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In this document, we provide the proofs for the proposi-
tions stated in the paper.
Proposition 1. For discrete domains, every decomposable
and smooth AC can be represented as an equivalent SPN
with fewer or equal nodes and edges.

Proof. We show this constructively. Given an AC, we can
convert it to a valid SPN representing the same function in
four steps:

1. If the root is not a sum node, set the root to a new sum
node whose single child is the former root.

2. For each sum node, set the initial weights of all out-
going edges to 1.

3. For each parameter node, find the first sum node on
each path to the root and multiply its outgoing edge
weight along that path by the parameter value. (Do not
multiply the same edge weight by any given parameter
more than once, even if that edge occurs in multiple
paths to the root. We assume that parameter nodes
only occur as children of product nodes.)

4. Remove all parameter nodes from the network.

5. Replace each indicator node λXi=v with a determin-
istic univariate distribution, P (Xi = v) = 1.

Because the AC was decomposable, each product in the
resulting SPN must be over disjoint scopes. Because the
AC was smooth, each sum in the resulting SPN must be
over identical scopes. Therefore, the SPN is valid. Since
all indicator nodes are removed and at most one new node
is added, the new SPN must have fewer or equal nodes and
edges than the original AC.

To prove that the SPN evaluates to the same function as the
original AC, we use induction to show that each sum node
evaluates to the same value as before. Since the root node is
a sum, this suffices to show that the new SPN is equivalent.

Consider each outgoing edge from the sum node to one of
its children. There are three cases to consider:

• If the child is a leaf, then the child’s value is a deter-
ministic distribution which is clearly identical to the
parameter node in AC. The edge weight will be 1,
since the leaf could not have had any parameter node
descendants that were removed.

• If the child is another sum node, then by the inductive
hypothesis, its value must be the same as in the AC.
The weight of this edge must also be 1, since any pa-
rameter node descendant must have at least one sum
node that is “closer,” namely the child sum node.

• If the child is a product node, then its value might
be different from the AC. Without loss of general-
ity, consider a product node and all of its product
node children, and all of their product node children,
etc. together as a single product. (This is valid be-
cause multiplication is commutative and associative.)
The elements in this product are only sum nodes and
leaf nodes, both of which have the same values as
in the AC. One or more parameter nodes could have
been removed from this product when constructing the
SPN. These parameters have been incorporated into
the edge weight, since the parent sum node is the first
sum node on any path from the parameters to the root
that passes through this edge. Therefore, the value of
the product node times its edge weight is equal to the
value of the product node in the AC.

Thus, each child of the sum node has the same value as
in the original AC once it has been multiplied by the edge
weight, so the sum node computes the same value as in the
AC. For the base case of a sum node with no sum node de-
scendants, the above arguments still suffice and no longer
depend on the inductive hypothesis. Therefore, by struc-
tural induction, every sum node computes the same value
as in the AC.

Proposition 2. For discrete domains, every SPN can be
represented as an AC with at most a linear increase in the
number of edges.
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Proof. We again show this constructively. Given an SPN,
we can convert it to a decomposable and smooth AC repre-
senting the same distribution in three steps:

1. Create indicator nodes for each variable/value combi-
nation.

2. Replace each univariate distribution with a sum of
products of parameter and indicator nodes. Specifi-
cally, create one parameter node for each state of the
target variable, representing the respective probabil-
ity of that state. Create one product node for each
state with the corresponding indicator node and new
parameter node as children.

3. Replace each outgoing edge of each sum node with a
product of the original child and a new parameter node
representing the original weight from that edge.

Assuming the domain of each variable is bounded by a con-
stant, each edge is replaced by at most a constant number
of edges. Therefore, the number of edges in the resulting
AC is linear in the number of edges in the original SPN.

We now use induction to show that, for each node in the
SPN, there is a node in the AC that computes the same
value. We have three types of nodes to consider:

• As the base case, each leaf in the SPN is represented
by a new sum node created in the second step. By con-
struction, this sum node clearly represents the same
value as the leaf distribution in the SPN.

• Each product node in the SPN is unchanged in the
AC conversion. Since, by the inductive hypothesis,
its children compute the same values as in the SPN, so
does the product.

• Each sum node in the SPN is represented by a similar
node in the AC. The AC node is an unweighted sum
over products of the SPN edge weights and nodes rep-
resenting the corresponding SPN children. By the in-
ductive hypothesis, these children compute the same
values as their SPN counterparts, so the weighted sum
performed by the AC node (with the help of new prod-
uct and parameter nodes) is identical to the SPN sum
node.

The root of the AC represents the root of the SPN, so by
induction, they compute the same value and the two models
represent the same distribution.


