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A. Additional Model Details

In equation (6) we showed an alternative form of the joint
log likelihood that explicitly separates the deterministic and
stochastic parts of the generative model and corroborates
the view that the generative model works by applying a
complex non-linear transformation to a spherical Gaussian
distribution A/ (£€]0,I) such that the transformed distribu-
tion best matches the empirical distribution. We provide
more details on this view here for clarity.

From the model description in equations (3) and (4), we can
interpret the variables h; as deterministic functions of the
noise variables &;. This can be formally introduced as a co-
ordinate transformation of the probability density in equa-
tion (5): we perform a change of coordinates h; — ;. The
density of the transformed variables &; can be expressed in
terms of the density (5) times the determinant of the Jaco-
bian of the transformation p(¢;) = p(h;(§;)) %| Since

the co-ordinate transformation is linear we have |dhl | =

|G| and the distribution of &, is obtained as follows

oh
Pl&)=p(u(&) 5|
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Combining this equation with the distribution of the visible
layer we obtain equation (6).
A.1. Examples

Below we provide simple, explicit examples of generative
and recognition models.
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In the case of a two-layer model the activation h; (§, ,) in
equation (6) can be explicitly written as

hi(&,) =Wif(Gae&y) +Gi§; +bi. (23)

Similarly, a simple recognition model consists of a single
deterministic layer and a stochastic Gaussian layer with the
rank-one covariance structure and is constructed as:

q(&)lv) = N (& |p; (diag(d) +uu)~")  (24)
n=W,z+b, (25)

logd = W,z + by; u=Wyuz+b, (206
z= f(W,v+Db,) 27

where the function f is a rectified linearity (but other non-
linearities such as tanh can be used).

B. Proofs for the Gaussian Gradient Identities

Here we review the derivations of Bonnet’s and Price’s the-
orems that were presented in section 3.

Theorem B.1 (Bonnet’s theorem). Let f(§) : RY — R be
a integrable and twice differentiable function. The gradient
of the expectation of (&) under a Gaussian distribution
N (€|, C) with respect to the mean p can be expressed as
the expectation of the gradient of f(&).

VMEN(,L,C) [F(&)] = ]EN(“,C) (Ve f(8)],
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Proof.
Vi By 0 (@) = [ VN (€l 016
—— [ VeNEn. 0 f@)ie

&i=+o0

_ { / N(€lp, C)f(€)de -,

gi=—00
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where we have used the identity

in moving from step 1 to 2. From step 2 to 3 we have used
the product rule for integrals with the first term evaluating
to zero. O

Theorem B.2 (Price’s theorem). Under the same condi-
tions as before. The gradient of the expectation of f(€) un-
der a Gaussian distribution N (€|0, C) with respect to the
covariance C can be expressed in terms of the expectation
of the Hessian of f(€) as

Ve Ex.c) €)= 5Ex0.0) [Veue, S6)]

Proof.
Ve, 0.0 €)= [ Vo M(El0,C)5(€)de
—5 | Ve NEl0.0)r6)de
- / N(£]0,C)Ve, ¢, f(€)dé
- 00 Vess@)] @9

2

In moving from steps 1 to 2, we have used the identity
1

which can be verified by taking the derivatives on both
sides and comparing the resulting expressions. From step 2
to 3 we have used the product rule for integrals twice. [

C. Deriving Stochastic Back-propagation
Rules

In section 3 we described two ways in which to derive
stochastic back-propagation rules. We show specific ex-
amples and provide some more discussion in this section.

C.1. Using the Product Rule for Integrals

We can derive rules for stochastic back-propagation for
many distributions by finding a appropriate non-linear
function B(z; 6) that allows us to express the gradient with
respect to the parameters of the distribution as a gradient
with respect to the random variable directly. The approach
we described in the main text was:

VoE, [ (2)]= / Vop(e|6)f@)d = / V,p(@l0) B@) fa)dz

— (B@) @l pnie) — [ pal6)oBl) ()

where we have introduced the non-linear function B(x; 6)
to allow for the transformation of the gradients and have
applied the product rule for integrals (rule for integration by
parts) to rewrite the integral in two parts in the second line,
and the supp(x) indicates that the term is evaluated at the
boundaries of the support. To use this approach, we require
that the density we are analysing be zero at the boundaries
of the support to ensure that the first term in the second line
is zero.

As an alternative, we can also write this differently and find
an non-linear function of the form:

Vol [f(2)]= —Ep@io)[B(x)Vaf(2)].  GBD

Consider general exponential family distributions of the
form:

p(|0) = h(z) exp(n(6) "¢(z) — A®))  (32)

where h(x) is the base measure, 6 is the set of mean param-
eters of the distribution, 7 is the set of natural parameters,
and A(#) is the log-partition function. We can express the
non-linear function in (30) using these quantities as:

[Von(0)p(z) — Vo A(0)]
[V log[h(x)] +n(0)TVad(x)]

This can be derived for a number of distributions such as
the Gaussian, inverse Gamma, Log-Normal, Wald (inverse
Gaussian) and other distributions. We show some of these
below:

B(z) =

(33)

The B(x;0) corresponding to the second formulation can
also be derived and may be useful in certain situations, re-
quiring the solution of a first order differential equation.
This approach of searching for non-linear transformations
leads us to the second approach for deriving stochastic
back-propagation rules.
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C.2. Using Alternative Coordinate Transformations

There are many distributions outside the exponential family
that we would like to consider using. A simpler approach
is to search for a co-ordinate transformation that allows us
to separate the deterministic and stochastic parts of the dis-
tribution. We described the case of the Gaussian in section
3. Other distributions also have this property. As an exam-
ple, consider the Levy distribution (which is a special case
of the inverse Gamma considered above). Due to the self-
similarity property of this distribution, if we draw X from a
Levy distribution with known parameters X ~ Levy(u, A),
we can obtain any other Levy distribution by rescaling and
shifting this base distribution: kX +b ~ Levy(ku+0b, kc).

Many other distributions hold this property, allowing
stochastic back-propagation rules to be determined for dis-
tributions such as the Student’s t-distribution, Logistic dis-
tribution, the class of stable distributions and the class of
generalised extreme value distributions (GEV). Examples
of co-ordinate transformations 7(-) and the resulsting dis-
tributions are shown below for variates X drawn from the
standard distribution listed in the first column.

Std Distr. T(-) Gen. Distr.

GEV(u,0,0) mX-+b GEV(mu+b, mo, 0)
Exp(1) M—f—éln(l—f—exp(—X)) Logistic(u, 8)
Exp(1) AX® Weibull(\, k)

D. Variance Reduction using Control Variates

An alternative approach for stochastic gradient computa-
tion is commonly based on the method of control variates.
We analyse the variance properties of various estimators in
a simple example using univariate function. We then show
the correspondence of the widely-known REINFORCE al-
gorithm to the general control variate framework.

D.1. Variance discussion for REINFORCE
The REINFORCE estimator is based on
Vo, [f(E)] = Ep[(f(§) —b)Valogp(§l0)],  (34)

where b is a baseline typically chosen to reduce the variance
of the estimator.

The variance of (34) scales poorly with the number of

random variables (Dayan et al., 1995). To see this limita-
tion, consider functions of the form f(§) = Zfil f &),
where each individual term and its gradient has a
bounded variance, i.e., k; < Var[f(¢)] < £k, and
ki < Var[Ve, f(&)] < Ky for some 0 < K < Ky
and assume independent or weakly correlated ran-
dom variables. Given these assumptions the vari-
ance of GBP (7) scales as Var[Vg, f(§)] ~ O(1),
while the variance for REINFORCE (34) scales as

Var [ (£(¢) ~ E[f(€)] ~ O(F).

For the variance of GBP above, all terms in f(£) that
do not depend on &; have zero gradient, whereas for
REINFORCE the variance involves a summation over all
K terms. Even if most of these terms have zero expecta-
tion, they still contribute to the variance of the estimator.
Thus, the REINFORCE estimator has the undesirable
property that its variance scales linearly with the number
of independent random variables in the target function,
while the variance of GBP is bounded by a constant.

The assumption of weakly correlated terms is relevant for
variational learning in larger generative models where inde-
pendence assumptions and structure in the variational dis-
tribution result in free energies that are summations over
weakly correlated or independent terms.

D.2. Univariate variance analysis

In analysing the variance properties of many estimators, we
discuss the general scaling of likelihood ratio approaches in
appendix D. As an example to further emphasise the high-
variance nature of these alternative approaches, we present
a short analysis in the univariate case.

Consider a random variable p(¢) = N'(€|u, 0?) and a sim-
ple quadratic function of the form
§2

(€)= ey (35)

For this function we immediately obtain the following vari-
ances

Var[Vef(€)] = o (36)
Var[Ve: f(§)] =0 (37)
Var] €-w Vef(©)] =2¢%0% + p°c® (38

C1 (416) - ELF©)] = 2% + Se?o® (39

Var|

Equations (36), (37) and (38) correspond to the variance of
the estimators based on (7), (8), (10) respectively whereas
equation (39) corresponds to the variance of the REIN-
FORCE algorithm for the gradient with respect to .
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From these relations we see that, for any parameter con-
figuration, the variance of the REINFORCE estimator is
strictly larger than the variance of the estimator based on
(7). Additionally, the ratio between the variances of the for-
mer and later estimators is lower-bounded by 5/2. We can
also see that the variance of the estimator based on equation
(8) is zero for this specific function whereas the variance of
the estimator based on equation (10) is not.

E. Estimating the Marginal Likelihood

We compute the marginal likelihood by importance sam-
pling by generating S samples from the recognition model
and using the following estimator:

1 G p(vIn(EW))pE®)
VESL T )

;&9 ~ g(glv)
(40)

F. Missing Data Imputation

Image completion can be approximatively achieved by a
simple iterative procedure which consists of (i) initializing
the non-observed pixels with random values; (ii) sampling
from the recognition distribution given the resulting image;
(iii) reconstruct the image given the sample from the recog-
nition model; (iv) iterate the procedure.

We denote the observed and missing entries in an obser-
vation as v, v,,, respectively. The observed v, is fixed
throughout, therefore all the computations in this section
will be conditioned on v,. The imputation procedure can
be written formally as a Markov chain on the space of miss-
ing entries v,,, with transition kernel 7% (v/,, |v,,, v, ) given

by
TV, Vi, Vo) = //

where v = (v, Vo).

\Vol&)a(€lv)dvede, (41)

Provided that the recognition model ¢(£|v) constitutes a
good approximation of the true posterior p(£|v), (41) can
be seen as an approximation of the kernel

TV, Vi, Vo) = //

The kernel (42) has two important properties: (i) it
has as its eigen-distribution the marginal p(v,,|v,); (ii)
T(V],|Vin, Vo) > 0 ¥v,, v, vi,. The property (i) can
be derived by applying the kernel (42) to the marginal
p(Vim|Vo) and noting that it is a fixed point. Property (ii) is
an immediate consequence of the smoothness of the model.

Vol&)p(Ev)dvede.  (42)

We apply the fundamental theorem for Markov chains

(Neal, 1993, pp. 38) and conclude that given the above
properties, a Markov chain generated by (42) is guaranteed

to generate samples from the correct marginal p(v,,|v,).

In practice, the stationary distribution of the completed pix-
els will not be exactly the marginal p(v,,|v,), since we use
the approximated kernel (41). Even in this setting we can
provide a bound on the L; norm of the difference between
the resulting stationary marginal and the target marginal
p(Vin|Vo)

Proposition F.1 (L; bound on marginal error ).
recognition model q(&|v) is such that for all &

Je > 0 s.t. /‘(W

then the marginal p(v,,|v,) is a weak fixed point of the
kernel (41) in the following sense:

/|/<Tq(vinlvm,vo)_

T(v:n|v7n7 VU)) p(VTVL|vO)de

If the

—p(v[§)|dv<e (43)

dvi, <e. (44)

Proof.

/’/[Tq(vmvm»Vo)—T(v;nleVo)]P(Vm|Vo)dvm

= [1][ ntvic

—p(&|Vim, Vo)]dvmdE|dv),

[ |[piomriem B
= [ s iem@aem ) - svigiavae

< [ [190) [ |atemZ2 ~ pivie)
/ / / ’ p(§)
<e

where we apply the condition (43) to obtain the last state-
ment. O

V:)|£)p(vm7 Vo) [Q(ﬂvma Vo)

- p<£|v>]p(v)p(§)dvd5} dv’

av’

dvdédv’

That is, if the recognition model is sufficiently close to the
true posterior to guarantee that (43) holds for some accept-
able error € than (44) guarantees that the fixed-point of the
Markov chain induced by the kernel (41) is no further than
¢ from the true marginal with respect to the L; norm.

/
dv,,
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G. Variational Bayes for Deep Directed
Models

In the main test we focussed on the variational problem of
specifying an posterior on the latent variables only. It is
natural to consider the variational Bayes problem in which
we specify an approximate posterior for both the latent
variables and model parameters.

Following the same construction and considering an Gaus-
sian approximate distribution on the model parameters 67,
the free energy becomes:

reconstruction error

F(V) ==Y Eyllogp(valh(§,))]

1
+ B Z [||Hn,lH2 +TrCpy —log|Cry| — 1]

n,l

latent regularization term

m2 7
Z —L 4+ 2 4+logk —logT; — 1|, (45)
— s K

1
2

parameter regularization term

which now includes an additional term for the cost of using
parameters and their regularisation. We must now compute
the additional set of gradients with respect to the parame-
ter’s mean m; and variance 7; are:

Vi, F(v) = =B, [Vos logp(v[n(€)] +m;  (46)

0, —m;
V(W) = 4B | U logp(vIn)|
4,
1 1
_——— 47
+ 2K 27']‘ ( )

H. Additional Simulation Details

We use training data of various types including binary and
real-valued data sets. In all cases, we train using mini-

batches, which requires the introduction of scaling terms
in the free energy objective function (13) in order to main-
tain the correct scale between the prior over the parameters
and the remaining terms (Ahn et al., 2012; Welling & Teh,
2011). We make use of the objective:

F(V) ==X _E,[logp(valh(£,))] + 267]°

DO >

+ 55 [t l? + Te(Cri) — log [Crt| — 1], (48)
n,l

where n is an index over observations in the mini-batch and

A is equal to the ratio of the data-set and the mini-batch
size. At each iteration, a random mini-batch of size 200

observations is chosen.

All parameters of the model were initialized using sam-
ples from a Gaussian distribution with mean zero and vari-
ance 1 x 100; the prior variance of the parameters was
% = 1 x 10%. We compute the marginal likelihood on the
test data by importance sampling using samples from the
recognition model; we describe our estimator in appendix
E.
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