathbf{Q} be a time-reversible Markov chain with stationary probability vector $\boldsymbol{\pi}$. Let $\widehat{\mathbf{Q}}$ be any other Markov chain, and let \mathbf{q}_t denote the state distribution of $\widehat{\mathbf{Q}}$ at time t when started with initial distribution \mathbf{q}_0 . Let $\pi_{\max} = \max_i \pi_i$, $\pi_{\min} = \min_i \pi_i$, and $\rho = \lambda_{(2)}(\mathbf{Q}) + \|\widehat{\mathbf{Q}} - \mathbf{Q}\|_2 \sqrt{\frac{\pi_{\max}}{\pi_{\min}}}$. Then

$$\frac{\|\mathbf{q}_t - \boldsymbol{\pi}\|_2}{\|\boldsymbol{\pi}\|_2} \leq \rho^t \frac{\|\mathbf{q}_0 - \boldsymbol{\pi}\|_2}{\|\boldsymbol{\pi}\|_2} \sqrt{\frac{\pi_{\max}}{\pi_{\min}}} + \frac{1}{1 - \rho} \|\widehat{\mathbf{Q}} - \mathbf{Q}\|_2 \sqrt{\frac{\pi_{\max}}{\pi_{\min}}}.$$

We are now ready to prove Theorem 7:

Proof of Theorem 7. Let m satisfy the given condition. Then by Lemma 21, we have with probability at least $1 - \frac{\delta}{2}$, the empirical Markov chain $\widehat{\mathbf{Q}}$ constructed by the rank centrality algorithm satisfies

$$\|\widehat{\mathbf{Q}} - \mathbf{Q}\|_2 \le \frac{\epsilon}{2} \left(\frac{\pi_{\min}}{\pi_{\max}}\right)^{3/2} P_{\min}. \tag{11}$$

In this case, since **Q** is time-reversible with $Q_{ij} > 0 \ \forall i, j \ \text{and} \ Q_{\min} = \min_{i,j} Q_{ij} = \frac{P_{\min}}{n}$, by Lemma 23 and Eq. (11), we have

$$\rho = \lambda_{(2)}(\mathbf{Q}) + \|\widehat{\mathbf{Q}} - \mathbf{Q}\|_{2} \sqrt{\frac{\pi_{\max}}{\pi_{\min}}} \leq 1 - \left(\frac{\pi_{\min}}{\pi_{\max}}\right) P_{\min} + \frac{\epsilon}{2} \left(\frac{\pi_{\min}}{\pi_{\max}}\right) P_{\min}$$

$$\leq 1 - \frac{1}{2} \left(\frac{\pi_{\min}}{\pi_{\max}}\right) P_{\min}. \tag{12}$$

Next, since $m \geq \frac{1024\,n}{\epsilon^2 P_{\min}^2 \mu_{\min}^2} \left(\frac{\pi_{\max}}{\pi_{\min}}\right)^3 \ln\left(\frac{16n^2}{\delta}\right) \geq \frac{1}{\mu_{\min} P_{\min}} \ln\left(\frac{2n(n-1)}{\delta}\right)$, by Lemma 3 (part 5), we have that with probability at least $1 - \frac{\delta}{2}$, $\hat{P}_{ij} > 0 \ \forall i \neq j$, and therefore $\hat{\mathbf{Q}}$ is an irreducible and aperiodic Markov chain.

Putting the above two statements together, with probability at least $1-\delta$, we have that $\widehat{\mathbf{Q}}$ is an irreducible, aperiodic Markov chain satisfying Eqs. (11-12), and the score vector $\widehat{\boldsymbol{\pi}}$ output by the rank centrality algorithm is the stationary probability vector of $\widehat{\mathbf{Q}}$. In this case, by Lemma 24, we have that for any initial distribution \mathbf{q}_0 of $\widehat{\mathbf{Q}}$,

$$\begin{split} \frac{\|\widehat{\boldsymbol{\pi}} - \boldsymbol{\pi}\|_{2}}{\|\boldsymbol{\pi}\|_{2}} \; &= \; \lim_{t \to \infty} \frac{\|\mathbf{q}_{t} - \boldsymbol{\pi}\|_{2}}{\|\boldsymbol{\pi}\|_{2}} \; \; \leq \; \; \lim_{t \to \infty} \rho^{t} \frac{\|\mathbf{q}_{0} - \boldsymbol{\pi}\|_{2}}{\|\boldsymbol{\pi}\|_{2}} \sqrt{\frac{\pi_{\max}}{\pi_{\min}}} \; + \frac{1}{1 - \rho} \|\widehat{\mathbf{Q}} - \mathbf{Q}\|_{2} \sqrt{\frac{\pi_{\max}}{\pi_{\min}}} \\ &= \; \frac{1}{1 - \rho} \|\widehat{\mathbf{Q}} - \mathbf{Q}\|_{2} \sqrt{\frac{\pi_{\max}}{\pi_{\min}}} \; , \; \; \text{since } \rho < 1, \, \text{by Eq. (12)} \\ &\leq \; \epsilon \; , \; \; \text{by Eqs. (11-12)}. \end{split}$$

The result follows since $\|\pi\|_2 \le 1$, which gives $\|\widehat{\pi} - \pi\|_2 \le \frac{\|\widehat{\pi} - \pi\|_2}{\|\pi\|_2}$.

Proof of Corollary 8

Proof. Let $\epsilon = \frac{r_{\min}}{3}$. By definition of r_{\min} , we have $r_{\min} \leq 1$, and therefore $\epsilon \leq \frac{1}{3} < 1$. Therefore if m satisfies the given condition, then by Theorem 7, we have with probability at least $1 - \delta$,

$$\|\widehat{\boldsymbol{\pi}} - \boldsymbol{\pi}\|_2 \leq \frac{r_{\min}}{3}$$
.

But

$$\begin{split} \|\widehat{\pi} - \pi\|_2 & \leq \frac{r_{\min}}{3} \quad \Longrightarrow \quad \|\widehat{\pi} - \pi\|_{\infty} \leq \frac{r_{\min}}{3} \;, \quad \text{since L_2 norm upper bounds L_{∞} norm} \\ & \Longrightarrow \quad |\widehat{\pi}_i - \pi_i| \leq \frac{r_{\min}}{3} \; \forall i \\ & \Longrightarrow \quad \left\{ \forall i, j: \; \pi_j > \pi_i \; \Longrightarrow \; \widehat{\pi}_j > \widehat{\pi}_i \right\}, \quad \text{by definition of r_{\min}} \\ & \Longrightarrow \quad \left\{ \forall i, j: \; P_{ij} > P_{ji} \; \Longrightarrow \; \widehat{\pi}_j > \widehat{\pi}_i \right\}, \quad \text{by time-reversibility condition on \mathbf{P}} \\ & \Longrightarrow \quad \arg \mathrm{sort}(\widehat{\pi}) \subseteq \mathrm{argmin}_{\sigma \in \mathcal{S}_n} \mathrm{er}_{\mu, \mathbf{P}}^{\mathrm{PD}}[\sigma] \\ & \Longrightarrow \quad \widehat{\sigma} \in \mathrm{argmin}_{\sigma \in \mathcal{S}_n} \mathrm{er}_{\mu, \mathbf{P}}^{\mathrm{PD}}[\sigma] \;. \end{split}$$

Thus we have that with probability at least $1 - \delta$,

$$\widehat{\sigma} \in \operatorname{argmin}_{\sigma \in \mathcal{S}_n} \operatorname{er}_{u, \mathbf{P}}^{\operatorname{PD}}[\sigma]$$
.

This proves the result.

Proof of Lemma 9

Proof. Let \mathbf{Q} be as defined in Eq. (6), and let π be the stationary probability vector of \mathbf{Q} . From Section 6, we know that \mathbf{P} satisfies the time-reversibility condition, and therefore any permutation that ranks items according to decreasing order of scores π_i is an optimal permutation w.r.t. the pairwise disagreement error, i.e. we have

$$\operatorname{argsort}(\boldsymbol{\pi}) \subseteq \operatorname{argmin}_{\sigma \in \mathcal{S}_n} \operatorname{er}_{\mu, \mathbf{P}}^{\operatorname{PD}}[\sigma]$$
.

We will show that $\operatorname{argsort}(\mathbf{f}^*) = \operatorname{argsort}(\boldsymbol{\pi})$, which will imply the result. We have,

$$f_i^* = -\frac{1}{n} \sum_{k=1}^n Y_{ik} = \frac{1}{n} \sum_{k=1}^n \ln\left(\frac{P_{ki}}{P_{ik}}\right) = \frac{1}{n} \ln\left(\prod_{k=1}^n \frac{P_{ki}}{P_{ik}}\right)$$

$$= \frac{1}{n} \ln\left(\prod_{k=1}^n \frac{\pi_i}{\pi_k}\right), \text{ by time-reversibility}$$

$$= \ln \pi_i - \frac{1}{n} \ln(\pi_1 \cdot \dots \cdot \pi_n).$$

The second term on the right-hand side is a constant, and $\ln(\cdot)$ is a strictly monotonically increasing function; therefore \mathbf{f}^* induces the same orderings as π , i.e. $\operatorname{argsort}(\mathbf{f}^*) = \operatorname{argsort}(\pi)$.

Proof of Theorem 10

The proof makes use of the following technical lemma:

Lemma 25. Let 0 < u, u' < 1. Let $0 < \epsilon < u$. Then

$$|u - u'| \le \epsilon \implies |\ln(u) - \ln(u')| \le \frac{\epsilon}{u - \epsilon}$$

Proof. Let $|u-u'| \leq \epsilon$. Thus $u' \in (u-\epsilon, u+\epsilon)$. Now, since $\ln(\cdot)$ is a concave function, we have

$$\ln(y) \le \ln(x) + \frac{1}{x}(y-x) \quad \forall x, y > 0.$$

Taking x = u and $y = u + \epsilon$ gives

$$\ln(u+\epsilon) \le \ln(u) + \frac{\epsilon}{u};$$

taking $x = u - \epsilon$ and y = u gives

$$\ln(u) \le \ln(u - \epsilon) + \frac{\epsilon}{u - \epsilon}$$
.

Combining both, and using the fact that $\ln(\cdot)$ is a monotonically increasing function, we get

$$\ln(u) - \frac{\epsilon}{u - \epsilon} \le \ln(u - \epsilon) \le \ln(u) \le \ln(u + \epsilon) \le \ln(u) + \frac{\epsilon}{u}.$$

For $\epsilon < u$, we have $\frac{\epsilon}{u - \epsilon} > \frac{\epsilon}{u}$. Thus, since $u' \in (u - \epsilon, u + \epsilon)$, we have either

$$\ln(u) - \frac{\epsilon}{u - \epsilon} \le \ln(u - \epsilon) \le \ln(u') \le \ln(u)$$

or

$$\ln(u) \le \ln(u') \le \ln(u+\epsilon) \le \ln(u) + \frac{\epsilon}{u} < \ln(u) + \frac{\epsilon}{u-\epsilon};$$

in both cases, we get $\left| \ln(u) - \ln(u') \right| \leq \frac{\epsilon}{u - \epsilon}$, thus proving the result.

Proof of Theorem 10. Let m satisfy the given condition. Since $m \geq \frac{128}{P_{\min}^2 \mu_{\min}^2} \left(1 + \frac{2}{\epsilon}\right)^2 \ln\left(\frac{16n^2}{\delta}\right) \geq \frac{1}{\mu_{\min} P_{\min}} \ln\left(\frac{2n(n-1)}{\delta}\right)$, by Lemma 3 (part 5), we have with probability at least $1 - \frac{\delta}{2}$, $\widehat{P}_{ij} > 0 \ \forall i \neq j$. In this case, we have

$$\widehat{Y}_{ij} = \begin{cases} \ln\left(\frac{\widehat{P}_{ij}}{\widehat{P}_{ji}}\right) & \text{if } i \neq j \\ 0 & \text{otherwise,} \end{cases}$$

and $\widehat{E} = \mathcal{X}$. As discussed in (Jiang et al., 2011), the score vector $\widehat{\mathbf{f}}$ output by the least squares algorithm in this case is given by

$$\widehat{f}_i = -\frac{1}{n} \sum_{k=1}^n \widehat{Y}_{ik} = \frac{1}{n} \sum_{k \neq i} \ln \left(\frac{\widehat{P}_{ki}}{\widehat{P}_{ik}} \right).$$

Moreover, since $P_{ij} \in (0,1) \ \forall i \neq j$, we also have

$$f_i^* = -\frac{1}{n} \sum_{k=1}^n Y_{ik} = \frac{1}{n} \sum_{k \neq i} \ln \left(\frac{P_{ki}}{P_{ik}} \right).$$

Next, we have

In other words, with probability at least $1 - \frac{\delta}{2}$, we have

$$\max_i \left| \frac{1}{n} \sum_{k \neq i} \ln \left(\frac{\widehat{P}_{ki}}{\widehat{P}_{ik}} \right) - \frac{1}{n} \sum_{k \neq i} \ln \left(\frac{P_{ki}}{P_{ik}} \right) \right| \; \leq \; \epsilon \, .$$

Putting the above statements together, we have that with probability at least $1 - \delta$,

$$\|\widehat{\mathbf{f}} - \mathbf{f}^*\|_{\infty} = \max_{i} |\widehat{f}_i - f_i^*| = \max_{i} \left| \frac{1}{n} \sum_{k \neq i} \ln \left(\frac{\widehat{P}_{ki}}{\widehat{P}_{ik}} \right) - \frac{1}{n} \sum_{k \neq i} \ln \left(\frac{P_{ki}}{P_{ik}} \right) \right| \leq \epsilon.$$

This proves the result.

Proof of Corollary 11

Proof. Let $\epsilon = \frac{r_{\min}}{3}$. By definition of r_{\min} , we have $r_{\min} \leq n$, and therefore $\epsilon \leq \frac{n}{3} \leq (4\sqrt{2})n$. Therefore if m satisfies the given condition, then by Theorem 10, we have with probability at least $1 - \delta$,

$$\|\widehat{\mathbf{f}} - \mathbf{f}^*\|_{\infty} \le \frac{r_{\min}}{3}$$
.

But

$$\begin{split} \|\widehat{\mathbf{f}} - \mathbf{f}^*\|_{\infty} & \leq \frac{r_{\min}}{3} & \implies |\widehat{f}_i - f_i^*| \leq \frac{r_{\min}}{3} \ \forall i \\ & \implies \left\{ \forall i, j: \ f_j^* > f_i^* \implies \widehat{f}_j > \widehat{f}_i \right\}, \ \text{ by definition of } r_{\min} \\ & \implies \left\{ \forall i, j: \ P_{ij} > P_{ji} \implies \widehat{f}_j > \widehat{f}_i \right\}, \ \text{ by Lemma 9} \\ & \implies \text{argsort}(\widehat{\mathbf{f}}) \subseteq \operatorname{argmin}_{\sigma \in \mathcal{S}_n} \operatorname{er}_{\mu, \mathbf{P}}^{\mathrm{PD}}[\sigma] \\ & \implies \widehat{\sigma} \in \operatorname{argmin}_{\sigma \in \mathcal{S}_n} \operatorname{er}_{\mu, \mathbf{P}}^{\mathrm{PD}}[\sigma]. \end{split}$$

Thus we have that with probability at least $1 - \delta$,

$$\widehat{\sigma} \in \operatorname{argmin}_{\sigma \in \mathcal{S}_n} \operatorname{er}_{\mu, \mathbf{P}}^{\operatorname{PD}}[\sigma]$$
.

This proves the result.

Proof of Lemma 13

Proof. Let $\mathbf{P} \in [0,1]^{n \times n}$ satisfy the BTL condition with vector $\mathbf{w} \in \mathbb{R}^n_+$, so that $w_i > 0 \ \forall i$ and $P_{ij} = \frac{w_j}{w_i + w_j} \ \forall i \neq j$. Then we have

$$P_{ij} > P_{ji} \implies w_j > w_i$$

$$\implies \frac{w_j}{w_j + w_k} > \frac{w_i}{w_i + w_k} \quad \forall k$$

$$\implies \sum_{k=1}^n \frac{w_j}{w_j + w_k} > \sum_{k=1}^n \frac{w_i}{w_i + w_k}$$

$$\implies \sum_{k=1}^n P_{kj} > \sum_{k=1}^n P_{ki}.$$

Thus P satisfies the LN condition.

Proof of Theorem 14

Proof. Let m satisfy the given condition. We have,

This proves the result.

Proof of Corollary 15

Proof. Let $\epsilon = \frac{r_{\min}}{3}$. By definition of r_{\min} , we have $r_{\min} \leq n$, and therefore $\epsilon \leq \frac{n}{3} \leq (4\sqrt{2})n$. Therefore if m satisfies the given condition, then by Theorem 14, we have with probability at least $1 - \delta$,

$$\|\widehat{\mathbf{f}} - \mathbf{f}^*\|_{\infty} \le \frac{r_{\min}}{3}$$
.

But

$$\begin{split} \|\widehat{\mathbf{f}} - \mathbf{f}^*\|_{\infty} & \leq \frac{r_{\min}}{3} & \implies |\widehat{f_i} - f_i^*| \leq \frac{r_{\min}}{3} \ \forall i \\ & \implies \left\{ \forall i,j: \ f_j^* > f_i^* \implies \widehat{f_j} > \widehat{f_i} \right\}, \ \ \text{by definition of } r_{\min} \\ & \implies \left\{ \forall i,j: \ P_{ij} > P_{ji} \implies \widehat{f_j} > \widehat{f_i} \right\}, \ \ \text{by extended low-noise condition on } \mathbf{P} \\ & \implies \operatorname{argsort}(\widehat{\mathbf{f}}) \subseteq \operatorname{argmin}_{\sigma \in \mathcal{S}_n} \operatorname{er}_{\mu, \mathbf{P}}^{\mathrm{PD}}[\sigma] \\ & \implies \widehat{\sigma} \in \operatorname{argmin}_{\sigma \in \mathcal{S}_n} \operatorname{er}_{\mu, \mathbf{P}}^{\mathrm{PD}}[\sigma] \,. \end{split}$$

Thus we have that with probability at least $1 - \delta$,

$$\widehat{\sigma} \in \operatorname{argmin}_{\sigma \in \mathcal{S}_n} \operatorname{er}_{\mu, \mathbf{P}}^{\operatorname{PD}}[\sigma]$$
.

This proves the result.

Proof of Theorem 16

Proof. We have

$$\widehat{\boldsymbol{\theta}} \in \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^n} \sum_{i < j} \left(\ln(1 + \exp(\theta_j - \theta_i)) - \widehat{P}_{ij}(\theta_j - \theta_i) \right).$$

Setting the gradient of the above objective to 0 gives:

$$\forall i: \sum_{k=1}^{n} \widehat{P}_{ki} = \sum_{k \neq i} \frac{\exp(\widehat{\theta}_i)}{\exp(\widehat{\theta}_k) + \exp(\widehat{\theta}_i)} = \sum_{k=1}^{n} P_{ki}^{\widehat{\boldsymbol{\theta}}},$$
(13)

where we denote

$$P_{ij}^{\widehat{\boldsymbol{\theta}}} = \begin{cases} \frac{\exp(\widehat{\boldsymbol{\theta}}_j)}{\exp(\widehat{\boldsymbol{\theta}}_i) + \exp(\widehat{\boldsymbol{\theta}}_j)} & \text{if } i < j \\ 1 - P_{ji}^{\widehat{\boldsymbol{\theta}}} & \text{if } i > j \\ 0 & \text{if } i = j. \end{cases}$$

Now, we have for any $0 < \epsilon < 4\sqrt{2}$, if $m \ge \max\left(B(\mu_{\min}), \ \frac{1}{\mu_{\min}} \ln(\frac{2}{\epsilon})\right)$, then

$$\mathbf{P}\left(\exists i: \left|\frac{1}{n}\sum_{k=1}^{n}\left(P_{ki} - P_{ki}^{\widehat{\boldsymbol{\theta}}}\right)\right| \ge \epsilon\right) = \mathbf{P}\left(\exists i: \left|\frac{1}{n}\sum_{k=1}^{n}\left(P_{ki} - \widehat{P}_{ki}\right)\right| \ge \epsilon\right), \text{ by Eq. (13)}$$

$$\leq \sum_{i=1}^{n}\mathbf{P}\left(\left|\frac{1}{n}\sum_{k=1}^{n}\left(P_{ki} - \widehat{P}_{ki}\right)\right| \ge \epsilon\right)$$

$$\leq \sum_{i=1}^{n}\mathbf{P}\left(\frac{1}{n}\sum_{k=1}^{n}\left|P_{ki} - \widehat{P}_{ki}\right| \ge \epsilon\right)$$

$$\leq \sum_{i=1}^{n}\mathbf{P}\left(\exists k: \left|P_{ki} - \widehat{P}_{ki}\right| \ge \epsilon\right)$$

$$\leq \sum_{i=1}^{n}\sum_{k=1}^{n}\mathbf{P}\left(\left|P_{ki} - \widehat{P}_{ki}\right| \ge \epsilon\right)$$

$$\leq 4n^{2}\exp\left(\frac{-m\epsilon^{2}\mu_{\min}^{2}}{128}\right), \text{ by Lemma 3 (part 4).}$$

Setting $\epsilon = \frac{r_{\min}}{3}$, we get that if m satisfies the given condition, then with probability at least $1 - \delta$,

$$\left|\frac{1}{n}\sum_{k=1}^{n}\left(P_{kj}-P_{kj}^{\widehat{\boldsymbol{\theta}}}\right)\right| \leq \frac{r_{\min}}{3} \quad \forall i.$$
 (14)

By definition of r_{\min} , this means that with probability at least $1 - \delta$, we have for all $i \neq j$,

$$\sum_{k=1}^{n} P_{kj}^{\hat{\theta}} > \sum_{k=1}^{n} P_{ki}^{\hat{\theta}} \iff \sum_{k=1}^{n} P_{kj} > \sum_{k=1}^{n} P_{ki} \iff f_{j}^{*} > f_{i}^{*}.$$
(15)

Also, it is easy to verify that for all $i \neq j$,

$$\widehat{w}_j > \widehat{w}_i \iff \widehat{\theta}_j > \widehat{\theta}_i \iff \sum_{k=1}^n P_{kj}^{\widehat{\boldsymbol{\theta}}} > \sum_{k=1}^n P_{ki}^{\widehat{\boldsymbol{\theta}}}$$
 (16)

Combining Eqs. (15-16), we have that with probability at least $1 - \delta$,

$$\operatorname{argsort}(\widehat{\mathbf{w}}) = \operatorname{argsort}(\mathbf{f}^*)$$
.

Since $\operatorname{argsort}(\mathbf{f}^*) \subseteq \operatorname{argmin}_{\sigma \in \mathcal{S}_n} \operatorname{er}_{\mu, \mathbf{P}}^{\operatorname{PD}}[\sigma]$, we thus have with probability at least $1 - \delta$,

$$\widehat{\sigma} \in \operatorname{argmin}_{\sigma \in \mathcal{S}_n} \operatorname{er}_{u, \mathbf{P}}^{\operatorname{PD}}[\sigma]$$
.

This proves the result.

Proof of Proposition 19

Proof. Suppose **P** satisfies the GLN condition with vector $\alpha \in \mathbb{R}^n$. Then clearly, since $P_{ij} \neq \frac{1}{2} \ \forall i \neq j$, we have $\forall i < j$:

$$z_{ij} = 1 \implies P_{ji} > P_{ij} \implies \sum_{k=1}^{n} \alpha_k P_{ki} > \sum_{k=1}^{n} \alpha_k P_{kj} \implies \boldsymbol{\alpha}^{\top} (\mathbf{P}_i - \mathbf{P}_j) > 0$$
$$z_{ij} = -1 \implies P_{ij} > P_{ji} \implies \sum_{k=1}^{n} \alpha_k P_{kj} > \sum_{k=1}^{n} \alpha_k P_{ki} \implies \boldsymbol{\alpha}^{\top} (\mathbf{P}_i - \mathbf{P}_j) < 0.$$

Thus $S_{\mathbf{P}}$ is linearly separable by the hyperplane α passing through the origin.

Conversely, suppose that $S_{\mathbf{P}}$ is linearly separable by a hyperplane passing through the origin. Then $\exists \alpha \in \mathbb{R}^n$ s.t. $z_{ij}\alpha^{\top}(\mathbf{P}_i - \mathbf{P}_j) > 0 \ \forall i < j$. Thus we have $\forall i < j$:

$$P_{ij} > P_{ji} \implies z_{ij} = -1 \implies \boldsymbol{\alpha}^{\top} (\mathbf{P}_i - \mathbf{P}_j) < 0 \implies \sum_{k=1}^{n} \alpha_k P_{kj} > \sum_{k=1}^{n} \alpha_k P_{ki}$$
$$P_{ji} > P_{ij} \implies z_{ij} = 1 \implies \boldsymbol{\alpha}^{\top} (\mathbf{P}_i - \mathbf{P}_j) > 0 \implies \sum_{k=1}^{n} \alpha_k P_{ki} > \sum_{k=1}^{n} \alpha_k P_{kj}.$$

Thus P satisfies the GLN condition.

Proof of Theorem 20

Proof. Let m satisfy the given conditions. We first show that with probability at least $1 - \frac{\delta}{2}$, every label $\operatorname{sign}(\widehat{P}_{ji} - \widehat{P}_{ij})$ in $S_{\mathbf{P}}$ is the same as the corresponding label $\operatorname{sign}(P_{ji} - P_{ij})$ in $S_{\mathbf{P}}$. We have,

$$\begin{split} \mathbf{P} \Big(\exists i \neq j : \left| \hat{P}_{ij} - P_{ij} \right| \geq \gamma \Big) & \leq \sum_{i \neq j} \mathbf{P} \Big(\left| \hat{P}_{ij} - P_{ij} \right| \geq \gamma \Big) \,, \quad \text{by union bound} \\ & \leq 4n^2 \exp \left(\frac{-m\gamma^2 \mu_{\min}^2}{128} \right), \quad \text{by Lemma 3 (part 4)} \\ & \qquad \qquad (\text{since } m \geq \frac{128}{\gamma^2 \mu_{\min}^2} \log(\frac{8n^2}{\delta}) \geq \frac{1}{\mu_{\min}} \ln(\frac{2}{\gamma})) \\ & \leq \frac{\delta}{2} \,, \quad \text{since } m \geq \frac{128}{\gamma^2 \mu_{\min}^2} \log(\frac{8n^2}{\delta}). \end{split}$$

Thus we have that with probability at least $1 - \frac{\delta}{2}$,

$$|\widehat{P}_{ij} - P_{ij}| \le \gamma \quad \forall i \ne j.$$

By definition of γ , this yields that with probability at least $1 - \frac{\delta}{2}$,

$$\widehat{P}_{ij} > \widehat{P}_{ji} \iff P_{ij} > P_{ji} \quad \forall i \neq j$$

i.e. with probability at least $1 - \frac{\delta}{2}$,

$$\operatorname{sign}(\widehat{P}_{ji} - \widehat{P}_{ij}) = \operatorname{sign}(P_{ji} - P_{ij}) \quad \forall i < j.$$

Next, we show that with probability at least $1 - \frac{\delta}{2}$, every point $(\widehat{\mathbf{P}}_i - \widehat{\mathbf{P}}_j)$ in $S_{\widehat{\mathbf{P}}}$ falls on the same side of the hyperplane given by α as the corresponding point $(\mathbf{P}_i - \mathbf{P}_j)$ in $S_{\mathbf{P}}$. We have,

$$\begin{split} \mathbf{P} \Big(\exists (i < j) : \| (\widehat{\mathbf{P}}_i - \widehat{\mathbf{P}}_j) - (\mathbf{P}_i - \mathbf{P}_j) \|_2 &\geq \frac{r_{\min}^{\alpha}}{2} \Big) \\ &= \mathbf{P} \Big(\exists (i < j) : \| (\widehat{\mathbf{P}}_i - \mathbf{P}_i) - (\widehat{\mathbf{P}}_j - \mathbf{P}_j) \|_2 \geq \frac{r_{\min}^{\alpha}}{2} \Big) \\ &\leq \sum_{i < j} \mathbf{P} \Big(\| (\widehat{\mathbf{P}}_i - \mathbf{P}_i) - (\widehat{\mathbf{P}}_j - \mathbf{P}_j) \|_2 \geq \frac{r_{\min}^{\alpha}}{2} \Big) \,, \quad \text{by union bound} \\ &\leq \sum_{i < j} \Big(\mathbf{P} \Big(\| \widehat{\mathbf{P}}_i - \mathbf{P}_i \|_2 \geq \frac{r_{\min}^{\alpha}}{4} \Big) + \mathbf{P} \Big(\| \widehat{\mathbf{P}}_j - \mathbf{P}_j \|_2 \geq \frac{r_{\min}^{\alpha}}{4} \Big) \Big) \\ &\leq \sum_{i < j} \Big(\mathbf{P} \Big(\exists k : |\widehat{P}_{ki} - P_{ki}| \geq \frac{r_{\min}^{\alpha}}{4\sqrt{n}} \Big) + \mathbf{P} \Big(\exists k : |\widehat{P}_{kj} - P_{kj}| \geq \frac{r_{\min}^{\alpha}}{4\sqrt{n}} \Big) \Big) \\ &\leq \sum_{i < j} \Big(\sum_{k} \mathbf{P} \Big(|\widehat{P}_{ki} - P_{ki}| \geq \frac{r_{\min}^{\alpha}}{4\sqrt{n}} \Big) + \sum_{k} \mathbf{P} \Big(|\widehat{P}_{kj} - P_{kj}| \geq \frac{r_{\min}^{\alpha}}{4\sqrt{n}} \Big) \Big) \\ &\leq 8n^3 \exp \Big(\frac{-m(r_{\min}^{\alpha})^2 \mu_{\min}^2}{2048n} \Big) \,, \quad \text{by Lemma 3 (part 4)} \\ &\qquad \qquad (\text{since } m \geq \frac{2048 \, n}{(r_{\min}^{\alpha})^2 \mu_{\min}^2} \log(\frac{16n^3}{\delta}) \geq \frac{1}{\mu_{\min}} \ln(\frac{8\sqrt{n}}{r_{\min}^{\alpha}})) \\ &\leq \frac{\delta}{2} \,, \quad \text{since } m \geq \frac{2048 \, n}{(r_{\min}^{\alpha})^2 \mu_{\min}^2} \log(\frac{16n^3}{\delta}) \,. \end{split}$$

Thus with probability at least $1 - \frac{\delta}{2}$,

$$\|(\widehat{\mathbf{P}}_i - \widehat{\mathbf{P}}_j) - (\mathbf{P}_i - \mathbf{P}_j)\|_2 \le \frac{r_{\min}^{\alpha}}{2} \quad \forall i < j.$$

By definition, r_{\min}^{α} is the smallest Euclidean distance of any point $(\mathbf{P}_i - \mathbf{P}_j)$ to the hyperplane defined by α ; therefore we get that with probability at least $1 - \frac{\delta}{2}$, all points $(\widehat{\mathbf{P}}_i - \widehat{\mathbf{P}}_j)$ fall on the same side of the hyperplane α as the corresponding points $(\mathbf{P}_i - \mathbf{P}_j)$.

Combining the above statements yields that with probability at least $1-\delta$, the dataset $S_{\widehat{\mathbf{p}}}$ is also linearly separable by α ; in this case, the SVM-RankAggregation algorithm produces a vector $\widehat{\alpha}$ that correctly classifies all examples in $S_{\widehat{\mathbf{p}}}$, i.e. satisfies $z_{ij}\widehat{\alpha}^{\top}(\widehat{\mathbf{P}}_i-\widehat{\mathbf{P}}_j)>0 \ \forall i< j$ (where $z_{ij}=\mathrm{sign}(P_{ji}-P_{ij})$), and it can be verified that $\widehat{\alpha}$ must then also satisfy $z_{ij}\widehat{\alpha}^{\top}(\mathbf{P}_i-\mathbf{P}_j)>0 \ \forall i< j$, so that $\mathrm{argsort}(\widehat{\alpha})\subseteq\mathrm{argmin}_{\sigma\in\mathcal{S}_n}\mathrm{er}_{\mu,\mathbf{P}}^{\mathrm{PD}}[\sigma]$. This yields that with probability at least $1-\delta$,

$$\widehat{\sigma} \in \operatorname{argmin}_{\sigma \in \mathcal{S}_n} \operatorname{er}_{\mu, \mathbf{P}}^{\operatorname{PD}}[\sigma]$$
.