Supplement: A Discriminative Latent Variable Model for Online Clustering

Rajhans Samdani, Google Research Kai-Wei Chang, University of Illinois Dan Roth, University of Illinois RAJHANS@GOOGLE.COM KCHANG10@ILLINOIS.EDU DANR@ILLINOIS.EDU

This supplement provides the proof that the probability of clustering as per the left-linking tree model is the same as the probability of a clustering as per the L³M model and also provides the results with randomized ordering of items discussed in Section 5.4.

1. Proof. of Theorem 1

The main paper (Eq. 4) presents the probability of a clustering C as per the L^3M model as:

$$Pr[\mathcal{C} \triangleleft i; d, \mathbf{w}] = \sum_{0 \le j < i} Pr[j \leftarrow i; d, \mathbf{w}] \mathcal{C}(i, j) = \frac{Z_i(\mathcal{C}; d, \mathbf{w}, \gamma)}{Z_i(d, \mathbf{w}, \gamma)},$$
(1)

where $Z(d,\mathbf{w},\gamma) = \prod_{i=1}^{m_d} Z_i(d,\mathbf{w},\gamma)$ is the partition function and $Z(\mathcal{C};d,\mathbf{w},\gamma) = \prod_{i=1}^{m_d} Z_i(\mathcal{C};d,\mathbf{w},\gamma)$.

For the left-linking tree model, the probability of a left-linking tree **z** is represented as

$$Pr[\mathbf{z}; d, \mathbf{w}] = \frac{1}{T(d, w, \gamma)} \exp \left(\frac{1}{\gamma} \left(\sum_{(i,j) \in \mathbf{z}} \mathbf{w} \cdot \phi(i,j) \right) \right),$$

where $T(d, w, \gamma) = \sum_{\mathbf{z} \in \mathcal{Z}_d} \exp\left(\frac{1}{\gamma}\left(\sum_{(i,j) \in \mathbf{z}} \mathbf{w} \cdot \phi(i,j)\right)\right)$ is the left-linking tree partition function. The probability of a clustering $\mathcal C$ as per the left-linking tree model is expressed (Eq. 5 in the main paper) as the sum of the probabilities of all the left-linking trees consistent with $\mathcal C$:

$$Pr'[\mathcal{C}; d, \mathbf{w}] = \sum_{\mathbf{z} \in \mathcal{Z}_d^c} Pr[\mathbf{z}; d, \mathbf{w}]$$

$$= \frac{1}{T(d, w, \gamma)} \sum_{\mathbf{z} \in \mathcal{Z}_d^c} \exp\left(\frac{1}{\gamma} \left(\sum_{(i,j) \in \mathbf{z}} \mathbf{w} \cdot \phi(i, j)\right)\right) . \tag{2}$$

Now, following is the theorem stated in the paper.

Theorem 1. The probability of a clustering as per the left-linking tree model, expressed in Eq. (2), is the same as probability of clustering for L^3M as expressed in Eq. (1), i.e. $Pr'[\mathcal{C}; d, \mathbf{w}] = Pr[\mathcal{C}; d, \mathbf{w}]$.

Proof. We will focus on the proof with $\gamma > 0$. As the functions in Eq. (1) and Eq. (2) are bounded and continuous, we

shall see that the same result will hold for $\gamma \to 0$.

First we will prove that the two partitions functions are the same: $T(d, \mathbf{w}, \gamma) = Z(d, \mathbf{w}, \gamma)$. The proof for the equivalence of the numerators for Eq. (1) and Eq. (2) will be analogous.

Below, we prove $T(d, \mathbf{w}, \gamma) = Z(d, \mathbf{w}, \gamma)$ by induction on the number of items, m_d . We abuse the notation and write $Z(n, \mathbf{w}, \gamma)$ as the partition function for L^3M when considering only the first n items. We use the notation $T(n, \mathbf{w}, \gamma)$ similarly.

Base case: $m_d=1$. With just one actual item and one dummy item 0, $Z(1,\mathbf{w},\gamma)=\exp(\frac{1}{\gamma}(\mathbf{w}\cdot\phi(1,0)))=\exp(0)=1$. Also there is only one left-linking tree possible (with item 0 as the root and 1 as its only child), and so $T(1,\mathbf{w},\gamma)=\exp(\frac{1}{\gamma}(\mathbf{w}\cdot\phi(1,0)))=1$. Thus the hypothesis holds for $m_d=1$.

Now, lets assume that the induction hypothesis holds for $m_d = n - 1$ for $n \ge 2$. That is we have

$$T(n-1, \mathbf{w}, \gamma) = Z(n-1, \mathbf{w}, \gamma)$$

$$\Rightarrow \sum_{\mathbf{z} \in \mathbb{Z}^{n-1}} \exp \left(\frac{1}{\gamma} \left(\sum_{(i,j) \in \mathbf{z}} \mathbf{w} \cdot \phi(i,j) \right) \right)$$

$$= \prod_{i=1}^{n-1} \left(\sum_{0 \le j < i} \exp \left(\frac{1}{\gamma} \left(\mathbf{w} \cdot \phi(i,j) \right) \right) \right) , \quad (3)$$

where \mathbb{Z}^{n-1} is the set of left-linking trees over n-1 items.

Our goal is to prove the same holds for $m_d = n$. Consider the expression for $T(n, \mathbf{w}, \gamma)$:

$$\sum_{\mathbf{z} \in \mathcal{Z}^n} \exp \left(\frac{1}{\gamma} \left(\sum_{(i,j) \in \mathbf{z}} \mathbf{w} \cdot \phi(i,j) \right) \right) , \qquad (4)$$

where \mathbb{Z}^n is the set of left-linking trees over n items. Notice that for a left-linking tree, the edge connecting item n to its parent is independent of the remaining edges. In other words, \mathbf{z} is a valid left-linking tree over n items iff by removing the item n and its associated edge, we get a valid left-linking tree over n-1 items. Thus we can construct \mathbb{Z}^n , the set of all left-linking trees over n items by taking \mathbb{Z}^{n-1} , the set of all left-linking trees over n-1

Supplement: A Discriminative Latent Variable Model for Online Clustering

$Task \rightarrow$	ACE Coreference				Author Clustering	Topic Clustering	w/ one pass
Technique	MUC	\mathbf{B}^3	CEAF	AVG	Varation of Information (VI)		
Sum-Link	69.35	77.3	73.54	73.40	134.03	259.57	263.62
Bin-Left-Link	72.62	76.84	74.89	74.78	133.62	252.69	257.69
$L^3M (\gamma = 0)$	75.18	78.66	76.02	76.62	133.66	252.17	254.64
L^3M (tuned γ)	75.47	79.1	76.16	76.91	132.81	245.33	249.09

Table 1: Results with randomized ordering of items on coreference resolution for the ACE data and on author-based and discussion topic-based clustering for Forum data. All the results are scaled by 100. Compare these results to the non-randomized results in the main paper (Tables 1 and 2b in the main paper.) The results for coreference resolution and topic clustering get significantly worse after randomization, while the effect is not so pronounced for author-based clustering.

items, and connecting item n to any of the previous n items $(0, \ldots, n-1)$ i.e. $\mathcal{Z}^n = \{\mathbf{z} \cup \{(n,j)\} | \mathbf{z} \in \mathcal{Z}^{n-1}, j \in \{0, \ldots, n-1\}\}$. This implies that we can re-write the expression in Eq. (4) as

 $\sum_{0 \leq j < n, \mathbf{z}' \in \mathcal{Z}^{n-1}} \left(\exp\left(\frac{1}{\gamma} \left(\mathbf{w} \cdot \phi(n, j)\right)\right) \right)$ $\times \exp\left(\frac{1}{\gamma} \left(\sum_{(i,k) \in \mathbf{z}'} \mathbf{w} \cdot \phi(i, k)\right)\right)$ $= \left(\sum_{0 \leq j < n} \exp\left(\frac{1}{\gamma} \left(\mathbf{w} \cdot \phi(n, j)\right)\right)\right)$ $\times \left(\sum_{\mathbf{z} \in \mathcal{Z}^{n-1}} \exp\left(\frac{1}{\gamma} \left(\sum_{(i,k) \in \mathbf{z}'} \mathbf{w} \cdot \phi(i, k)\right)\right)\right)$ $= \left(\sum_{0 \leq j < n} \exp\left(\frac{1}{\gamma} \left(\mathbf{w} \cdot \phi(n, j)\right)\right)\right)$ $\times \left(\prod_{i=1}^{n-1} \left(\sum_{0 \leq k < i} \exp\left(\frac{1}{\gamma} \left(\mathbf{w} \cdot \phi(i, k)\right)\right)\right)\right) \text{ (by Eq. (3))}$ $= \prod_{i=1}^{n} \left(\sum_{0 \leq j < i} \exp\left(\frac{1}{\gamma} \left(\mathbf{w} \cdot \phi(i, j)\right)\right)\right),$

which is the same as $Z(n, \mathbf{w}, \gamma)$. Hence our proof is complete and the two partition functions are the same.

One can analogously prove that the numerator of Equations (1) and (2) are the same i.e.

$$Z(\mathcal{C}; d, \mathbf{w}, \gamma) = \prod_{i=1}^{m_d} \left(\sum_{0 \le j < i} \exp\left(\frac{1}{\gamma} \left(\mathbf{w} \cdot \phi(i, j)\right)\right) \mathcal{C}(i, j) \right)$$
$$= \sum_{\mathbf{z} \in \mathcal{Z}_d^c} \exp\left(\frac{1}{\gamma} \left(\sum_{(i, j) \in \mathbf{z}} \mathbf{w} \cdot \phi(i, j)\right)\right).$$

This implies that $Pr'[\mathcal{C}; d, \mathbf{w}] = Pr[\mathcal{C}; d, \mathbf{w}]$ for $\gamma > 0$.

Now, as $\gamma \to 0$, the function in Eq. (1) converge to a Kronecker delta function as explained in the main paper. Also, for $\gamma \to 0$, the function in Eq. (2) converges to a Kronecker delta function which is 1 for the clustering consistent with the maximum weight left-linking tree, and 0 else where. As the two probability functions are always bounded and continuous for $\gamma > 0$, the equivalence of the two probabilities holds as $\gamma \to 0$, where or $\gamma = 0$, it is assumed that

the functions in Eq. (1) and (2) are replaced by appropriate Kronecker delta functions.

2. Results with Randomized Ordering

Table 1 presents results for coreference clustering for ACE data and for document clustering based on authors and topics. Notice that when compared with results in Tables 1 and 2b, the performance declines due to disruption in the natural ordering of items. The deterioration is significant for coreference clustering (approx 3 points decrease in average of MUC, B³, and CEAF) and for topic-based clustering (approx 10 points **increase** in VI), but not so significant for author-based clustering (< 1 point increase in VI.)