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A. Proofs for Section 3.2
Theorem 1. Every optimal solution of the nested dropout
problem is necessarily an optimal solution of the standard
autoencoder problem.

Proof. Let the nested dropout autoencoder be of latent di-
mension K. Recall that the nested dropout objective func-
tion in Equation (11) is a strictly positive mixture of the K
different b-truncation problems. As described in Subsec-
tion 3.1, an optimal solution to each b-truncation must be
of the form X∗b = T bΣ↓bR

T ,Γ∗b = Q↓bT
−1
b for some

invertible transformation T b. We note that the PCA de-
composition is a particular optimal solution for each b that
is given for the choice T b = Ib. As such, the PCA de-
composition exactly minimizes every term in the nested
dropout mixture, and therefore must be a global solution
of the nested dropout problem. This means that every op-
timal solution of the nested dropout problem must exactly
minimize every term in the nested dropout mixture. In par-
ticular, one of these terms corresponds to the K-truncation
problem, which is in fact the original autoencoder prob-
lem. �

Denote T ↓b = JK→bTJT
K→b as the b-th leading principal

minor and its its bottom right corner as tb = Tbb.

Lemma 1. Let T ∈ RK×K be commutative in its trun-
cation and inversion. Then all the diagonal elements of T
are nonzero, and for each b = 2, . . . ,K, either Ab = 0 or
Bb = 0.

Proof. We have detT ↓b = detT ↓b−1 det(tb −
BbT

−1
↓b−1Ab) 6= 0 since T ↓b−1 is invertible. Since

T ↓b−1 is also invertible, then tb − BbT
−1
↓b−1Ab 6= 0. As

such, we write T ↓b in terms of blocks T ↓b−1,Ab,Bb, tb,
and apply blockwise matrix inversion to find that T−1↓b−1 =

T−1↓b−1 + T−1↓b−1Ab(tb −BbT
−1
↓b−1Ab)

−1BbT
−1
↓b−1 which

reduces to AbBb = 0. Now, assume by contradiction that
tb = 0. This means that either bottom row or the rightmost
column of T ↓b must be all zeros, which contradicts with
the invertibility of T ↓b. �

Theorem 2. Every optimal solution of the nested dropout
problem must be of the form

X∗ = TΣRT (1)
Γ∗ = QT−1 , (2)

for some matrix T ∈ RK×K that is commutative in its
truncation and inversion.

Proof. Consider an optimal solution X∗,Γ∗ of the nested
dropout problem. For each b-truncation, as established in
the proof of Theorem 1, it must hold that

X∗b = T bJK→bΣRT (3)
Γ∗b = QJT

K→bT
−1
b . (4)

However, it must also be true that Xb = X↓b,Γb = Γ↓b
by the definition of the nested dropout objective in Equa-
tion (11). The first equation thus gives that T bJK→b =
JK→bTK , and therefore T b = JK→bTKJT

K→b = T ↓b.
This establishes the fact that the optimal solution for each
b-truncation problem simply draws the b-th leading prin-
cipal minor from the same “global” matrix T := TK .
The second equation implies that for every b, it holds that
JK→bT

−1JT
K→b = (JK→bTJT

K→b)
−1 and as such T is

commutative in its truncation and inversion. �

Theorem 3. Under the orthonormality constraint ΓTΓ =
IK , there exists a unique optimal solution for the nested
dropout problem, and this solution is exactly the set of the
K top eigenvectors of the covariance of Y , ordered by
eigenvalue magnitude. Namely, X∗ = ΣRT ,Γ∗ = Q.

Proof. The orthonormality constraint implies
(T−1Q)TQT−1 = IK which gives T T = T−1.
Hence every row and every column must have unit norm.
We also have have that for every b = 1, . . . ,K

T T
↓b = (JK→bTJT

K→b)
T (5)

= JK→bT
TJT

K→b (6)
= JK→bT

−1JT
K→b (7)

= (JK→bTJT
K→b)

−1 (8)
= T−1↓b (9)
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where in the last equation we applied Lemma 1 to Theorem
2. As such, every leading principal minor is also orthonor-
mal. For the sake of contradiction, assume there exist some
m,n,m 6= n such that Tmn 6= 0. Without loss of general-
ity assume m < n. Then

∑n−1
p=1 T

2
mp < 1, but this violates

the orthonormality of T n−1. Thus it must be that the di-
agonal elements of T are all identically 1, and therefore
T = IK . The result follows. �


