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Abstract
Learning from multiple annotators took a valu-
able step towards modeling data that does not fit
the usual single annotator setting, since multi-
ple annotators sometimes offer varying degrees
of expertise. When disagreements occur, the es-
tablishment of the correct label through trivial so-
lutions such as majority voting may not be ad-
equate, since without considering heterogeneity
in the annotators, we risk generating a flawed
model. In this paper, we generalize GP classi-
fication in order to account for multiple annota-
tors with different levels expertise. By explicitly
handling uncertainty, Gaussian processes (GPs)
provide a natural framework for building proper
multiple-annotator models. We empirically show
that our model significantly outperforms other
commonly used approaches, such as majority
voting, without a significant increase in the com-
putational cost of approximate Bayesian infer-
ence. Furthermore, an active learning method-
ology is proposed, which is able to reduce anno-
tation cost even further.

1. Introduction
The problem of learning from multiple annotators occurs
frequently in supervised learning tasks where, for diverse
reasons such as cost or time, it is neither practical nor
desirable to have a single annotator labeling all the data.
With crowdsourcing (Howe, 2008) as a means for obtain-
ing very large sets of labeled data, the problem of learning
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from multiple annotators is receiving increasing attention
on behalf of researchers from various scientific communi-
ties, such as Speech, Music, Natural Language Processing,
Computer Vision, etc. For many of these communities, the
value of crowdsourcing platforms like Amazon Mechani-
cal Turk (AMT)1 and Crowdflower2, has been empirically
demonstrated. Concretely, it has been shown that, for many
supervised learning tasks, the quality of the labels provided
by multiple non-expert annotators can be as good as those
of “experts” (Snow et al., 2008).

From a more general perspective, the concept of crowd-
sourcing goes much beyond dedicated platforms such as
the AMT, and can often surface in more implicit ways. For
example, the social web, where users’ participation takes
various forms, provides many interesting kinds of multi-
annotator data (e.g. document tags, product ratings, user
clicks, etc.).

Furthermore, the multiple annotators setting is not limited
to the crowdsourcing phenomenon. For example, in the
field of Medical Diagnosis, it is reasonable (and common)
to have multiple “experts” providing their own opinions
about whether or not an observable mass in a medical im-
age is cancer, thereby avoiding the use of more invasive
procedures (e.g., biopsy).

For this kind of problems, an obvious solution is to use ma-
jority voting. However, majority voting relies on the fre-
quently wrong assumption that all annotators are equally
reliable. Such an assumption is particularly threatening in
more heterogeneous environments like AMT, where the re-
liability of the annotators can vary dramatically (Rodrigues
et al., 2013a). It is therefore clear that targeted approaches
for multiple-annotator settings are required. In fact, in the

1http://www.mturk.com
2http://crowdflower.com
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last few years, many approaches have been proposed for
the problem of supervised learning from multiple annota-
tors. These span different kinds of problems, such as re-
gression (Groot et al., 2011), classification (Raykar et al.,
2010), sequence labeling (Rodrigues et al., 2013b), ranking
(Wu et al., 2011), etc.

Despite the fact that crowdsourcing platforms like AMT
provide researchers with a less expensive source of labeled
data, for very large datasets the actual costs can still reach
unacceptable amounts. This is specially true if we resort
to repeated labeling (i.e. having the same instance labeled
by multiple annotators) as a way to cope with the hetero-
geneity in the reliabilities of the annotators. Hence, ideally
one would like to approach the problem of learning from
multiple annotators in an active learning setting, thereby
effectively reducing the annotation cost even further.

In this paper, we focus on classification problems, and gen-
eralize standard Gaussian process classifiers to explicitly
handle multiple annotators with different levels of exper-
tise. Gaussian processes (GPs) are flexible non-parametric
Bayesian models that fit well within the probabilistic mod-
eling framework (Barber, 2012). By explicitly handling
uncertainty, GPs provide a natural framework for dealing
with multiple annotators with different levels of expertise
in a proper way. Furthermore, contrasting with previous
works which usually rely on linear classifiers, we are bring-
ing a powerful non-linear Bayesian classifier to multiple-
annotator settings. Interestingly, it turns out that the com-
putational cost of approximate Bayesian inference with Ex-
pectation Propagation (EP) involved in this new model is
only greater up to a small factor (usually between 3 and 5)
when compared with standard GP classifiers. Finally, GPs
also provide a natural extension to active learning, thereby
allowing us to choose the best instances to label and the
best annotator to label them correctly in a simple and yet
principled way, as we will demonstrate later.

2. State of the art
The problem of learning from multiple annotators has been
around for quite some time, with the first notable early
works being done by Dawid & Skene (1979). However, it
was not until recently that the interest of the scientific com-
munity in the issue spiked, due to the massification of the
social media and the Internet. As crowdsourcing platforms
began getting the attention of researchers, new approaches
for learning from from multiple annotators also started to
appear. Raykar et al. (2010) proposed an approach for
jointly learning the levels of expertise of different anno-
tators and the parameters of a logistic regression classifier.
The authors demonstrate that, by treating the unobserved
true labels as latent variables, the proposed model signif-
icantly outperforms a standard logistic regression model

trained on the majority voting labels. Yan et al. (2010)
later extended this work to explicitly model the dependen-
cies of annotators’ labels on the instances they are labeling,
and afterwards to active learning settings (Yan et al., 2011).
Contrarily to these works, Welinder et al. (2010) approach
the problem of learning from multiple annotators from a
different perspective, and model each annotator as a multi-
dimensional classifier in a feature space.

The problem of rating annotators according to their exper-
tise is by itself a fundamental problem in the context of
crowdsourcing. With that purpose, Liu & Wang (2012) ex-
tend the original work of Dawid & Skene (1979), where
the annotators’ expertise is modeled by means of a con-
fusion matrix, by proposing a hierarchical Bayesian model,
which allows each annotator to have her own confusion ma-
trix, but at the same time regularizes these matrices through
Bayesian shrinkage.

From a regression perspective, the problem of learning
from multiple annotators has been addressed in the context
of Gaussian processes by Groot et al. (2011). In their work,
the authors assign different variances to the data points of
the different annotators, thereby allowing them to have dif-
ferent noise levels, which are then automatically estimated
by maximizing the marginal likelihood of the data.

On a different line of work, Bachrach et al. (2012) proposed
a probabilistic graphical model that jointly models the dif-
ficulties of questions, the abilities of participants and the
correct answers to questions in aptitude testing and crowd-
sourcing settings. By running approximate Bayesian in-
ference with EP, the authors are able to query the model
for the different variables of interest. Furthermore, by ex-
ploiting the principle of entropy, the authors devise an ac-
tive learning scheme, which queries the answers which are
more likely to reduce the uncertainty in the estimates of
the model parameters. However, this work does not ad-
dress the problem of explicitly learning a classifier from
multiple-annotator data.

With respect to active learning applications with Gaussian
processes, Lawrence et al. (2003) proposed a differential
entropy score, which favours points whose inclusion leads
to a large reduction in predictive (posterior) variance. This
approach was then extended by Kapoor et al. (2007), by
introducing a heuristic which balances posterior mean and
posterior variance. The active learning methodology we
propose further extends this work to multiple-annotator set-
tings and introduces a new heuristic for selecting the best
annotator to label an instance.

Annotation cost is an important issue in crowd labeling.
Aiming at reducing this cost, Chen et al. (2013) consider
the problem budget allocation in crowdsourcing environ-
ments, which they formulate as a Bayesian Markov Deci-
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sion Process (MDP). In order to cope with computational
tractability issues, the authors propose a new approximate
policy to allocate a pre-fixed amount of budget among
instance-worker pairs so that the overall accuracy can be
maximized.

3. Approach
3.1. Gaussian process classification

In standard classification with Gaussian processes, given a
set of N training input points X = [x1, ..., xN ]T and their
corresponding class labels y = [y1, ..., yN ]T , one would
like to predict the class membership probability for a new
test point x∗. This can be achieved by using a latent func-
tion f , whose value is then mapped into the [0, 1] inter-
val by means of the probit function. For the particular
case of binary classification, we shall adopt the convention
that y ∈ {0, 1}, where 1 denotes the positive class, and
0 the negative. Hence, the class membership probability
p(y = 1|x) can be written as Φ(f(x)), where Φ(.) is the
probit function. Gaussian process classification then pro-
ceeds by placing a GP prior over the latent function f(x).

A GP (Rasmussen & Williams, 2005) is a stochastic pro-
cess fully specified by a mean function m(x) = E[f(x)]
and a positive definite covariance function k(x; x′) =
V[f(x), f(x′)]. In order to make predictions for a new test
point x∗, we first compute the distribution of the latent vari-
able f∗ corresponding to the test point x∗

p(f∗|x∗,X, y) =

∫
p(f∗|x∗,X, f)p(f|X, y)df (1)

where f = [f1, ..., fN ]T , and then use this distribution to
compute the class membership distribution

p(y∗ = 1|x∗,X, y) =

∫
Φ(f∗)p(f∗|x∗,X, y)df∗. (2)

3.2. Learning from multiple annotators

When learning from multiple annotators, instead of a sin-
gle class label yi for the ith instance, we are given a vector
of class labels yi = [y1i , ..., y

R
i ], corresponding to the noisy

labels provided by the R annotators that labeled that in-
stance.3 Hence, a dataset D of size N is now defined as
D = {X,Y}, where Y = [y1, ..., yN ]T .

Let us now introduce a latent random variable z corre-
sponding to the true class label for a given input point x.
When learning from multiple annotators, our goal is to es-
timate the posterior distribution of z∗ for a new test point

3Notice that we are slightly changing notation from Sec-
tion 3.1. Namely, vector yi = [y1i , ..., y

R
i ] is not to be confused

with the vector y = [y1, ..., yN ]T of labels for the entire set of
input points X used in equations 1 and 2.

x∗. Mathematically, we want to compute

p(z∗ = 1|x∗,X,Y) =

∫
Φ(f∗)p(f∗|x∗,X,Y)df∗. (3)

The posterior distribution of the latent variable f∗ is given
by the following integral

p(f∗|x∗,X,Y) =

∫
p(f∗|x∗,X, f)p(f|X,Y)df. (4)

By making use of Bayes rule, the joint posterior distribu-
tion of the latent variables p(f|X,Y) becomes

p(f|X,Y) =
p(f|X)p(Y|f)
p(Y|X)

where the prior p(f|X) is a Gaussian distribution
N (f|m,K) with some mean vector m (usually m = 0) and
covariance K obtained by evaluating the covariance func-
tion k(x; x′) between all input points, p(Y|f) is the likeli-
hood term, and the denominator p(Y|X) corresponds to the
marginal likelihood of the data.

So far, we have not established how to model p(Y|f). In
order to do that, we make use of the latent variable z intro-
duced earlier, which corresponds to the (latent) true class
labels. Using this latent variable, we can define the data-
generating process to be the following: for each input point
xi there is a (latent) true class label zi, and the different
R annotators then provide noisy versions yri of zi. This
amounts to saying that p(yi|fi) =

∑
zi
p(zi|fi)p(yi|zi).

Assuming that the annotators make their decisions indepen-
dently of each others allows p(yi|zi) to factorize, yielding

p(yi|fi) =
∑
zi

p(zi|fi)
R∏

r=1

p(yri |zi)

where p(zi|fi) = Φ((−1)(1−zi)fi) is the probit likelihood
for values of zi ∈ {0, 1}, and

yri |zi = 1 ∼ Bernoulli(αr)

yri |zi = 0 ∼ Bernoulli(1− βr).

The parameters of these Bernoullis, αr and βr, can there-
fore be interpreted as the sensitivity and specificity, respec-
tively, of the rth annotator.

Since the values of z are not observed, we have to marginal-
ize over them by summing over all its possible values.
Hence,

p(f|X,Y) =
p(f|X)

∑
z p(Y|z)p(z|f)
p(Y|X)

where we introduced the vector z = [z1, ..., zN ]T .



Gaussian Process Classification and Active Learning with Multiple Annotators

By making use of the i.i.d. assumption of the data, we can
re-write the posterior of the latent variables f as

p(f|X,Y) =
1

Z
p(f|X)

N∏
i=1

∑
zi∈{0,1}

p(yi|zi)p(zi|fi) (5)

where Z is a normalization constant corresponding to the
marginal likelihood of the data p(Y|X). As with standard
GP classification, the non-Gaussian likelihood term deems
the posterior distribution of the latent variables p(f|X,Y)
also non-Gaussian, thus making the integral in eq. 4 in-
tractable. Hence, we proceed by approximating the pos-
terior distribution of the latent variables p(f|X,Y) with a
Gaussian distribution q(f|X,Y) = N (µ,Σ) using Expec-
tation Propagation (EP) (Minka, 2001).

In EP we approximate the likelihood by a local likelihood
approximation in the form of an unnormalized Gaussian
function in the latent variable fi:∑

zi∈{0,1}

p(yi|zi)p(zi|fi) ' ti(fi|Z̃, µ̃i, σ̃
2
i )

, Z̃iN (fi|µ̃i, σ̃
2
i )

which defines the site parameters Z̃, µ̃i and σ̃2
i of EP.

Also, in EP we abandon exact normalization for tractabil-
ity. The product of the (independent) likelihoods ti is then
(Rasmussen & Williams, 2005):

N∏
i=1

ti(fi|Z̃, µ̃i, σ̃
2
i ) = N (µ̃, Σ̃)

N∏
i=1

Z̃i

where µ̃ is a vector of µ̃i and Σ̃ is a diagonal matrix with
Σ̃ii = σ̃2

i .

The posterior p(f|X,Y) is then approximated by q(f|X,Y),
which is given by

q(f|X,Y) ,
1

ZEP
p(f|X)

N∏
i=1

ti(fi|Z̃, µ̃i, σ̃
2
i )

= N (µ,Σ) (6)

with µ = ΣΣ̃−1µ̃ and Σ = (K−1 + Σ̃−1)−1. The nor-
malization constant, ZEP = q(Y|X), is the EP algorithm’s
approximation to the normalization term Z used in eq. 5.

All there is to do now, is to choose the parameters of the
local approximating distributions ti. In EP, this consists of
four steps. In step 1, we compute the cavity distribution
q−i(fi) by dividing the approximate posterior marginal
q(fi|X,Y) = N (fi|µi, σi) by the approximate likelihood
term ti, yielding

q−i(fi) ∝
∫
p(f|X)

N∏
j 6=i

tj(fj , Z̃j , µ̃j , σ̃
2
j )dfj

, N (fi|µ−i, σ2
−i)

where
µ−i = σ2

−i(σ
−2
i µi − σ̃−2i µ̃i)

σ2
−i = (σ−2i − σ̃

−2
i )−1.

In step 2, we combine the cavity distribution with the exact
likelihood term

∑
zi∈{0,1} p(yi|zi)p(zi|fi) to get the de-

sired (non-Gaussian) marginal, given by

q̂(fi) , ẐiN (µ̂i, σ̂
2
i )

' q−i(fi)
∑

zi∈{0,1}

p(yi|zi)p(zi|fi).

By making use of the definitions of p(yi|zi) and p(zi|fi)
introduced earlier, this expression can be further manipu-
lated, giving

q̂(fi) ' q−i(fi)(1− Φ(fi))

R∏
r=1

p(yri |zi = 0)

+ q−i(fi)Φ(fi)

R∏
r=1

p(yri |zi = 1)

= biN (fi|µ−i, σ2
−i) + (ai − bi)Φ(fi)N (fi|µ−i, σ2

−i)
(7)

where we defined

ai =

R∏
r=1

p(yri |zi = 1) =

R∏
r=1

(αr)(yi)(1− αr)(1−yi)

bi =

R∏
r=1

p(yri |zi = 0) =

R∏
r=1

(1− βr)(yi)(βr)(1−yi).

Next, in the third step of EP, we choose a Gaussian approx-
imation to the non-Gaussian marginal in eq. 7. This is done
by moment matching. The derivation of the moments of
eq. 7 is too extensive to be included here, hence we pro-
vide it as supplementary material4, and show here only the
results. The moments of eq. 7 are then given by

Ẑi = bi + (ai − bi)Φ(ηi)

µ̂i = µ−i +
(ai − bi)σ2

−iN (ηi)[
bi + (ai − bi)Φ(ηi)

]√
1 + σ2

−i

σ̂2
i = σ2

−i −
σ4
−i

1 + σ2
−i

(
ηiN (ηi)(ai − bi)
bi + (ai − bi)Φ(ηi)

+
N (ηi)

2(ai − bi)2

(bi + (ai − bi)Φ(ηi))2

)
where

4Supplementary material available at:
http://amilab.dei.uc.pt/fmpr/publications/

http://amilab.dei.uc.pt/fmpr/publications/
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ηi =
µ−i√

1 + σ2
−i

.

Finally, in step 4, we compute the approximations ti that
make the posterior have the desired marginals from step 3.
Particularly, we want the product of the cavity distribution
and the local approximation to have the desired moments,
leading to (Rasmussen & Williams, 2005):

µ̃i = σ̃2
i (σ̂−2i µ̂i − σ−2−i µ−i)

σ̃2
i = (σ̂−2i − σ

−2
−i )−1

Z̃i = Ẑi

√
2π
√
σ2
−i + σ̃2

i exp

(
1

2

µ−i − µ̃i

σ2
−i − σ̃2

i

)
.

The different local approximating terms ti are then updated
sequentially by iterating through these four steps until con-
vergence.

So far we have been assuming the annotators’ parameters
αr and βr to be given. However, we need to estimate those
as well. This is done iteratively by scheduling the updates
as follows: every n EP sweeps through the data, or al-
ternatively, when the difference in the marginal likelihood
between two consecutive iterations ε falls below a certain
threshold5, the values of αr and βr are re-estimated as:

αr =

∑N
i=1 y

r
i p(zi = 1|X,Y)∑N

i=1 p(zi = 1|X,Y)
(8)

(9)

βr =

∑N
i=1(1− yri )(1− p(zi = 1|X,Y))∑N

i=1 1− p(zi = 1|X,Y)
. (10)

Although this will raise the computational cost of EP, as we
shall see in Section 4, this increase is only by a small factor.

In order to make predictions, we make use of the EP ap-
proximation to the posterior distribution q(f|X,Y) defined
in eq. 6, and plug it in eq. 4 to compute the predictive mean
and variance of the latent variable f∗:

Eq[f∗|x∗,X,Y] = kT
∗ (K + Σ̃)−1µ̃

Vq[f∗|x∗,X,Y] = k(x∗; x∗)− kT
∗ (K + Σ̃)−1k∗

where k∗ is a vector whose entries correspond to the co-
variance function k(x; x′) evaluated between the test point
x∗ and all the training input points.

Finally, the approximate predictive distribution for the true
class label z∗ is given by the integral in eq. 3, which can be

5During the experiments, these values were set to n = 3 and
ε = 10−4.

analytically approximated as

q(z∗ = 1|x∗,X,Y)

= Φ

(
kT
∗ (K + Σ̃)−1µ̃√

1 + k(x∗; x∗)− kT
∗ (K + Σ̃)−1k∗

)
.

3.3. Active learning

The full Bayesian treatment of the Gaussian process frame-
work provides natural extensions to active learning set-
tings, which can ultimately reduce the annotation cost even
further.

In active learning with multiple annotators our goal is
twofold: (1) pick an instance to label next and (2) pick the
best annotator to label it. For simplicity, we choose to treat
the two problems separately. Hence, in order to pick an
instance to label, we take the posterior distribution of the
latent variable p(fu|xu,X,Y) = N (fu|µu, σ

2
u) for all un-

labeled data points xu ∈ Xu and compute

x∗ = arg min
xu∈Xu

|µu|√
1 + σu

. (11)

This approach is analogous to the one proposed in (Kapoor
et al., 2007) for single-annotator settings, and provides a
balance between the distance to the decision boundary,
given by the posterior mean |µu|, and the posterior vari-
ance σu (uncertainty) associated with that point.

As for the choice of the annotator to label the instance
picked, we proceed by identifying the annotator who is
more likely to label it correctly given our current state of
knowledge, i.e. given our prior beliefs of the class which
the instance belongs to and the information about the levels
of expertise of the different annotators. Mathematically, we
want to pick an annotator r∗ to maximize

r∗ = arg max
r

[
p(yr = 1|z = 1)p(z = 1|x∗,X,Y)

+ p(yr = 0|z = 0)p(z = 0|x∗,X,Y)
]

= arg max
r

[
αrp(z = 1|x∗,X,Y)

+ βr(1− p(z = 1|x∗,X,Y))
]
.

(12)

However, since we are now actively picking the annotators,
there is a risk of generating a model that is biased towards
labels from a single annotator when using this heuristic.
This happens because if a single annotator provides the ma-
jority of the labels, the estimate of the ground truth will
be biased towards her opinion. Consequently, her sensi-
tivity and specificity parameters will also be biased, and
she might end up being selected over and over. In order to
address this issue, we introduce a dependency on the an-
notator r when estimating αr and βr. Namely, we replace
p(zi = 1|X,Y) with p(zi = 1|X\xr,Y\yr) in equations 8
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and 10, where Y\yr denotes all the labels except the ones
from annotator r, thereby deeming the ground truth esti-
mates used for computing the reliability parameters αr and
βr of annotator r, independent of her own answers.

4. Experiments
The proposed approaches6 are validated using both real and
simulated annotators on real datasets from different appli-
cation domains.

4.1. Simulated annotators

In order to simulate annotators with different levels of ex-
pertise, we start by assigning a sensitivity αr and speci-
ficity βr to each of the simulated annotators. Then for each
training point, we simulate the answer of the rth annota-
tor by sampling yri from a Bernoulli(αr) if the training
point belongs to the positive class, and by sampling yri from
Bernoulli(1 − βr) otherwise. This way, we can simulate
annotators whose expected values for the sensitivity and
specificity will tend to αr and βr respectively, as the num-
ber of training points goes to infinity.

This annotator simulation process is applied to various
datasets from the UCI repository7, and the results of the
proposed approach (henceforward referred to as GPC-MA)
is compared with two baselines: one consisting of using the
majority vote for each instance (referred as GPC-MV), and
another baseline consisting of using all data points from all
annotators as training data (GPC-CONC). Note that if we
simulate 7 annotators, then the dataset for the latter base-
line will be 7 times larger than the former one. In order
to also provide an upper bound/baseline we also show the
results of a Gaussian process classifier applied to the true
(golden) labels z (referred as GPC-GOLD).

Table 1 shows the results obtained in 6 UCI datasets,
by simulating 7 annotators with sensitivities α =
[0.9, 0.9, 0.8, 0.4, 0.3, 0.4, 0.6, 0.5] and specificities β =
[0.8, 0.9, 0.9, 0.4, 0.5, 0.5, 0.5, 0.4]. For all experiments,
a random 70/30% train/test split was performed and a
isotropic squared exponential covariance function was
used. Taking advantage of the stochastic nature of the an-
notators’ simulation process, we repeat each experiment
30 times and always report the average results. Besides
testset results, we also report performance metrics on the
trainset because this corresponds to the important problem
of uncovering the ground truth labels from the noisy an-
swers of multiple annotators. We highlight in bold the high-
est performing method, excluding the upper-bound (GPC-
GOLD).

6Source code and datasets are available at:
http://amilab.dei.uc.pt/fmpr/software/

7http://archive.ics.uci.edu/ml/

Trainset Testset
Method Acc. AUC Acc. AUC

io
no

sp
he

re GPC-GOLD 1.000 1.000 0.900 0.999
GPC-CONC 0.811 0.880 0.743 0.830

GPC-MV 0.726 0.853 0.693 0.708
GPC-MA 0.978 0.998 0.889 0.987

pi
m

a

GPC-GOLD 1.000 1.000 0.993 1.000
GPC-CONC 0.848 0.900 0.860 0.930

GPC-MV 0.840 0.955 0.860 0.967
GPC-MA 0.994 1.000 0.991 1.000

pa
rk

in
so

ns GPC-GOLD 1.000 1.000 0.992 0.999
GPC-CONC 0.827 0.889 0.851 0.899

GPC-MV 0.663 0.895 0.692 0.867
GPC-MA 0.910 0.999 0.947 0.992

bu
pa

GPC-GOLD 1.000 1.000 0.993 1.000
GPC-CONC 0.862 0.926 0.854 0.932

GPC-MV 0.793 0.961 0.816 0.953
GPC-MA 0.995 1.000 0.991 1.000

br
ea

st

GPC-GOLD 1.000 1.000 0.997 1.000
GPC-CONC 0.922 0.938 0.936 0.983

GPC-MV 0.860 0.990 0.887 0.992
GPC-MA 0.995 1.000 0.996 1.000

tic
-t

ac
-t

oe

GPC-GOLD 1.000 1.000 1.000 1.000
GPC-CONC 0.828 0.887 0.884 0.952

GPC-MV 0.717 0.932 0.806 0.958
GPC-MA 0.999 1.000 1.000 1.000

Table 1. Average accuracy and AUC over 30 runs, obtained by
simulating 7 annotators on different UCI datasets.

Dataset GOLD CONC MV GPC-MA
ionosphere 0.495 403.618 0.476 2.470

pima 0.551 357.238 0.445 2.583
parkinsons 0.187 55.424 0.186 0.608

bupa 0.551 357.238 0.445 2.583
breast 2.176 3071.467 1.474 8.093

tic-tac-toe 3.67 5035.112 3.106 16.130

Table 2. Average execution times (in seconds) over 30 runs of the
different approaches.

In order to compare the different approaches in terms of
computational demands, the execution times were also
measured. Table 2 shows the average execution times over
30 runs on a Intel Core i7 2600 (3.4GHZ) machine with
32GB DDR3 (1600MHZ) of memory.

The results obtained show that the proposed approach
(GPC-MA) consistently outperforms the two baselines in
the 6 datasets used, while only raising the computational
time by a small factor (between 3 and 5) when compared to
the majority voting baseline. Furthermore, we can see that
GPC-MA is considerably faster (up to 100x) than the GPC-
CONC baseline, which is not surprising since the compu-
tational complexity of GPs is O(N3) and the dataset used
in GPC-CONC is R-times larger than the original dataset.
However, GPC-CONC seems to perform better than the
other baseline method: GPC-MV. We hypothesize that this
is due to the fact that GPC-CONC can model the uncer-
tainty introduced by the heterogeneity in the annotators’

http://amilab.dei.uc.pt/fmpr/software/
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Figure 1. Plots of the log marginal likelihood over 4 runs of GPC-
MA using 4 different datasets.

answers. Hence, if for example, all 7 annotators assign the
same label to some data point, the variance associated with
that data point will be lower than when the 7 annotators
provide contradicting labels.

Figure 1 shows plots of the (negative) log marginal like-
lihood over 4 runs of GPC-MA using 4 different datasets,
where it becomes clear the effect of the re-estimation of the
annotator’s parameters α and β, which is evidenced by the
periodic “steps” in the log marginal likelihood.

4.2. Real annotators

The proposed approach was also evaluated on real
multiple-annotator settings by applying it to the datasets
used in (Rodrigues et al., 2013a) and made available on-
line by the authors. These consist on a sentiment polarity
and a music genre classification dataset. The former con-
tains 5000 sentences from movie reviews extracted from
the website RottenTomatoes.com and whose sentiment was
classified as positive or negative, while the latter contains
700 samples of songs with 30 seconds of length and di-
vided among 10 different music genres: classical, coun-
try, disco, hiphop, jazz, rock, blues, reggae, pop and metal.
Both datasets were published on Amazon Mechanical Turk
for annotation, and the authors collected a total 27747 and
2946 labels for training, corresponding to 203 and 44 dis-
tinct annotators, respectively. For both tasks, separate test
sets are provided. The test set for the sentiment task con-
sists of 5429 sentences while the test set for the music genre
task contains 300 samples. For further details on these
datasets, the interested readers are redirected to the origi-
nal paper (Rodrigues et al., 2013a).

Tables 3 and 4 show the results obtained for the differ-
ent approaches in the sentiment and music datasets respec-
tively. Since the music dataset corresponds to a multi-class

Trainset Testset
Method Accuracy AUC Accuracy AUC

GPC-GOLD 0.987 0.999 0.723 0.785
GPC-MV 0.886 0.923 0.719 0.781
GPC-MA 0.900 0.944 0.721 0.783

Table 3. Results for the sentiment polarity dataset.

Trainset Testset
Method AUC F1 AUC F1

GPC-GOLD 1.000 1.000 0.852 0.683
GPC-CONC 0.926 0.700 0.695 0.423

GPC-MV 0.812 0.653 0.661 0.411
GPC-MA 0.943 0.702 0.882 0.601

Table 4. Results obtained for the music genre dataset.

problem, we proceeded by transforming it into 10 different
binary classification tasks. Hence, each task corresponds to
identifying songs of each genre. Unlike the previous exper-
iments, with the music genre dataset a squared exponential
covariance function with Automatic Relevance Determina-
tion (ARD) was used, and the hyper-parameters were opti-
mized by maximizing the marginal likelihood.

Due to the computational cost of the GPC-CONC approach
and the size of the sentiment dataset, we were unable to
test this method on this dataset. Nevertheless, the obtained
results show the overall advantage of GPC-MA over the
baseline methods.

4.3. Active learning

The active learning heuristics proposed were tested on the
music genre dataset from Section 4.2. For each genre, we
randomly initialize the algorithm with 200 instances and
then perform active learning for another 300 instances. In
order to make active learning more efficient, in each iter-
ation we rank the unlabeled instances according to eq. 11
and select the top 10 instances to label. For each of these in-
stances we query the best annotator according to the heuris-
tic we proposed for selecting annotators (eq. 12). Since
each instance in the dataset is labeled by an average of 4.21
annotators, picking a single annotator per instance corre-
sponds to savings in annotation cost of more than 76%.
Each experiment is repeated 30 times with different ran-
dom initializations. Figure 2 shows how the average test-
set AUC for the different music genres evolves as more la-
bels are queried. We compare the proposed active learning
methodology with a random baseline. In order to make
clear the individual contributions of each of the heuristics
proposed, we also show the results of using only the heuris-
tic in eq. 11 for selecting an instance to label and selecting
the annotators at random. As the figure evidences, there is a
clear advantage in using both active learning heuristics to-
gether, which can provide an improvement in AUC of more
than 10% after the 300 queries.
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Figure 2. Active learning results on music genre dataset.

5. Conclusion and future work
This paper presented the generalization of the Gaussian
process classifier (a special case when R = 1, α = 1 and
β = 1), a non-linear non-parametric Bayesian classifier,
to multiple-annotator settings. By treating the unobserved
true labels as latent variables, this model is able to estimate
the different levels of expertise of the multiple annotators,
thereby being able to compensate for their biases and thus
obtaining better estimates of the ground truth labels. We
empirically show, using both simulated annotators and real
multiple-annotator data collected from Amazon Mechani-
cal Turk, that while this model only incurs in a small in-
crease in the computational cost of approximate Bayesian
inference with EP, it is able to significantly outperform all

the baseline methods. Furthermore, two simple and yet
effective active learning heuristics were proposed, which
can provide an even further boost in classification perfor-
mance, while reducing the number of annotations required,
and consequently the annotation cost.

The proposed approach makes the assumption that the la-
bels provided by the different annotators do not depend
on the instance their labeling, i.e. p(yr|z, x) = p(yr|z).
Future work will try to relax this assumption by consider-
ing dependencies on x, and by modeling p(yr|z, x) with a
Gaussian process. Regarding active learning, future work
will also explore ways of jointly selecting the instance to
label and the best annotator to label it.
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