Supplementary Material for Learning Ordered Representations with Nested
Dropout

A. Proofs for Section 3.2

Theorem 1. Every optimal solution of the nested dropout
problem is necessarily an optimal solution of the standard
autoencoder problem.

Proof. Let the nested dropout autoencoder be of latent di-
mension K. Recall that the nested dropout objective func-
tion in Equation (11) is a strictly positive mixture of the K
different b-truncation problems. As described in Subsec-
tion 3.1, an optimal solution to each b-truncation must be
of the form X; = T,X, R, T} = Qu,T;l for some
invertible transformation T',. We note that the PCA de-
composition is a particular optimal solution for each b that
is given for the choice T, = I;. As such, the PCA de-
composition exactly minimizes every term in the nested
dropout mixture, and therefore must be a global solution
of the nested dropout problem. This means that every op-
timal solution of the nested dropout problem must exactly
minimize every term in the nested dropout mixture. In par-
ticular, one of these terms corresponds to the K -truncation
problem, which is in fact the original autoencoder prob-
lem. ]

Denote T, = J g, T'J L _p as the b-th leading principal
minor and its its bottom right corner as t, = Tpp.

Lemma 1. Let T € RE5XE be commutative in its trun-
cation and inversion. Then all the diagonal elements of T

are nonzero, and for eachb = 2, ..., K, either Ay, = 0 or
B, =0.
Proof. We have detT), = detT,_jdet(t, —

BT, 1 A;) # 0 since T}, ; is invertible. ~Since
T is also invertible, then ¢, — BbTIbl_lAb # 0. As
such, we write T'|; in terms of blocks T'j,_1, Ay, Bs, ts,
and apply blockwise matrix inversion to find that lelq =
T, + T, Aty — BT}, | Ay) ' BT, | which
reduces to A, B, = 0. Now, assume by contradiction that
t, = 0. This means that either bottom row or the rightmost
column of T'|; must be all zeros, which contradicts with
the invertibility of T"},. |

Theorem 2. Every optimal solution of the nested dropout
problem must be of the form

X* = TZRT (1)
r' = QT ', 2)
for some matrix T € REXE that is commutative in its

truncation and inversion.

Proof. Consider an optimal solution X ™, I'* of the nested
dropout problem. For each b-truncation, as established in
the proof of Theorem 1, it must hold that

TyJ sy SR (3)
QJk T, " . 4)

X
r;, =

However, it must also be true that X, = X 3, 'y = '
by the definition of the nested dropout objective in Equa-
tion (11). The first equation thus gives that Ty J —,p =
J Tk, and therefore Ty = Jx sy Ty = Ty
This establishes the fact that the optimal solution for each
b-truncation problem simply draws the b-th leading prin-
cipal minor from the same “global” matrix T' := Tg.
The second equation implies that for every b, it holds that
T T T5 oy = (Jg T J % ;)" and as such T is
commutative in its truncation and inversion. ]

Theorem 3. Under the orthonormality constraint r’r =
Iy, there exists a unique optimal solution for the nested
dropout problem, and this solution is exactly the set of the
K top eigenvectors of the covariance of Y, ordered by
eigenvalue magnitude. Namely, X* = SRT T* = Q.

Proof. The orthonormality constraint implies
(T7'Q)'QT™' = Ix which gives T" = T
Hence every row and every column must have unit norm.
We also have have that foreveryb=1,..., K

T), = (JxTJi )" (5)
= JrT" Tk, (6)
= Jrg T Ik, (7)
= (JgpTJI% )" (8)

T, 9)
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where in the last equation we applied Lemma 1 to Theorem
2. As such, every leading principal minor is also orthonor-
mal. For the sake of contradiction, assume there exist some
m,n, m # n such that T,,,, # 0. Without loss of general-
ity assume m < n. Then 22;11 T?, < 1, but this violates
the orthonormality of T',,_;. Thus it must be that the di-
agonal elements of T" are all identically 1, and therefore

T = Ig. The result follows. |



