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Abstract

Mutual information is a very popular measure
for comparing clusterings. Previous work has
shown that it is beneficial to make an adjust-
ment for chance to this measure, by subtracting
an expected value and normalizing via an upper
bound. This yields the constant baseline prop-
erty that enhances intuitiveness. In this paper,
we argue that a further type of statistical adjust-
ment for the mutual information is also beneficial
— an adjustment to correct selection bias. This
type of adjustment is useful when carrying out
many clustering comparisons, to select one or
more preferred clusterings. It reduces the ten-
dency for the mutual information to choose clus-
tering solutions i) with more clusters, or ii) in-
duced on fewer data points, when compared to a
reference one. We term our new adjusted mea-
sure the standardized mutual information. It re-
quires computation of the variance of mutual in-
formation under a hypergeometric model of ran-
domness, which is technically challenging. We
derive an analytical formula for this variance and
analyze its complexity. We then experimentally
assess how our new measure can address selec-
tion bias and also increase interpretability. We
recommend using the standardized mutual infor-
mation when making multiple clustering compar-
isons in situations where the number of records is
small compared to the number of clusters consid-
ered.

1. Introduction

Clustering techniques aim at partitioning data by grouping
objects with similar characteristics into homogeneous clus-
ters (Aggarwal & Reddy, 2013). External validation tech-
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niques, which compare a clustering solution to a reference
clustering, are therefore extremely important to assess clus-
tering quality. However, there is no acknowledged measure
of choice to compare partitions and in practice many mea-
sures are used (Wu et al., 2009). Among those, there ex-
ist pair-counting based measures such as the Rand Index
(RI) (Rand, 1971) and Jaccard coefficient (Ben-Hur et al.,
2001), as well as information theoretic measures such as
the Mutual Information (MI) (Cover & Thomas, 2012) and
Variation of Information (VI) (Meild, 2007). We provide a
glossary of acronyms used in this paper in Table 1.

A desirable property of clustering comparison measures is
to have a constant baseline in the case of random indepen-
dent partitions. Adopting a probabilistic interpretation of
the partition problem, an expected value can be computed
under the assumption of random and independent cluster-
ings and then subtracted from the measure. Adjusted for
chance measures include the Adjusted Rand Index (ARI)
(Hubert & Arabie, 1985) and the Adjusted Mutual Informa-
tion (AMI) (Vinh et al., 2009). They take a 0 expectation
value when partitions are independent, and are bounded
above by 1 via the use of a normalization factor (an upper
bound of the measure).

In this paper, our focus is on information theoretic mea-
sures, in particular the mutual information. Our first key
observation is that employing a baseline adjustment to the
mutual information does not guarantee that it is bias free.
In fact, it is still susceptible to what we term selection bias,
a tendency to choose inappropriate clustering solutions 1)
with more clusters, or ii) induced on fewer data points,
when compared to a reference one. To illustrate, consider
the following experiment on a dataset of 500 records: a ref-
erence clustering of 10 equal-size clusters is compared in
turn with 6 clustering solutions. Each solution is randomly
generated with equal-size clusters and the number of clus-
ters in each is 2, 6, 10, 14, 18 and 22 respectively. We
then use the AMI measure to select the most similar clus-
tering solution to the reference and then repeat the whole
procedure 5,000 times. Figure 1 shows the probability of
selecting a clustering solution with c clusters. We see that a
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Figure 1. Probability AMI measure selects a random clustering
solution with c clusters as the most similar solution to the ref-
erence clustering which has 10 clusters. AMI is biased towards
selecting clustering solutions with a higher number of clusters.

clustering with 22 clusters will be selected more often than
one with 2 clusters, even though we expect the former so-
lution should be no more similar to the reference than the
latter solution, due to the randomness of generation. So,
although the AMI may have a constant baseline, it is still
biased towards selecting clusterings containing more clus-
ters.

To address this issue of selection bias, we go one step fur-
ther in the direction of probabilistic adjustment for chance
on information theoretic measures: standardizing mutual
information. Using both the expected value (E[MI]) and
the variance (Var) obtained under an assumption of random
and independent clusterings, we propose the Standardized
Mutual Information (SMI) measure as follows:

MI — E[MI]
Var(MI)

SMI = (1)

The SMI value is the number of standard deviations the
mutual information is away from the mean value. This pro-
vides insight into the statistical significance of the mutual
information between the clusterings. However, a key tech-
nical challenge is how to compute the variance term in the
formula. We will argue that SMI has a number of desirable
properties:

e When looking for the most similar clusterings to a ref-
erence one or performing external validation against a
reference clustering, it reduces the bias towards select-
ing clusterings with more clusters or induced on fewer
data points;

e The value of SMI has good interpretability, being a
count of the number of standard deviations the mutual
information is from the mean, under a null distribution
of random clustering solutions with fixed marginals.

We advocate the use of the standardized mutual informa-
tion especially when making multiple clustering compar-
isons in situations where the number of records is small

compared to the number of clusters considered. Practically,
this is the situation commonly encountered in life science
and medical research. In cancer study via microarray data
analysis for example, there might be up to thirteen subtypes
of cancer on a data set of as few as 90 microarray samples
(Monti et al., 2003). There also exist a number of impor-
tant application areas such as external clustering validation,
generation of alternative or multi-view clusterings (Miiller
et al., 2013), categorical feature selection (each feature can
be seen as a clustering), and the exploration of the clus-
tering space using results from the Meta-Clustering algo-
rithm (Caruana et al., 2006) when the task it to find simi-
lar/dissimilar clustering from a query one.

Overall, the contributions of this paper are as follows: i)
We identify new biases of the mutual information when
comparing clusterings: selection bias towards clusterings
with more clusters and selection bias towards clusterings
induced on fewer records; ii) We propose the standardized
mutual information measure (SMI) to address these bias is-
sues; iii) To compute the SMI, we provide an analytical
formula for calculating the variance of mutual information
and analyze its complexity.

Acronym  Full name

Ml Mutual Information

NMI Normalized Mutual Information
AMI Adjusted Mutual Information
SMI Standardized Mutual Information
VI Variation of Information

RI Rand Index

ARI Adjusted Rand Index

Table 1. Acronyms used in this paper.

2. Background and Related Work

We start by reviewing the literature on related work. Next,
we introduce some notation and specifically focus on infor-
mation theoretic measures and literature on adjustment for
chance.

2.1. Partition Comparison Measures and their Bias

Measures of agreement between two clusterings might
be unfairly inflated just because of statistical fluctuations.
Commonly used measures for clustering comparisons, such
as the RI, show an increasing trend when the number of
clusters increases even if clusterings are random and inde-
pendent. In (Hubert & Arabie, 1985) it was proposed to
adjust a measure M for chance as follows:

M — E[M]

max M — E[M] 2)

An analytical formula for the expected value is used to re-
move the baseline component of the measure. The expected
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value for measure M is computed under the null hypothe-
sis of random and independent clusterings and max M is
an upper bound for M that acts as normalization factor.
The model of randomness adopted to compute the expected
value is the permutation model, also called the hypergeo-
metric model: fixing the number of points for each cluster,
partitions are generated uniformly and randomly via per-
mutations of records. Under this assumption, the distribu-
tion of measure M is known and thus so is the expected
value. It has been shown that this hypothesis behaves well
in practical scenarios and it was recently employed to com-
pute the expected value of MI in (Vinh et al., 2009).

The problem of exaggerated agreement between partitions
due to chance has been also extensively studied in the de-
cision tree literature. For each internal node in a deci-
sion tree, the best partitioning according to feature values,
termed split, is selected in accordance with a splitting cri-
terion that quantifies its predictiveness towards the target
classification. Splitting criteria are in fact clustering com-
parison measures that aim at comparing the clustering in-
duced by the split and the one induced by the target clas-
sification. Since the very first implementation of decision
trees, ad hoc methods to reduce the bias toward selection of
splits with many values have involved normalization (Quin-
lan, 1993). However, even with normalization, partitions
with higher cardinality are more preferred (White & Liu,
1994). A key pitfall pointed out for splitting criteria is the
lack of statistical significance concepts. This was formal-
ized in (Dobra & Gehrke, 2001) where it has been proven
that “a p-value of any split criterion is a nearly unbiased
criterion”. On the other hand, the use of the p-value is
controversial. It has indeed been claimed that the p-value
based on the chi-square distribution for splitting criteria
such as the G-statistic “is not able to distinguish between
more and less informative attributes” (Kononenko, 1995).
This behaviour is mainly due to computer precision limita-
tions when computing the p-value for informative features
to the class.

The distribution of MI could be approximated by consid-
ering the G-statistic used in goodness-of-fit tests, since the
G-statistic is a scaled version of the MI. The G-statistic dis-
tribution can be approximated by a chi-square distribution,
but it is well known that this approximation becomes poor
when the number of objects is small in regards to the num-
ber of clusters of the clusterings compared. In particular, it
is inappropriate when there exists a cluster of one cluster-
ing that shares less than 5 records with any of the clusters
of the clustering compared (Agresti, 2002). Thus, its ap-
plicability for clustering comparisons is limited. Alterna-
tively, one might attempt a brute force exact computation
of the distribution of MI under the hypergeometric model
of randomness, to obtain a p-value. However, this rapidly
becomes infeasible, even for modest sized cases. Indeed,
it is as hard as computing the p-value for the Fisher’s ex-

act test, which is not used in clustering comparison due to
its computational demand. Although there exist methods to
speed up Fisher’s exact test using graph-based algorithms,
it is still asymptotically and practically slow (Mehta & Pa-
tel, 1983). An exact p-value for MI suffers from the same
problems. A common workaround is to estimate the MI
distribution via Monte Carlo simulations (Frank & Witten,
1998). However, this method is still time consuming when
a given degree of accuracy is required and it does not pro-
vide an exact (analytical) result for the value of the vari-
ance.

In contrast, we will shortly see that, it is possible to analyt-
ically compute the variance for mutual information under
the hypergeometric model of randomness to standardize it,
and this computation is orders of magnitude faster than a
brute force computation of the full distribution. Moreover,
a standardized measure can discriminate between cluster-
ing solutions that show high agreement with the reference
clustering better than a p-value because is less prone to
computer precision errors. Therefore, we use the variance
and the expected value to standardize the mutual informa-
tion (the SMI measure) and experimentally demonstrate
that employing SMI can decrease the bias towards selecting
clusterings with more clusters and towards selecting clus-
terings estimated on fewer data points.

2.2. Notation and Information Theoretic Measures

Let A and B be two clusterings of a dataset consisting of
N records. Let A cluster the data in r clusters and define
a; as the size of cluster 7 = 1,...,r, and let B cluster the
data in c clusters of size b; for each cluster j = 1,...,c.
Naturally, >37_; a; = 327, b; = N. Given that A and
B are partitions of the same data it is possible to count
the elements that belong both to cluster ¢ and j. Let n;
denote the number of records shared between cluster ¢ and
7. The overlap between two clusterings can be represented
in matrix form by a r X ¢ contingency table M such as
the one in Table 2. We refer to a; = > jMij as the row
marginals and to b; = 3°, n;; as the column marginals.

B
by - b, - be
a/l nll PR . PRI nlc

A | a; njj
a’]" n’]"l DY . DRI n'f‘c

Table 2. r x c contingency table M related to two clusterings A
and B. a; =}, ny; are the row marginals and b; =}, n;; are
the column marginals.

In order to employ information theory to measure the
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agreement between partitions, we have to treat the cluster-
ings as random variables. Using the maximum likelihood
estimation method, we estimate the empirical joint proba-
bility distribution of clusterings A and B as %, 11)\/’ and "”
for the probability that an element falls in cluster ¢, cluster
7, and both cluster ¢ and j respectively. The entropy for a
clustering is defined as the expected value of its informa-
tion content if it is seen as a random variable. We can there-

fore define entropy for clustering A and B as follows':
H(A) £ _Z: 1 NlOg N H(B) £ _Zj 1 NlOgN

Mutual information MI(A, B) quantifies the value of in-
formation shared between the two random variables and
can be defined using the entropy definitions: MI(A B) £
H(A) + H(B) - H(A,B) = Y1, 5, "5 log ‘55
where H(A,B) is the joint entropy between clusterings.
Intuitively, it computes the total amount of uncertainty of
each variable independently minus the uncertainty when
put together. Naturally, mutual information between two
clusterings can also be computed from their associated con-
tingency table, that is MI(M) = MI(A,B). When it is
obvious, we drop the arguments and simply write MI for
mutual information computed between two clusterings.

The mutual information has many possible upper bounds
that might be used to obtain the Normalized Mutual Infor-

mation (NMI): MI(A,B) < min{H(A),HB)} <
H(A)-HB) < 5(HA) + HB)) <
max{H(A),HB)} < H(A,B). Depending on

the chosen upper bound, it is possible to obtain informa-
tion theoretic distance measures with metric properties
(Vinh et al., 2010). A distance measure with metric
properties is indeed useful for designing efficient algo-
rithms that exploit the nice geometric properties of metric
spaces (Meila, 2012). An example of a true metric is the
variation of information (VI), defined in (Meila, 2007):
VI(A,B) £ H(A) + H(B) — 2MI(A, B).

In order to adjust the MI for chance as in equation (2) we
have to compute the expected value over all possible con-
tingency tables M with fixed number of points and fixed
marginals and this is extremely time expensive. It has also
been shown that the mere counting of such contingency
tables with fixed marginals is #P-complete (Dyer et al.,
1997). In (Vinh et al., 2009) the complexity of the problem
has been dramatically reduced by reordering the sums in
EMI]:

MI| = ZMI(
DI

1,5 Mij

22%1%

M 1j

(nz‘j)

The inner summation varies over the support of a hyper-

' All logarithms are considered in base 2, log = log,

P(M)

geometric distribution and reduces the complexity to lin-
ear in the number of records, as we will show in Sec-
tion 3.3. According to the adopted permutation model,
N;; is a hypergeometric distribution that models the sam-
pling without replacement of a; records among N pos-
sible ones where the number of total successes is b;:

()2

)

Nij ~ Hyp(aiabjaN), P(TL”) = W‘.’ nij €

(max {0, a; + b; — N}, min {a;,b;}]. Note that if we
swap a; with b; we obtain the same probability distribu-
tion, i.e. Hyp(a;, b;, N) = Hyp(b;, a;, N).

AMI? is computed according equation (2):

MI — E[MI]
H(A)-H(B) -

AMI =

3
EMI| )

3. Standardization of Information Theoretic
Measures

In Section 3.1 we provide an analytical formula for the
variance of mutual information under the hypergeometric
model of randomness. We use the variance to standardize
information theoretic measures in Section 3.2. The compu-
tational complexity of SMI is derived in Section 3.3.

3.1. Variance of Mutual Information

In order to compute the variance of MI we need to compute
its second moment E[MI?]. For this purpose, we first set
up an additional pair of indexes i’ and j in order to take
care of all possible cross-products between cells:

2

E[MI?] =

I3 BRI

M\ i=1 j=1

1 ’LN 7 i/'/N
E:E:”ﬂ ”ﬂ T 0g Y poag) =
N N ai/b‘/
M i34 57

3 ZZ i 1o ”UN e, TZ@;/V P(nijniy)

9,5,87,5" Mij My

PM)= &

As in the mean value computation, we can swap the
outer summation across all contingency tables (with fixed
marginals) and sum over all possible values for cells (i, )
and (i, 7"). Yet, it is difficult to compute the joint proba-
bility distribution P(n;;,n; ;) for two general cells in the
contingency table and it is necessary to treat cells differ-
ently according to their positions. Moreover, two cells be-
longing to two different rows and columns are inherently
interacting through the remaining cells that their rows and

We choose to normalize AMI with /H(A) - H(B)

(AMlI;qr) here and in the rest of the paper as proposed in (Vinh
et al., 2010) given that the experimental results discussed in Sec-
tion 4 are similar with other normalization factors.
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N

Figure 2. Urn containing N marbles among which b; are red, and
b;s are blue, and N — b; — b, are white.

columns have in common. This means when we consider
cells (4,7) and (', '), we also have to take care of cells

(i,') and (@', ).

Theorem 1. The variance of MI under the hypergeometric

hypothesis is Var(MI) = E[MI?] — E[MI]? where
CAED3) 3 ST R
i=1 j=1 n;;
nz N g/
) +ZZ 7 Jog J : P(ni/j\nij) +
) N5
n; n; N

ZZPWM(JIG; :
J'#J g v

Ny j Ny N
I gi' b P(?’Li/j/|nijl,7’b7;j)
a,L/ ]/

SR

with Nij ~ Hyp(al, bj, N)

Nirj|Nij ~ Hyp(bj — nij,ai, N — a;)
Nij|Nij ~ Hyp(a; — nij, by, N — bj;)
Nyrj|Nijr, Nij ~ Hyp(ay, by — ngjr, N — a;)

Proof. In order to make the derivation easier to follow, we
employ an urn model with red, blue, and white marbles as
illustrative example. Figure 2 represents such urn contain-
ing N total marbles among which b; are red, b;, are blue,
and N — b; — b;s are white. This urn is used to simulate
the sampling experiment without replacement modelled by
the hypergeometric distribution. For example, it is easy to
see that the random variable N;; defined above models the
probability of obtaining n;; red marbles among a; drawn
from an urn of N marbles among which b; are red.

We rewrite the joint probability as a product of condi-
tional probabilities P (n;;)P(n; ;|n;;). The random vari-

able N; /| N;; distributes differently depending on the pos-
sible combinations of indexes i, 1, j, j':
Casel: i =iNj =

This is the simplest case, in which P(n; j|n;;) = 1 if and
only if n; j/ = n,; and 0 otherwise. This case produces the

n”N

first term ” log —— enclosed in square brackets.

Case2:i =iNj 7éj

Figure 2 comes in help when we focus on N;;/|N;;. In this
case, the possible successes are the b; blue marbles. We
have already sampled n,; red marbles and we are not inter-
ested in red marbles any more, thus the total ones available
are N — bj. ThllS, Nij’ |N’Lj ~ Hyp(aZ — Nyj, bj/, N — bJ)

Case3:i7 AiNj =7

This case is symmetric to the previous one where a;/ is now
the possible number of successes. Therefore N;/;|N;; ~
Hyp(bj — Nyj, A/, N — ai)~

Cased: i AiNj #7

This is the most complicated case. When all indexes are
different we cannot write N;/;/|N;; as a single hypergeo-
metric distribution. We might think about this scenario as
the second draw from the urn in Figure 2. We have already
sampled a; marbles focusing on the red ones as successes.
We are now going to sample other a;; marbles but focusing
on blue ones as successes. Just knowing that n;; red ones
have already been sampled does not allow us to know how
many blue ones remain in the urn. Indeed, only with that in-
formation we can obtain the hypergeometric distribution. If
we know that n;; blue marbles have already been sampled
We know there are b;; — n;;+ possible successes and thus

Nijo|Nyjr, Nig ~ Hyp(az bjr —nij, N — a;). Finally, by
the law of total probability we can obtain P(n; ;/|n;;) =
an_, P(ng jr|nij,mij)P(nij|n;). Note that we could
have conditioned on n;/; and obtained the symmetric ver-
sion of the above probability. The result follows from alge-
braic manipulations of equation (4). O

3.2. Standardized Mutual Information

We can obtain standardized versions of information theo-
retic measures knowing the mean value and standard de-
viation of the MI as per Eq. (1). An interesting point to
note is that, standardization unifies several existing mea-
sures for clustering. To see this, let us define the Standard-
ized Variation of Information (SVI) and Standardized G-
statistic (SG):

E[VI] - VI
—/NVar(VD)

_G-Fg)
Var(G)
Theorem 2. Standardization unifies the mutual informa-

tion M1, variation of information VI and the G-statistic:
SMI = SVI = SG.
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Proof. H(A) and H(B) are constant under the fixed
marginal assumption, thus the VI is a linear function of the
MI under the hypergeometric hypothesis. The G-statistic is
equal to a linear scaling of the MI (G = 2N -log, (2) - MI).
The standardized version of a linear function of MI is equal
to SMI because of the properties of expected value and
variance. O

This ‘unification’ property is useful, recalling that for the
normalized mutual information NMI and adjusted mu-
tual information AMI, depending on the upperbound used,
there can be as many as 5 different variants for each mea-
sure (Vinh et al., 2010).

3.3. Computational Complexity

Significant computational speedups might be obtained in
computing the expected value of mutual information if
probabilities are computed iteratively as: P(n;; + 1) =
P(n;) (nijﬁl)(z:/lfigbfbﬁflzﬁ1) .
sult characterizing the complexity of computing the ex-
pected MI:

Here, we give a novel re-

Theorem 3. The computational complexity for E[MI] is
O(max {rN,cN}).

The proof is in the supplementary material. The compu-
tational complexity of computing the mean value is linear
in the number of records and symmetric in ¢ and r. This
does not happen for the variance of mutual information,
where we have to choose whether to condition on either
n;; or ny; and this leads to an asymmetric computational
complexity in regards to the number of rows and columns.
Choosing to condition on n;;- as in Theorem 1, the compu-
tational complexity for SMI is dominated by the computa-
tional complexity of E[MI?]:

Theorem 4. The computational complexity for E[MI?] is
O(max {rcN3, c>N3}).

The proof is in the supplementary material. If the number
of columns c in the contingency table is greater than the
number of rows r, a longer computational time is incurred.
For example, if we fix the number of records NV, the com-
putation time for the variance of MI for a contingency table
with » = 6 rows and ¢ = 2 columns is bounded above by
12N3. Yet, for the same but transposed table (with r = 2
rows and ¢ = 6 columns), the time is bounded by 36N 8.
Given that we can transpose a contingency table and obtain
identical variance results, we can always transpose to tables
where the number of rows 7 is higher than the number of
columns ¢, thus making the computation faster.

4. Experiments

In this Section, we carry out several experiments to demon-
strate how SMI improves interpretability as well as helping

to reduce the bias toward clusterings with more clusters and
towards those estimated on fewer data points.

4.1. Interpretability

We provide an example that strongly highlights the im-
proved interpretability of SMI in comparison to the AML
We are aiming to determine whether a clustering solution
(Clustering B) is significant compared to a random solu-
tion when performing external validation against a refer-
ence clustering (Clustering A). Both clusterings consist
of 2 clusters of equal size 50 and their cluster overlap is
represented in the contingency table in Table 3. The agree-

B
50 50
50 | 47 3
A 50 | 3 47

Table 3. Contingency table related to clusterings A and B that
show high agreement. Nonetheless, the AMI measure is just equal
to 0.67 that is apparently far from the maximum achievable 1.
SMI value is 64.22 which highlights that the clustering solution
B is significantly better than a random clustering solution.

ment between the two clusterings is very high, indeed clus-
ter Ay in A shares 47 elements with cluster B in B, and
47 elements are also shared between cluster A, in A and
Bs in B. Nonetheless, we obtain a modest score of 0.67
for AMI, that seems apparently far from 1, the maximum
achievable. It seems that there may be plenty of clusterings
B that could show more agreement with A given that 33%
of the total range of values to the maximum is still possibly
achievable. However, if we randomly assign records to the
clusters in B, fixing the size of each cluster to 50, we no-
tice that it is very difficult to find a clustering whose AMI
with A is more than 0.67. In fact, 95% of such clusterings
have AMI less than 0.03. This characteristic is highlighted
by SMI, which has a value of 64.22. It means that the MI
between A and B is 64 standard deviations away from the
mean value under the hypothesis of random and indepen-
dent clusterings and therefore highly significant.

In order to achieve even more interpretability, a p-value for
mutual information might be obtained by fitting a distribu-
tion parametrized on the mean and the standard deviation.
Good candidates might be the Gamma and the Normal dis-
tributions (Dobra & Gehrke, 2001; Vinh et al., 2009). How-
ever, there are no theoretical proofs about the quality of
these approximations available in literature. A conserva-
tive approach we can take is to use Cantelli’s inequality,
which holds for all distributions: P (SMI > \) < ﬁ
This inequality states that if SMI is greater than 4.36, then
the upper bound for the p-value under the hypergeometric
null hypothesis is 0.05. In the above example, we get a
p-value of ~ 0.0002, which again is highly significant.
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Figure 3. Estimated selection probability of a random clustering
solution B with ¢ clusters when compared with a reference one
with 10 clusters. MI is strongly biased towards selecting cluster-
ing solutions with 22 clusters, and so is AMI, despite being base-
line adjusted. SMI shows close to constant selection probability
across the different solutions.

4.2. Bias Towards Clusterings with More Clusters

Consider the scenario where the user has to compare some
clustering solutions to a reference one and select the one
that agrees with it the most using information theoretic
measures. Each solution might have been obtained using
different clustering algorithms, or setting different param-
eters for a single algorithm of choice, e.g. varying k in k-
Means. Using MI and AMI, clustering solutions with more
clusters have more chances to be selected. We have ob-
served that although the AMI has a constant baseline of 0,
its variance increases as the number of clusters increases,
thus creating a bias towards clustering with more clusters.

Let A be a reference clustering of NV = 500 records with
10 equal size clusters. If we randomly generate clusterings
B with different number of clusters ¢ independently from
the reference one, we do not expect any clustering solu-
tion to outperform the others in terms of agreement with
A. We carry out an experiment as follows: we generate a
pool of 6 random clusterings B with different numbers of
clusters ¢ = 2,6, 10,14, 18,22 and give a win to the so-
lution that obtains the higher value for respectively SMI,
AMI, and MI against the reference clustering A. If a mea-
sure is unbiased, we expect that each clustering is selected
as often as the others, that is 16.7% of the time. Figure 3
shows the estimated ‘winning’ frequencies obtained from
5,000 trials. We can see that random clusterings B with 22
clusters are selected more than 90% of the time if we use
the MI. Even if we use the adjusted-for-chance AMI, such
clusterings are selected 24% of the time versus the 8% for
the random ones with 2 clusters. As observed, SMI helps
to decrease this bias significantly. SMI shows close to con-
stant probability of selection across different solutions but
negligible differences might still exists because we are not

using the full distribution of MI.

4.3. Bias Towards Clusterings Estimated on Fewer
Data Points

Clustering solutions might also be induced on different
numbers of data points. This is the application scenario
commonly encountered in modern data processing tasks,
such as streaming or distributed data. In streaming, the ini-
tial snapshots of the data often contain fewer data. Simi-
larly, in distributed data processing, each node might have
limited access to a small part of the whole data set, due to
scale or privacy requirements. On the same data, one can
still encounter this situation, as in the following scenario:
recall that a discrete feature can be interpreted as a cluster-
ing, in which each cluster contains data points having the
same feature value. Suppose we have a number of features
(clusterings) and wish to compare the similarity of each
against a reference clustering (class label), then choosing
the feature with highest similarity to the class. If the fea-
tures have missing values, then the respective clustering so-
lutions will contain varying numbers of data points.

In these situations, there is selection bias if one uses MI
and AMI as the clustering comparison measure. To demon-
strate this point, we generate a random reference cluster-
ing with 4 clusters and 100 data points and then gener-
ate 5 random clustering solutions with 4 clusters, each
induced using a different number of data points (20, 40,
60, 80 and 100). Each of the 5 clusterings is compared
against the reference clustering (discarding from the ref-
erence any points not present in the candidate clustering
solution). Even though each solution is random and inde-
pendent from the reference clustering, MI and AMI select
the one with 20 records significantly more often than the
one with 100. Figure 4 shows the ‘winning’ probabilities
estimated from 10,000 trials. As observed, SMI helps to
decrease the bias significantly.

4.4. SMI Running Time

We compare the execution time of SMI implemented in
Matlab® and the Fisher’s exact test available in R imple-
mented as discussed in (Mehta & Patel, 1983). We make
this comparison, since Fisher’s test is a very popular, yet
expensive exact method and makes a good benchmark for
assessing the relative runtime performance of SMI given
that its computational effort is the same as for an exact
p-value for MI. On a quadcore Intel Core-i7 2.9GHz PC
with 16Gb of RAM, the average running time for 10 ran-
dom clusterings is provided in Table 4. Each two com-
pared clusterings were generated by assigning randomly
each record to one cluster with equal probability and in-
dependently from the others. Even with a carefully-tuned

3The code is available at https://sites.google.
com/site/icml2014smi
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Figure 4. Estimated selection probability of a random clustering
solution varying the number of points used to induce it. MI and
AMI show strong bias toward selection of solutions with fewer
data points. SMI shows close to constant selection probability
across the solutions.

implementation, Fisher’s exact test is extremely computa-
tionally expensive: it becomes intractable for a fairly small
number of records N and when either the number of rows
r or columns c increases. We note that computing the
Fisher’s exact test with the network algorithm implemented
in R also requires significant memory, i.e. ~ 1Gb of RAM
for the data used herein.

It is worth noting that computing the SMI is highly
amenable to parallelization and it is easy to implement a
parallel version using modern programming languages. For
example, Matlab provides the par for construct that splits
the load of a for loop on different CPUs. We can choose
to parallelize the outer loops in ¢ and j to exploits better
parallelism even on 2 x 2 tables. It is achievable by iterat-
ing on another variable u from 1 to rc and using ¢ and j as
follows: i « [u/c], j + (v —1) mod ¢+ 1. We indeed
obtain almost linear speedup when r > 2 or ¢ > 2. For
example, for 7 = 5 and ¢ = 5, the speedups for two and
four CPU cores are 1.96 and 3.64 folds on average.

5. Discussion and Conclusion

In this paper, we have introduced a further degree of adjust-
ment for chance for information theoretic measures: the
standardization of mutual information. We showed that
standardization unifies several well known measures, in-
cluding the mutual information, the variation of informa-
tion, and the G-statistic. We have provided an analytical
formula to compute the variance of MI under the hypothe-
sis of random and independent clusterings. We also anal-
ysed its computational complexity and provided running
time comparisons against the Fisher’s exact test as a bench-
mark. We experimentally demonstrated that Standardized
Mutual Information (SMI) reduces the bias towards select-
ing clusterings with more clusters and clusterings induced
on fewer data points, and arguably provides better inter-
pretability and comparability compared to using the AMI
for clustering comparison.

To conclude, we provide a radar chart to highlight the rel-
ative utility information theoretic measures in Figure 5.
Each axis assesses the capability with respect to a partic-
ular clustering comparison scenario. In some situations,
the user might be interested to know how far a solution is
from the maximum agreement achievable with the refer-
ence clustering. In this case, VI, NMI and AMI are good
choices. On the other hand, SMI is particularly useful
when the task is selection of a clustering based on multi-
ple clustering comparisons against a reference and when
there are clusterings induced on data sets where the num-
ber of records is small relative to the number of clusters.
As a rule of thumb, SMI should definitely be employed if
T—IYC < 5 and more than three clustering solutions have to
be compared. Lastly, we remark this paper is focused on
MI for clustering comparisons but we know that all results
are applicable when using MI in arbitrary size contingency
tables.

Maximum agreement achievable

N = 100 records in r X c tables VI
3x3 4x4 5x5 6x6 T7Tx7 8x8 NMI
SMI 0.30 0.64 1.12 1.72 2.47 3.30

SMI paratiet~~ 0.15 0.27 0.40 0.55 0.80 1.01
857.11 N/A N/A

Fisher’s 0.01 0.61 67.06

Multiple clustering comparisons

4 x 4 tables with N records

SMI

100 150 200 250 300 350

SMI 0.65 1.53 2.94 5.00 7.59

Fisher’s 0.65 11.32 242.67

11.00
SMI parattet ~ 0.30 0.51 0.97 1.52 2.33 3.35
844.62  N/A N/A

Few data points

Table 4. Running times in seconds for SMI and Fisher’s exact
test. Fisher’s exact test becomes intractable when the number of
records N is large or the number of rows r or columns c is large.

Figure 5. Relative utility of SMI, AMI, VI, NMI, MI on different
clustering comparison scenario (best viewed in colors).



Standardized Mutual Information for Clustering Comparisons

References

Aggarwal, C. C. and Reddy, C. K. Data Clustering: Algo-
rithms and Applications. CRC Press, 2013.

Agresti, A. Categorical data analysis, volume 359. John
Wiley & Sons, 2002.

Ben-Hur, A., Elisseeff, A., and Guyon, I. A stability based
method for discovering structure in clustered data. In
Pacific symposium on biocomputing, volume 7, pp. 6—
17, 2001.

Caruana, R., Elhaway, M., Nguyen, N., and Smith, C. Meta
clustering. In Data Mining, 2006. ICDM’06. Sixth Inter-
national Conference on, pp. 107-118. IEEE, 2006.

Cover, T. M. and Thomas, J. A. Elements of information
theory. John Wiley & Sons, 2012.

Dobra, A. and Gehrke, J. Bias correction in classification
tree construction. In /CML, pp. 90-97, 2001.

Dyer, M., Kannan, R., and Mount, J. Sampling contingency
tables. Random Structures and Algorithms, 10(4):487—
506, 1997.

Frank, E. and Witten, I. H. Using a permutation test for
attribute selection in decision trees. In ICML, pp. 152—
160, 1998.

Hubert, L. and Arabie, P. Comparing partitions. Journal of
Classification, 2:193-218, 1985.

Kononenko, I. On biases in estimating multi-valued at-
tributes. In International Joint Conferences on Artificial
Intelligence, pp. 1034-1040, 1995.

Mehta, C. R. and Patel, N. R. A network algorithm for
performing fisher’s exact test in r X c contingency ta-
bles. Journal of the American Statistical Association, 78
(382):427-434, 1983.

Meilda, M. Comparing clusteringsan information based dis-
tance. Journal of Multivariate Analysis, 98(5):873-895,
2007.

Meild, M. Local equivalences of distances between clus-

teringsa geometric perspective. Machine learning, 86
(3):369-389, 2012.

Monti, S., Tamayo, P., Mesirov, J., and Golub, T. Consen-
sus clustering: A resampling-based method for class dis-
covery and visualization of gene expression microarray
data. Machine Learning, 52(1-2):91-118, 2003. ISSN
0885-6125.

Miiller, E., Giinnemann, S., Firber, 1., and Seidl, T. Dis-
covering multiple clustering solutions: Grouping objects
in different views of the data. Tutorial at ICML, 2013.
URL http://dme.rwth-aachen.de/en/DMCS.

Quinlan, J. R. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1993. ISBN 1-55860-238-0.

Rand, W. M. Objective criteria for the evaluation of clus-
tering methods. Journal of the American Statistical as-
sociation, 66(336):846-850, 1971.

Vinh, N. X., Epps, J., and Bailey, J. Information theo-
retic measures for clusterings comparison: is a correc-
tion for chance necessary? In ICML, pp. 1073-1080.
ACM, 2009.

Vinh, N. X., Epps, J., and Bailey, J. Information theoretic
measures for clusterings comparison: Variants, proper-
ties, normalization and correction for chance. Journal of
Machine Learning Research, 11:2837-2854, 2010.

White, A. P. and Liu, W. Z. Bias in information-based mea-
sures in decision tree induction. Machine Learning, pp.
321-329, 1994.

Wu, J., Xiong, H., and Chen, J. Adapting the right mea-
sures for k-means clustering. In Knowledge Discovery
and Data Mining, pp. 877-886, 2009.


http://dme.rwth-aachen.de/en/DMCS

