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Detailed calculations for Lemma 3.2
A straightforward derivation leads to

H12 = (Φ11 + a1)(Ψ22 + a2)− (Φ22 + a2)(Ψ11 + a1).

Setting H12 to zero gives:

a2 =

(
Ψ22 − Φ22

Ψ11 − Φ11

)
a1 +

Φ11Ψ22 − Φ22Ψ11

Ψ11 − Φ11
,

from which we can identify

c1 =
Ψ22 − Φ22

Ψ11 − Φ11
, c0 =

Φ11Ψ22 − Φ22Ψ11

Ψ11 − Φ11
. (1)

Noting that Ψ11 = Ψ22 = |Ψ|, we find the final expres-
sions for c0 and c1.

We further set H0 to zero and replace a2 by c1a1 + c0 to
obtain:

|Px||Ψ +A| = |Ψ|−1|Ψ +A| = eκ,

(Ψ11 + a1)(Ψ22 + c1a1 + c0)−Ψ2
12 = |Ψ|eκ,

a21 + a1
|Ψ|(1 + c1) + c0

c1
+
|Ψ|(c0 + 1− eκ)

c1
= 0 (2)

We can recognise in (2) a quadratic equation of the form
a21+ra1+s = 0. Since we assumed that dimension 2 is the
most informative we have that c0 > 0 and the solution for

a1 is then given by a1 = − r2+
(
r2

4 − s
)0.5

leading directly
to equation (11) of Lemma 3.2. Finally, we can compute
the critical value κc1 by noting that a1 = 0 is equivalent to
|Φ|(c0+1−eκ)/c1 = 0 which implies that c0+1−eκc

1 = 0.

Additional check for Algorithm 1
As an additional check of the path of stationary points ob-
tained with Algorithm 1, we verify that this path does not
have any bifurcations. We thereby insures that no other
path connecting stationary points rejoins or diverges from
the obtained path. A classical way to study bifurcations in
1-dimensional manifolds is provided by the Implicit func-
tion theorem. We first need to derive a set of equations
which characterise the set of stationary points. For a sta-
tionary point a∗ with strictly positive components, the non-
negativity constraints are inactive and εj = 0, ∀j. Sta-
tionary points are characterised by a vanishing Lagrangian

gradient ∇L = 0, meaning that ∇f(a∗) = λ∇g(a∗).
This proportionality condition can be translated into an or-
thogonality condition which eliminates λ: ∇f(a∗) must be
orthogonal to the (p − 1)-dimensional hyperplan orthog-
onal to ∇g(a∗). Constructing a basis (g1⊥, . . . , g

p−1
⊥ ) of

this hyperplan we obtain p − 1 orthogonality conditions:
∇f · gi⊥ = 0, i = 1, . . . , p − 1. Adding the constraint
g(a) = κ leads to a set of p equations in p+ 1 variables (a
and κ). In the following we denote the partial derivatives
of a real function f of a by ∂f

∂ai
(a) = fai , and the matrix of

partial derivatives for a vector-valued function F by JaF .
We further assume that Px, Px|y have full rank and write
Φ := P−1x|y ,Ψ := P−1x .

In the p-dimensional case, the hyperplan orthogonal to
∇g is (p − 1)-dimensional and a basis for it is given by
g1⊥, . . . , g

p−1
⊥ , where the vectors gi⊥ have −gai+1

at posi-
tion i, gai at position i + 1 and 0 otherwise. The set of
stationary points is then implicitly defined by the equation
H = 0, where H : Rp+1 → Rp is defined by

H(a, κ) =


H1(a, κ)

...
Hp−1(a, κ)
Hp(a, κ)

 =


∇f(a) · g1⊥(a)

...

∇f(a) · gp−1⊥ (a)
g(a)− κ

 . (3)

By the Implicit function theorem we know that if
|JaH(a∗)| 6= 0 for some point a∗ ∈ S, then in a neigh-
bourhood of a∗ the solution path S has no bifurcation.
While running Algorithm 1 we therefore regularly check
that this determinant remains non-zero: the algorithm pro-
ceeds by successive optimisation steps with decreasing κ
values {κ0 > · · · > κm} and for each value obtains an
optimum a∗(κ), for every such optimum we can then ver-
ify that |JaH(a∗)| 6= 0. This operation can be efficiently
conducted since the computation of all partial derivatives
∂Hi/∂aj requires only two matrix inversions. Indeed, for
i = 1, . . . , p− 1 we have

∂Hi

∂aj
(a) = fai+1,ajgai + fai+1

gai,aj

− fai,ajgai+1
− faigai+1,aj , (4)

fai = (Φ +A)−1ii , gai = (Ψ +A)−1ii ,

fai,aj = (−1)i+j(Φ +A)−1ij − (Φ +A)−1ii (Φ +A)−1jj ,

gai,aj = (−1)i+j(Ψ +A)−1ij − (Ψ +A)−1ii (Ψ +A)−1jj ,
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where fai,aj = ∂2fi
∂ai∂aj

(a) and gai,aj = ∂2gi
∂ai∂aj

(a).
The remaining elements of the Jacobian are given by
∂Hp/∂aj(a) = gaj = −((Ψ +A)−1jj )2 for j = 1, . . . , p.

Imputation of P and Z̄

Aim: sample from the posterior distribution p(P |Z̄ ∈
D) ∝ p(P ) p(Z̄ ∈ D|P ).
For the sampling we introduce a new variable, a pre-
cision matrix B such that P is the correlation matrix
obtained by scaling B−1, i.e. P has elements Pij =

B−1
ij√

B−1
ii B

−1
jj

. The prior distribution of B is Wishart: p(B) ∼

Wishart(ν,B0). We will use the notation P (B) to empha-
size that P is calculated as a function of B. The Bayesian
inference procedure described below and implemented as
in Algorithm 1 uses Gibbs sampling. This method is ana-
logue to the algorithm presented in (Hoff, 2007) but is
parametrized using a precision matrix B instead of a co-
variance matrix, we thereby avoid repetitive matrix inver-
sions. Sampling is made of three steps:

1. Sample Z̄|B, Z̄ ∈ D.

2. Sample B|Z̄ ∼ Wishart
(
ν + n,

(
B0 + Z̄T Z̄

)−1)
,

where n is the number of observations.

3. Compute P (B) such that Pij =
B−1

ij√
B−1

ii B
−1
jj

.

In step 1, we sample Z̄ iteratively over observations i =
1, . . . , n and dimensions j = 1, . . . , p+ q from a truncated
Gaussian as follows:

Z̄ij |B, Z̄ ∈ D, Z̄−i,−j ∼ T N
(
µij , σ

2
j , rl, ru

)
,

where µij = z̄i,−jB−j,j/(−Bjj) and σ2
j = 1/Bjj . Here

z̄i,−j denotes the ith observation from the previous sweep
from which dimension j has been removed, similarlyB−j,j
denotes the jth column ofB from which the row j has been
removed. The truncation boundaries are determined by the
condition Z̄ ∈ D: the lower bound rl is max{z̄ij |zij < r}
and the upper bound ru is min{z̄ij |zij > r}, where the
optima are taken over i for each dimension j separately.
Note that here the samples of Z̄ do not have unit variance.
Samples with unit variance can be obtained by scaling.

Algorithm 1 Imputation of Z̄ and P .
0. The prior distribution of B is Wishart(ν,B0);
1. Update Z̄:
for j = 1, . . . , p+ q do

Set σj := 1/Bjj ;
for r ∈ unique{z1j , . . . , znj} do

set lower bound to rl := max{z̄ij |zij < r};
set upper bound to ru := min{z̄ij |zij > r};
for i ∈ {1, . . . , n}|zij = r do

compute µij := zi,−jB−j,j/(−Bjj);
sample z̄ij ∼ T N (µij , σ

2
j , rl, ru) from a trun-

cated Gaussian;
end for

end for
end for
2. Sample B ∼Wishart

(
ν + n,

(
B0 + Z̄T Z̄

)−1)
.

3. Compute P : Pij = (B−1)ij/
√

(B−1)ii(B−1)jj .

Experimental details
We work with the data sets described in (Meyer et al.,
2012). The data is composed of a primary cohort (training
set) with 364 patients and an independent secondary cohort
(test set) with 221 patients. We use forX = (X1, . . . , X70)
the 70 different biomarkers expression measurements avail-
able in the training set. For Y = (Y1, . . . , Y9) we use 9 dif-
ferent clinical observations available again for the training
set. Theses 9 variables are:

1. last known stage of the tumor
2. T score tumor staging
3. clark level
4. tumor thickness
5. recurrence free survival time
6. event status for recurrence free survival
7. overall survival time
8. event status for overall survival
9. event status for overall survival (disease specific)
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