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Abstract

We focus on the problem of finding a non-linear
classification function that lies in a Reproduc-
ing Kernel Hilbert Space (RKHS) both from
the primal point of view (finding a perfect sep-
arator when one exists) and the dual point of
view (giving a certificate of non-existence), with
special focus on generalizations of two classi-
cal schemes - the Perceptron (primal) and Von-
Neumann (dual) algorithms.

We cast our problem as one of maximizing
the regularized normalized hard-margin (ρ) in
an RKHS and rephrase it in terms of a Maha-
lanobis dot-product/semi-norm associated with
the kernel’s (normalized and signed) Gram ma-
trix. We derive an accelerated smoothed algo-
rithm with a convergence rate of

√
logn
ρ given

n separable points, which is strikingly similar
to the classical kernelized Perceptron algorithm
whose rate is 1

ρ2 . When no such classifier exists,
we prove a version of Gordan’s separation the-
orem for RKHSs, and give a reinterpretation of
negative margins. This allows us to give guar-
antees for a primal-dual algorithm that halts in
min{

√
n
|ρ| ,

√
n
ε } iterations with a perfect separator

in the RKHS if the primal is feasible or a dual
ε-certificate of near-infeasibility.

1. Introduction
We are interested in the problem of finding a non-linear
separator for a given set of n points x1, ..., xn ∈ Rd with
labels y1, ..., yn ∈ {±1}. Finding a linear separator can be
stated as the problem of finding a unit vector w ∈ Rd (if
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one exists) such that for all i

yi(w>xi) ≥ 0 i.e. sign(w>xi) = yi. (1)

This is called the primal problem. In the more interesting
non-linear setting, we will be searching for functions f in a
Reproducing Kernel Hilbert Space (RKHS) FK associated
with kernel K (to be defined later) such that for all i

yif(xi) ≥ 0. (2)

We say that problems (1), (2) have an unnormalized margin
ρ > 0, if there exists a unit vector w, such that for all i,

yi(w>xi) ≥ ρ or yif(xi) ≥ ρ.

True to the paper’s title, margins of non-linear separators in
an RKHS will be a central concept, and we will derive in-
teresting smoothed accelerated variants of the Perceptron
algorithm that have convergence rates (for the aforemen-
tioned primal and a dual problem introduced later) that are
inversely proportional to the RKHS-margin as opposed to
inverse squared margin for the Perceptron.

The linear setting is well known by the name of linear fea-
sibility problems - we are asking if there exists any vector
w which makes an acute angle with all the vectors yixi, i.e.

(XY )>w > 0n, (3)

where Y := diag(y), X := [x1, ..., xn]. This can be seen
as finding a vector w inside the dual cone of cone{yixi}.

When normalized, as we will see in the next section, the
margin is a well-studied notion of conditioning for these
problems. It can be thought of as the width of the feasi-
bility cone as in (Freund & Vera, 1999), a radius of well-
posedness as in (Cheung & Cucker, 2001), and its inverse
can be seen as a special case of a condition number defined
by (Renegar, 1995) for these systems.

1.1. Related Work

In this paper we focus on the famous Perceptron algorithm
(Rosenblatt, 1958) and the less-famous Von-Neumann al-
gorithm (Dantzig, 1992) that we introduce in later sections.
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Our work builds on (Soheili & Peña, 2012; 2013a) from the
field of optimization - we generalize the setting to learn-
ing functions in RKHSs, extend the algorithms, simplify
proofs, and simultaneously bring new perspectives to it.
There is extensive literature around the Perceptron algo-
rithm in the learning community; we restrict ourselves to
discussing only a few directly related papers, in order to
point out the several differences from existing work.

We provide a general unified proof in the Appendix which
borrows ideas from accelerated smoothing methods devel-
oped by Nesterov (Nesterov, 2005) - while this algorithm
and others by (Nemirovski, 2004), (Saha et al., 2011) can
achieve similar rates for the same problem, those algo-
rithms do not possess the simplicity of the Perceptron or
Von-Neumann algorithms and our variants, and also don’t
look at the infeasible setting or primal-dual algorithms.

Accelerated smoothing techniques have also been seen in
the learning literature like in (Tseng, 2008) and many oth-
ers. However, most of these deal with convex-concave
problems where both sets involved are the probability sim-
plex (as in game theory, boosting, etc), while we deal with
hard margins where one of the sets is a unit `2 ball. Hence,
their algorithms/results are not extendable to ours trivially.
This work is also connected to the idea of ε-coresets (Clark-
son, 2010), though we will not explore that angle.

A related algorithm is called the Winnow (Littlestone,
1991) - this works on the `1 margin and is a saddle point
problem over two simplices. One can ask whether such
accelerated smoothed versions exist for the Winnow. The
answer is in the affirmative - however such algorithms look
completely different from the Winnow, while in our setting
the new algorithms retain the simplicity of the Perceptron.

1.2. Paper Outline

Sec.2 will introduce the Perceptron and Normalized Per-
ceptron algorithm and their convergence guarantees for lin-
ear separability, with specific emphasis on the unnormal-
ized and normalized margins. Sec.3 will then introduce
RKHSs and the Normalized Kernel Perceptron algorithm,
which we interpret as a subgradient algorithm for a regu-
larized normalized hard-margin loss function.

Sec.4 describes the Smoothed Normalized Kernel Percep-
tron algorithm that works with a smooth approximation to
the original loss function, and outlines the argument for its
faster convergence rate. Sec.5 discusses the non-separable
case and the Von-Neumann algorithm, and we prove a ver-
sion of Gordan’s theorem in RKHSs.

We finally give an algorithm in Sec.6 which terminates with
a separator if one exists, and with a dual certificate of near-
infeasibility otherwise, in time inversely proportional to the
margin. Sec.7 has a discussion and some open problems.

2. Linear Feasibility Problems
2.1. Perceptron

The classical perceptron algorithm can be stated in many
ways, one is in the following form

Algorithm 1 Perceptron
Initialize w0 = 0
for k = 0, 1, 2, 3, ... do

if sign(w>k xi) 6= yi for some i then
wk+1 := wk + yixi

else
Halt: Return wk as solution

end if
end for

It comes with the following classic guarantee as proved by
(Block, 1962) and (Novikoff, 1962): If there exists a unit
vector u ∈ Rd such that Y X>u ≥ ρ > 0, then a perfect
separator will be found in maxi ‖xi‖22

ρ2 iterations/mistakes.

The algorithm works when updated with any arbitrary point
(xi, yi) that is misclassified; it has the same guarantees
when w is updated with the point that is misclassified by
the largest amount, arg mini yiw>xi. Alternately, one can
define the probability distribution over examples

p(w) = arg min
p∈∆n

〈Y X>w, p〉, (4)

where ∆n is the n-dimensional probability simplex.

Intuitively, p picks the examples that have the lowest mar-
gin when classified by w. One can also normalize the up-
dates so that we can maintain a probability distribution over
examples used for updates from the start, as seen below:

Algorithm 2 Normalized Perceptron
Initialize w0 = 0, p0 = 0
for k = 0, 1, 2, 3, ... do

if Y X>wk > 0 then
Exit, with wk as solution

else
θk := 1

k+1
wk+1 := (1− θk)wk + θkXY p(wk)

end if
end for

Remark. Normalized Perceptron has the same guaran-
tees as perceptron - the Perceptron can perform its up-
date online on any misclassified point, while the Normal-
ized Perceptron performs updates on the most misclassified
point(s), and yet there does not seem to be any change in
performance. However, we will soon see that the ability to
see all the examples at once gives us much more power.
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2.2. Normalized Margins

If we normalize the data points by the `2 norm, the resulting
mistake bound of the perceptron algorithm is slightly dif-
ferent. LetX2 represent the matrix with columns xi/‖xi‖2.
Define the unnormalized and normalized margins as

ρ := sup
‖w‖2=1

inf
p∈∆n

〈Y X>w, p〉,

ρ2 := sup
‖w‖2=1

inf
p∈∆n

〈Y X>2 w, p〉.

Remark. Note that we have sup‖w‖2=1 in the definition,
this is equivalent to sup‖w‖2≤1 iff ρ2 > 0.

Normalized Perceptron has the following guarantee onX2:
If ρ2 > 0, then it finds a perfect separator in 1

ρ22
iterations.

Remark. Consider the max-margin separator u∗ for X
(which is also a valid perfect separator for X2). Then

ρ
maxi ‖xi‖2 = min

i

(
yix
>
i u
∗

maxi ‖xi‖2

)
≤ min

i

(
yix
>
i u
∗

‖xi‖2

)
≤ sup

‖u‖2=1

min
i

(
yix
>
i u

‖xi‖2

)
= ρ2.

Hence, it is always better to normalize the data as pointed
out in (Graepel et al., 2001). This idea extends to RKHSs,
motivating the normalized Gram matrix considered later.

Example Consider a simple example in R2
+. Assume that

+ points are located along the line 6x2 = 8x1, and the
− points along 8x2 = 6x1, for 1/r ≤ ‖x‖2 ≤ r, where
r > 1. The max-margin linear separator will be x1 = x2.
If all the data were normalized to have unit Euclidean norm,
then all the + points would all be at (0.6, 0.8) and all the
− points at (0.8, 0.6), giving us a normalized margin of
ρ2 ≈ 0.14. Unnormalized, the margin is ρ ≈ 0.14/r and
maxi ‖xi‖2 = r. Hence, in terms of bounds, we get a
discrepancy of r4, which can be arbitrarily large.

Winnow The question arises as to which norm we should
normalize by. There is a now classic algorithm in machine
learning, called Winnow (Littlestone, 1991) or Multiplicate
Weights. It works on a slight transformation of the problem
where we only need to search for u ∈ Rd+. It comes with
some very well-known guarantees - If there exists a u ∈ Rd+
such that Y X>u ≥ ρ > 0, then feasibility is guaranteed
in ‖u‖21 maxi ‖ai‖2∞ log n/ρ2 iterations. The appropriate
notion of normalized margin here is

ρ1 := max
w∈∆d

min
p∈∆n

〈Y X>∞w, p〉,

where X∞ is a matrix with columns xi/‖xi‖∞. Then, the
appropriate iteration bound is log n/ρ2

1. We will return to
this `1-margin in the discussion section. In the next section,
we will normalize by using the kernel appropriately.

3. Kernels and RKHSs
The theory of Reproducing Kernel Hilbert Spaces (RKHSs)
has a rich history, and for a detailed introduction, refer to
(Schölkopf & Smola, 2002). Let K : Rd × Rd → R be a
symmetric positive definite kernel, giving rise to a Repro-
ducing Kernel Hilbert Space FK with an associated feature
mapping at each point x ∈ Rd called φx : Rd → FK where
φx(.) = K(x, .) i.e. φx(y) = K(x, y). FK has an associ-
ated inner product 〈φu, φv〉K = K(u, v). For any f ∈ FK ,
we have f(x) = 〈f, φx〉K .

Define the normalized feature map

φ̃x =
φx√
K(x, x)

∈ FK and φ̃X := [φ̃xi
]n1 .

For any function f ∈ FK , we use the following notation

Y f̃(X) := 〈f, Y φ̃X〉K = [yi〈f, φ̃xi
〉K ]n1 =

[
yif(xi)√
K(xi,xi)

]n
1
.

We analogously define the normalized margin here to be

ρK := sup
‖f‖K=1

inf
p∈∆n

〈
Y f̃(X), p

〉
. (5)

Consider the following regularized empirical loss function

L(f) =
{

sup
p∈∆n

〈
−Y f̃(X), p

〉}
+ 1

2‖f‖
2
K . (6)

Denoting t := ‖f‖K > 0 and writing f = t
(

f
‖f‖K

)
= tf̄ ,

let us calculate the minimum value of this function

inf
f∈FK

L(f) = inf
t>0

inf
‖f̄‖K=1

sup
p∈∆n

〈−〈tf̄ , Y φ̃X〉K , p〉+ t2

2

= inf
t>0

{
−tρK + 1

2 t
2
}

= − 1
2ρ

2
K when t = ρK > 0. (7)

Since maxp∈∆n

〈
−Y f̃(X), p

〉
is some empirical loss

function on the data and 1
2‖f‖

2
K is an increasing function

of ‖f‖K , the Representer Theorem (Schölkopf et al., 2001)
implies that the minimizer of the above function lies in the
span of φxi

s (also the span of the yiφ̃xi
s). Explicitly,

arg min
f∈FK

L(f) =
n∑
i=1

αiyiφ̃xi
= 〈Y φ̃X , α〉. (8)

Substituting this back into Eq.(6), we can define

L(α) :=
{

sup
p∈∆n

〈−α, p〉
G

}
+ 1

2‖α‖
2
G, (9)

whereG is a normalized signed Gram matrix withGii = 1,

Gji = Gij := yiyjK(xi,xj)√
K(xi,xi)K(xj ,xj)

= 〈yiφ̃xi , yj φ̃xj 〉K ,

and 〈p, α〉
G

:= p>Gα, ‖α‖G :=
√
α>Gα. One can verify

that G is a PSD matrix and the G-norm ‖.‖G is a semi-
norm, whose properties are of great importance to us.
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3.1. Some Interesting and Useful Lemmas

The first lemma justifies our algorithms’ exit condition.
Lemma 1. L(α) < 0 implies Gα > 0 and there exists a
perfect classifier iff Gα > 0.
Proof. L(α) < 0 ⇒ supp∈∆n

〈−Gα, p〉 < 0 ⇔ Gα > 0.
Gα > 0⇒ fα := 〈α, Y φ̃X〉 is perfect since

yjfα(xj)√
K(xj , xj)

=
n∑
i=1

αi
yiyjK(xi, xj)√

K(xi, xi)K(xj , xj)

= Gjα > 0.

If a perfect classifier exists, then ρK > 0 by definition and

L(f∗) = L(α∗) = − 1
2ρ

2
K < 0 ⇒ Gα > 0,

where f∗, α∗ are the optimizers of L(f), L(α).

The second lemma bounds the G-norm of vectors.
Lemma 2. For any α ∈ Rn, ‖α‖G ≤ ‖α‖1 ≤

√
n‖α‖2.

Proof. Using the triangle inequality of norms, we get
√
α>Gα =

√〈
〈α, Y φ̃X〉, 〈α, Y φ̃X〉

〉
K

= ‖
∑
i

αiyiφ̃xi
‖K ≤

∑
i

‖αiyiφ̃xi
‖K

≤
∑
i

|αi|

∥∥∥∥∥yi φxi√
K(xi, xi)

∥∥∥∥∥
K

=
∑
i

|αi|,

where we used 〈φxi
, φxi
〉K = K(xi, xi).

The third lemma gives a new perspective on the margin.
Lemma 3. When ρK > 0, f maximizes the margin iff ρKf
optimizes L(f). Hence, the margin is equivalently

ρK = sup
‖α‖G=1

inf
p∈∆n

〈α, p〉
G
≤ ‖p‖G for all p ∈ ∆n.

Proof. Let fρ be any function with ‖fρ‖K = 1 that
achieves the max-margin ρK > 0. Then, it is easy to plug
ρKfρ into Eq. (6) and verify that L(ρKfρ) = − 1

2ρ
2
K and

hence ρKfρ minimizes L(f).

Similarly, let fL be any function that minimizes L(f),
i.e. achieves the value L(fL) = − 1

2ρ
2
K . Defin-

ing t := ‖fL‖K , and examining Eq. (7), we see that
L(fL) cannot achieve the value − 1

2ρ
2
K unless t = ρK

and supp∈∆n

〈
−Y f̃L(X), p

〉
= −ρ2

K which means that
fL/ρK must achieve the max-margin.

Hence considering only f =
∑
i αiyiφ̃xi

is acceptable for
both. Plugging this into Eq. (5) gives the equality and

ρK = inf
p∈∆n

sup
‖α‖G=1

〈α, p〉
G
≤ sup
‖α‖G=1

〈α, p〉
G

≤ ‖p‖G by applying Cauchy-Schwartz

(can also be seen by going back to function space).

4. Smoothed Normalized Kernel Perceptron
Define the distribution over the worst-classified points

p(f) := arg min
p∈∆n

〈
Y f̃(X), p

〉
or p(α) := arg min

p∈∆n

〈α, p〉
G
. (10)

Algorithm 3 Normalized Kernel Perceptron (NKP)
Set α0 := 0
for k = 0, 1, 2, 3, ... do

if Gαk > 0n then
Exit, with αk as solution

else
θk := 1

k+1
αk+1 := (1− θk)αk + θkp(αk)

end if
end for

Implicitly fk+1 = (1− θk)fk + θk〈Y φ̃X , p(fk)〉

= fk − θk
(
fk − 〈Y φ̃X , p(fk)〉

)
= fk − θk∂L(fk)

and hence the Normalized Kernel Perceptron (NKP) is a
subgradient algorithm to minimize L(f) from Eq. (6).

Remark. Lemma 3 yields deep insights. Since NKP can
get arbitrarily close to the minimizer of strongly convex
L(f), it also gets arbitrarily close to a margin maximizer. It
is known that it finds a perfect classifier in 1/ρ2

K iterations
- we now additionally infer that it will continue to improve
to find an approximate max-margin classifier. While both
classical and normalized Perceptrons find perfect classifiers
in the same time, the latter is guaranteed to improve.

Remark. αk+1 is always a probability distribution. Cu-
riously, a guarantee that the solution will lie in ∆n is not
made by the Representer Theorem in Eq. (8) - any α ∈ Rn
could satisfy Lemma 1. However, since NKP is a subgra-
dient method for minimizing Eq. (6), we know that we will
approach the optimum while only choosing α ∈ ∆n.

Define the smooth minimizer analogous to Eq. (10) as

pµ(α) := arg min
p∈∆n

{
〈α, p〉

G
+ µd(p)

}
(11)

=
e−Gα/µ

‖e−Gα/µ‖1
,

where d(p) :=
∑
i

pi log pi + log n (12)

is 1-strongly convex with respect to the `1-norm (Nesterov,
2005). Define a smoothened loss function as in Eq. (9)

Lµ(α) = sup
p∈∆n

{
− 〈α, p〉

G
− µd(p)

}
+ 1

2‖α‖
2
G.

Note that the maximizer above is precisely pµ(α).
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Algorithm 4 Smoothed Normalized Kernel Perceptron
Set α0 = 1n/n, µ0 := 2, p0 := pµ0(α0)
for k = 0, 1, 2, 3, ... do

if Gαk > 0n then
Halt: αk is solution to Eq. (8)

else
θk := 2

k+3

αk+1 := (1− θk)(αk + θkpk) + θ2
kpµk

(αk)
µk+1 = (1− θk)µk
pk+1 := (1− θk)pk + θkpµk+1(αk+1)

end if
end for

Lemma 4 (Lower Bound). At any step k, we have

Lµk
(αk) ≥ L(αk)− µk log n.

Proof. First note that supp∈∆n
d(p) = log n. Also,

sup
p∈∆n

{
− 〈α, p〉

G
− µd(p)

}
≥ sup

p∈∆n

{
− 〈α, p〉

G

}
− sup
p∈∆n

{
µd(p)

}
.

Combining these two facts gives us the result.

Lemma 5 (Upper Bound). In any round k, SNKP satisfies

Lµk
(αk) ≤ − 1

2‖pk‖
2
G.

Proof. We provide a concise, self-contained and unified
proof by induction in the Appendix for Lemma 5 and
Lemma 8, borrowing ideas from Nesterov’s excessive gap
technique (Nesterov, 2005) for smooth minimization of
structured non-smooth functions.

Finally, we combine the above lemmas to get the following
theorem about the performance of SNKP.
Theorem 1. The SNKP algorithm finds a perfect classifier
f ∈ FK when one exists in O

(√
logn
ρK

)
iterations.

Proof. Lemma 4 gives us for any round k,

Lµk
(αk) ≥ L(αk)− µk log n.

From Lemmas 3, 5 we get

Lµk
(αk) ≤ − 1

2p
>
k Gpk ≤ − 1

2ρ
2
K .

Combining the two equations, we get that

L(αk) ≤ µk log n− 1
2ρ

2
K .

Noting that µk = 4
(k+1)(k+2) < 4

(k+1)2 , we see that
L(αk) < 0 (and hence we solve the problem by Lemma 1)
after at most k = 2

√
2 log n/ρK steps.

5. Infeasible Problems
What happens when the points are not separable by any
function f ∈ FK? We would like an algorithm that termi-
nates with a solution when there is one, and terminates with
a certificate of non-separability if there isn’t one. The idea
is based on theorems of the alternative like Farkas’ Lemma,
specifically a version of Gordan’s theorem (Chvatal, 1983):

Lemma 6 (Gordan’s Thm). Exactly one of the following
two statements can be true

1. Either there exists a w ∈ Rd such that for all i,

yi(w>xi) > 0,

2. Or, there exists a p ∈ ∆n such that

‖XY p‖2 = 0, (13)

or equivalently
∑
i piyixi = 0.

As mentioned in the introduction, the primal problem can
be interpreted as finding a vector in the interior of the dual
cone of cone{yixi}, which is infeasible the dual cone is
flat i.e. if cone{yixi} is not pointed, which happens when
the origin is in the convex combination of yixis.

We will generalize the following algorithm for linear fea-
sibility problems, that can be dated back to Von-Neumann,
who mentioned it in a private communication with Dantzig,
who later studied it himself (Dantzig, 1992).

Algorithm 5 Normalized Von-Neumann (NVN)
Initialize p0 = 1n/n,w0 = XY p0

for k = 0, 1, 2, 3, ... do
if ‖XY pk‖2 ≤ ε then

Exit and return pk as an ε-solution to (13)
else
j := arg mini yix>i wk
θk := arg minλ∈[0,1] ‖(1− λ)wk + λyjxj‖2
pk+1 := (1− θk)pk + θkej
wk+1 := XY pk+1 = (1− θk)wk + θkyjxj

end if
end for

This algorithm comes with a guarantee: If the problem (3)
is infeasible, then the above algorithm will terminate with
an ε-approximate solution to (13) in 1/ε2 iterations.

(Epelman & Freund, 2000) proved an incomparable bound
- Normalized Von-Neumann (NVN) can compute an ε-
solution to (13) inO

(
1
ρ22

log
(

1
ε

))
and can also find a solu-

tion to the primal (using wk) in O
(

1
ρ22

)
when it is feasible.

We derive a smoothed variant of NVN in the next section,
after we prove some crucial lemmas in RKHSs.
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5.1. A Separation Theorem for RKHSs

While finite dimensional Euclidean spaces come with
strong separation guarantees that come under various
names like the separating hyperplane theorem, Gordan’s
theorem, Farkas’ lemma, etc, the story isn’t always the
same for infinite dimensional function spaces which can
often be tricky to deal with. We will prove an appropriate
version of such a theorem that will be useful in our setting.

What follows is an interesting version of the Hahn-Banach
separation theorem, which looks a lot like Gordan’s theo-
rem in finite dimensional spaces. The conditions to note
here are that either Gα > 0 or ‖p‖G = 0.

Theorem 2. Exactly one of the following has a solution:
1. Either ∃f ∈ FK such that for all i,

yif(xi)√
K(xi, xi)

= 〈f, yiφ̃xi〉K > 0 i.e. Gα > 0,

2. Or ∃p ∈ ∆n such that∑
i

piyiφ̃xi
= 0 ∈ FK i.e. ‖p‖G = 0. (14)

Proof. Consider the following set

Q =

{
(f, t) =

(∑
i

piyiφ̃xi
,
∑
i

pi

)
: p ∈ ∆n

}
= conv

[
(y1φ̃x1 , 1), ..., (ynφ̃xn

, 1)
]

⊆ FK × R.

If (2) does not hold, then it implies that (0, 1) /∈ Q. SinceQ
is closed and convex, we can find a separating hyperplane
betweenQ and (0, 1), or in other words there exists (f, t) ∈
FK × R such that〈

(f, t), (g, s)
〉
≥ 0 ∀(g, s) ∈ Q

and
〈

(f, t), (0, 1)
〉

< 0.

The second condition immediately yields t < 0. The first
condition, when applied to (g, s) = (yiφ̃xi

, 1) ∈ Q yields

〈f, yiφ̃xi
〉K + t ≥ 0

⇔ yif(xi)√
K(xi, xi)

> 0

since t < 0, which shows that (1) holds.

It is also immediate that if (2) holds, then (1) cannot.

Note that G is positive semi-definite - infeasibility requires
both that it is not positive definite, and also that the witness
to p>Gp = 0 must be a probability vector. Similarly, while
it suffices thatGα > 0 for some α ∈ Rn, but coincidentally
in our case α will also lie in the probability simplex.

5.2. The infeasible margin ρK

Note that constraining ‖f‖K = 1 (or ‖α‖G = 1) in Eq. (5)
and Lemma 3 allows ρK to be negative in the infeasible
case. If it was ≤, then ρK would have been non-negative
because f = 0 (ie α = 0) is always allowed.

So what is ρK when the problem is infeasible? Let

conv(Y φ̃X) :=
{∑

i

piyiφ̃xi
|p ∈ ∆n

}
⊂ FK

be the convex hull of the yiφ̃xi
s.

Theorem 3. When the primal is infeasible, the margin1 is

|ρK | = δmax := sup
{
δ
∣∣ ‖f‖K ≤ δ ⇒ f ∈ conv(Y φ̃X)

}
Proof. (1) For inequality ≥. Choose any δ such that f ∈
conv(Y φ̃X) for any ‖f‖K ≤ δ. Given an arbitrary f ′ ∈
FK with ‖f ′‖K = 1, put f̃ := −δf ′.

By our assumption on δ, we have f̃ ∈ conv(Y φ̃X) imply-
ing there exists a p̃ ∈ ∆n such that f̃ = 〈Y φ̃X , p̃〉 . Also〈

f ′, 〈Y φ̃X , p̃〉
〉
K

= 〈f ′, f̃〉K

= −δ‖f ′‖2K = −δ.

Since this holds for a particular p̃, we can infer

inf
p∈∆n

〈
f ′, 〈Y φ̃X , p̃〉

〉
K
≤ −δ.

Since this holds for any f ′ with ‖f ′‖G = 1, we have

sup
‖f‖K=1

inf
p∈∆n

〈
f ′, 〈Y φ̃X , p̃〉

〉
K
≤ −δ i.e. |ρK | ≥ δ.

(2) For inequality ≤. It suffices to show ‖f‖K ≤ |ρK | ⇒
f ∈ conv(Y φ̃X). We will prove the contrapositive f /∈
conv(Y φ̃X)⇒ ‖f‖K > |ρK |.

Since ∆n is compact and convex, conv(Y φ̃X) ⊂ FK is
closed and convex. Therefore if f /∈ conv(Y φ̃X), then
there exists g ∈ FK with ‖g‖K = 1 that separates f and
conv(Y φ̃X), i.e. for all p ∈ ∆n,

〈g, f〉K < 0 and 〈g, 〈Y φ̃X , p〉〉K ≥ 0
i.e. 〈g, f〉K < inf

p∈∆n

〈g, 〈Y φ̃X , p〉〉K

≤ sup
‖f‖K=1

inf
p∈∆n

〈f, 〈Y φ̃X , p〉〉K = ρK .

Since ρK < 0 |ρK | < |〈f, g〉K |
≤ ‖f‖K‖g‖K = ‖f‖K .

1We thank a reviewer for pointing out that by this definition,
ρK might always be 0 for infinite dimensional RKHSs because
there are always directions perpendicular to the finite-dimensional
hull - we conjecture the definition can be altered to restrict atten-
tion to the relative interior of the hull, making it non-zero.



Margins, Kernels and Non-linear Smoothed Perceptron

6. Kernelized Primal-Dual Algorithms
The preceding theorems allow us to write a variant of the
Normalized VonNeumann algorithm from the previous sec-
tion that is smoothed and works for RKHSs. Define

W :=
{
p ∈ ∆n

∣∣∣∑
i

piyiφ̃xi
= 0
}

=
{
p ∈ ∆n

∣∣∣‖p‖G = 0
}

as the set of witnesses to the infeasibility of the primal.
The following lemma bounds the distance of any point in
the simplex from the witness set by its ‖.‖G norm.

Lemma 7. For all q ∈ ∆n, the distance to the witness set

dist(q,W ) := min
w∈W

‖q − w‖2 ≤ min

{
√

2,
√

2‖q‖G
|ρK |

}
.

As a consequence, ‖p‖G = 0 iff p ∈W .

Proof. This is trivial for p ∈W . For arbitrary p ∈ ∆n\W ,
let p̃ := − |ρK |p

‖p‖G
so that ‖〈Y φ̃X , p̃〉‖K = ‖p̃‖G ≤ |ρK |.

Hence by Theorem 3, there exists α ∈ ∆n such that

〈Y φ̃X , α〉 = 〈Y φ̃X , p̃〉.

Let β = λα+ (1− λ)p where λ = ‖p‖G

‖p‖G+|ρK | . Then

〈Y φ̃X , β〉 =
1

‖p‖G + |ρ|K

〈
Y φ̃X , ‖p‖Gα+ |ρK |p

〉
=

1
‖p‖G + |ρ|K

〈Y φ̃X , ‖p‖Gp̃+ |ρK |p〉

= 0,

so β ∈W (by definition of what it means to be in W ) and

‖p− β‖2 = λ‖p− α‖2 ≤ λ
√

2 ≤ min

{
√

2,
√

2‖q‖G
|ρK |

}
.

We take min with
√

2 because ρK might be 0.

Hence for the primal or dual problem, points with small G-
norm are revealing - either Lemma 3 shows that the margin
ρK ≤ ‖p‖G will be small, or if it is infeasible then the
above lemma shows that it is close to the witness set.

We need a small alteration to the smoothing entropy prox-
function that we used earlier. We will now use

dq(p) = 1
2‖p− q‖

2
2

for some given q ∈ ∆n, which is strongly convex with
respect to the `2 norm. This allows us to define

pqµ(α) = arg min
p∈∆n

〈Gα, p〉+
µ

2
‖p− q‖22,

Lqµ(α) = sup
p∈∆n

{
− 〈α, p〉G − µdq(p)

}
+ 1

2‖α‖
2
G,

which can easily be found by sorting the entries of q− Gα
µ .

Algorithm 6 Smoothed Normalized Kernel Perceptron-
VonNeumann (SNKPV N(q, δ))
input q ∈ ∆n, accuracy δ > 0

Set α0 = q, µ0 := 2n, p0 := pqµ0
(α0)

for k = 0, 1, 2, 3, ... do
if Gαk > 0n then

Halt: αk is solution to Eq. (8)
else if ‖pk‖G < δ then

Return pk
else
θk := 2

k+3

αk+1 := (1− θk)(αk + θkpk) + θ2
k p

q
µk

(αk)
µk+1 = (1− θk)µk
pk+1 := (1− θk)pk + θk p

q
µk+1

(αk+1)
end if

end for

When the primal is feasible, SNKPVN is similar to SNKP.
Lemma 8 (When ρK > 0 and δ < ρK). For any q ∈ ∆n,

− 1
2‖pk‖

2
G ≥ Lqµk

(αk) ≥ L(αk)− µk.

Hence SNKPVN finds a separator f in O
(√

n
ρK

)
iterations.

Proof. We give a unified proof for the first inequality and
Lemma 5 in the Appendix. The second inequality mimics
Lemma 4. The final statement mimics Theorem 1.

The following lemma captures the near-infeasible case.
Lemma 9 (When ρK < 0 or δ > ρK). For any q ∈ ∆n,

− 1
2‖pk‖

2
G ≥ Lqµk

(αk) ≥ − 1
2µkdist(q,W )2.

Hence SNKPVN finds a δ-solution in at most
O
(

min
{√

n
δ ,
√
n‖q‖G

δ|ρK |

})
iterations.

Proof. The first inequality is the same as in the above
Lemma 8, and is proved in the Appendix.

Lqµk
(αk) = sup

p∈∆n

{
− 〈α, p〉G − µkdq(p)

}
+ 1

2‖α‖
2
G

≥ sup
p∈W

{
− 〈α, p〉G − µkdq(p)

}
= sup

p∈W

{
− 1

2µk‖p− q‖
2
2

}
= − 1

2µkdist(q,W )2

≥ −µk min
{

2, ‖q‖
2
G

|ρK |2

}
using Lemma 7.

Since µk = 4n
(k+1)(k+2) ≤

4n
(k+1)2 we get

‖pk‖G ≤
2
√
n

(k + 1)
min

{√
2,
‖q‖G
ρK

}
.

Hence ‖p‖G ≤ δ after 2
√
n
δ min

{√
2, ‖q‖G

ρK

}
steps.
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Using SNKPVN as a subroutine gives our final algorithm.

Algorithm 7 Iterated Smoothed Normalized Kernel
Perceptron-VonNeumann (ISNKPV N(γ, ε))
input Constant γ > 1, accuracy ε > 0

Set q0 := 1n/n
for t = 0, 1, 2, 3, ... do
δt := ‖qt‖G/γ
qt+1 := SNKPV N(qt, δt)
if δt < ε then

Halt; qt+1 is a solution to Eq. (14)
end if

end for

Theorem 4. Algorithm ISNKPVN satisfies

1. If the primal (2) is feasible and ε < ρK , then each call
to SNKPVN halts in at most 2

√
2n

ρK
iterations. Algo-

rithm ISNKPVN finds a solution in at most log(1/ρK)
log(γ)

outer loops, bounding the total iterations by

O

(√
n

ρK
log
(

1
ρK

))
.

2. If the dual (14) is feasible or ε > ρK , then each call to
SNKPVN halts in at mostO

(
min

{√
n
ε ,

√
n

|ρK |

})
steps.

Algorithm ISNKPVN finds an ε-solution in at most
log(1/ε)
log(γ) outer loops, bounding the total iterations by

O

(
min

{√
n

ε
,

√
n

|ρK |

}
log
(

1
ε

))
.

Proof. First note that if ISNKPVN has not halted, then we
know that after t outer iterations, qt+1 has small G-norm:

‖qt+1‖G ≤ δt ≤
‖q0‖G
γt+1

. (15)

The first inequality holds because of the inner loop return
condition, the second because of the update for δt.

1. Lemma 3 shows that for all p we have ρK ≤ ‖p‖G, so
the inner loop will halt with a solution to the primal
as soon as δt ≤ ρK (so that ‖p‖G < δt ≤ ρK cannot
be satisfied for the inner loop to return). From Eq.
(15), this will definitely happen when ‖q0‖G

γt+1 ≤ ρK ,

ie within T = log(‖qo‖G/ρK)
log(γ) iterations. By Lemma 8,

each iteration runs for at most 2
√

2n
ρK

steps.

2. We halt with an ε-solution when δt < ε, which
definitely happens when ‖q0‖G

γt+1 < ε, ie within

T = log(‖qo‖G/ε)
log(γ) iterations. Since ‖qt‖G

δt
=

γ, by Lemma 9, each iteration runs for at most
O
(

min
{√

n
ε ,

√
n

|ρK |

})
steps.

7. Discussion
The SNK-Perceptron algorithm presented in this pa-
per has a convergence rate of

√
logn
ρK

and the It-
erated SNK-Perceptron-Von-Neumann algorithm has a
min

{√
n
ε ,

√
n

|ρK |

}
dependence on the number of points.

Note that both of these are independent of the underlying
dimensionality of the problem. We conjecture that it is pos-
sible to reduce this dependence to

√
log n for the primal-

dual algorithm also, without paying a price in terms of the
dependence on margin 1/ρ (or the dependence on ε).

It is possible that tighter dependence on n is possible if we
try other smoothing functions instead of the `2 norm used
in the last section. Specifically, it might be tempting to
smooth with the ‖.‖G semi-norm and define:

pqµ(α) = arg min
p∈∆n

〈α, p〉G +
µ

2
‖p− q‖2G

One can actually see that the proofs in the Appendix go
through with no dimension dependence on n at all! How-
ever, it is not possible to solve this in closed form - taking
α = q and µ = 1 reduces the problem to asking

pq(q) = arg min
p∈∆n

1
2‖p‖

2
G

which is an oracle for our problem as seen by equation (14)
- the solution’s G-norm is 0 iff the problem is infeasible.

In the bigger picture, there are several interesting open
questions. The ellipsoid algorithm for solving linear fea-
sibility problems has a logarithmic dependence on 1/ε, and
a polynomial dependence on dimension. Recent algorithms
involving repeated rescaling of the space like (Dunagan &
Vempala, 2008) have logarithmic dependence on 1/ρ and
polynomial in dimension. While both these algorithms are
poly-time under the real number model of computation of
(Blum et al., 1998), it is unknown whether there is any al-
gorithm that can achieve a polylogarithmic dependence on
the margin/accuracy, and a polylogarithmic dependence on
dimension. This is strongly related to the open question of
whether it is possible to learn a decision list polynomially
in its binary description length.

One can nevertheless ask whether rescaled smoothed per-
ceptron methods like (Dunagan & Vempala, 2008) can be
lifted to RKHSs, and whether using an iterated smoothed
kernel perceptron would yield faster rates. The recent work
(Soheili & Peña, 2013b) is a challenge to generalize - the
proofs relying on geometry involve arguing about volumes
of balls of functions in an RKHS - we conjecture that it is
possible to do, but we leave it for a later work.

Acknowledgements

We thank Negar Soheili, Avrim Blum for discussions and
the excellent reviewers for references and Footnote 1.



Margins, Kernels and Non-linear Smoothed Perceptron

References
Block, HD. The perceptron: A model for brain functioning.

i. Reviews of Modern Physics, 34(1):123, 1962.

Blum, Lenore, Cucker, Felipe, Shub, Michael, and Smale,
Steve. Complexity and real computation. Springer, 1998.

Cheung, Dennis and Cucker, Felipe. A new condition num-
ber for linear programming. Mathematical program-
ming, 91(1):163–174, 2001.

Chvatal, Vasek. Linear programming. Macmillan, 1983.

Clarkson, Kenneth L. Coresets, sparse greedy approxima-
tion, and the Frank-Wolfe algorithm. ACM Transactions
on Algorithms (TALG), 6(4):63, 2010.

Dantzig, George B. An ε-precise feasible solution to a
linear program with a convexity constraint in 1/ε2 iter-
ations independent of problem size. Technical report,
Technical Report, Stanford University, 1992.

Dunagan, John and Vempala, Santosh. A simple
polynomial-time rescaling algorithm for solving linear
programs. Mathematical Programming, 114(1):101–
114, 2008.

Epelman, Marina and Freund, Robert M. Condition num-
ber complexity of an elementary algorithm for comput-
ing a reliable solution of a conic linear system. Mathe-
matical Programming, 88(3):451–485, 2000.

Freund, Robert M and Vera, Jorge R. Condition-based
complexity of convex optimization in conic linear form
via the ellipsoid algorithm. SIAM Journal on Optimiza-
tion, 10(1):155–176, 1999.

Graepel, Thore, Herbrich, Ralf, and Williamson, Robert C.
From margin to sparsity. Advances in neural information
processing systems, pp. 210–216, 2001.

Littlestone, Nicholas. Redundant noisy attributes, attribute
errors, and linear-threshold learning using winnow. In
Proceedings of the fourth annual workshop on Computa-
tional learning theory, pp. 147–156. Morgan Kaufmann
Publishers Inc., 1991.

Nemirovski, Arkadi. Prox-method with rate of conver-
gence O(1/t) for variational inequalities with Lipschitz
continuous monotone operators and smooth convex-
concave saddle point problems. SIAM Journal on Op-
timization, 15(1):229–251, 2004.

Nesterov, Yu. Excessive gap technique in nonsmooth con-
vex minimization. SIAM Journal on Optimization, 16
(1):235–249, 2005.

Novikoff, Albert BJ. On convergence proofs for percep-
trons. Technical report, 1962.

Renegar, James. Incorporating condition measures into the
complexity theory of linear programming. SIAM Journal
on Optimization, 5(3):506–524, 1995.

Rosenblatt, Frank. The perceptron: a probabilistic model
for information storage and organization in the brain.
Psychological review, 65(6):386, 1958.

Saha, Ankan, Vishwanathan, SVN, and Zhang, Xinhua.
New approximation algorithms for minimum enclosing
convex shapes. In Proceedings of the Twenty-Second An-
nual ACM-SIAM Symposium on Discrete Algorithms, pp.
1146–1160. SIAM, 2011.

Schölkopf, Bernhard and Smola, Alexander J. Learning
with kernels. The MIT Press, 2002.

Schölkopf, Bernhard, Herbrich, Ralf, and Smola, Alex J.
A generalized representer theorem. In Computational
learning theory, pp. 416–426. Springer, 2001.

Soheili, Negar and Peña, Javier. A smooth perceptron al-
gorithm. SIAM Journal on Optimization, 22(2):728–737,
2012.

Soheili, Negar and Peña, Javier. A primal–dual smooth
perceptron–von Neumann algorithm. In Discrete Geom-
etry and Optimization, pp. 303–320. Springer, 2013a.

Soheili, Negar and Peña, Javier. A deterministic rescaled
perceptron algorithm. 2013b.

Tseng, Paul. On accelerated proximal gradient methods
for convex-concave optimization. SIAM Journal on Op-
timization, 2008.


