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Abstract
Distributed word representations have recently
been proven to be an invaluable resource for
NLP. These representations are normally learned
using neural networks and capture syntactic and
semantic information about words. Informa-
tion about word morphology and shape is nor-
mally ignored when learning word representa-
tions. However, for tasks like part-of-speech tag-
ging, intra-word information is extremely use-
ful, specially when dealing with morphologically
rich languages. In this paper, we propose a deep
neural network that learns character-level repre-
sentation of words and associate them with usual
word representations to perform POS tagging.
Using the proposed approach, while avoiding the
use of any handcrafted feature, we produce state-
of-the-art POS taggers for two languages: En-
glish, with 97.32% accuracy on the Penn Tree-
bank WSJ corpus; and Portuguese, with 97.47%
accuracy on the Mac-Morpho corpus, where the
latter represents an error reduction of 12.2% on
the best previous known result.

1. Introduction
Distributed word representations, also known as word em-
beddings, have recently been proven to be an invaluable
resource for natural language processing (NLP). One of
the key advantages of using word embeddings is minimiz-
ing the need for handcrafted features. These representa-
tions are normally learned using neural networks and cap-
ture syntactic and semantic information about words. With
a few exceptions (Luong et al., 2013), work on learning
of representations for NLP has focused exclusively on the
word level. However, information about word morphology
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and shape is crucial for various NLP tasks. Usually, when
a task needs morphological or word shape information, the
knowledge is included as handcrafted features (Collobert,
2011). One task for which character-level information is
very important is part-of-speech (POS) tagging, which con-
sists in labeling each word in a text with a unique POS tag,
e.g. noun, verb, pronoun and preposition.

In this paper we propose a new deep neural network
(DNN) architecture that joins word-level and character-
level representations to perform POS tagging. The pro-
posed DNN, which we call CharWNN, uses a convolu-
tional layer that allows effective feature extraction from
words of any size. At tagging time, the convolutional layer
generates character-level embeddings for each word, even
for the ones that are outside the vocabulary. We present
experimental results that demonstrate the effectiveness of
our approach to extract character-level features relevant to
POS tagging. Using CharWNN, we create state-of-the-art
POS taggers for two languages: English and Portuguese.
Both POS taggers are created from scratch, without includ-
ing any handcrafted feature. Additionally, we demonstrate
that a similar DNN that does not use character-level em-
beddings only achieves state-of-the-art results when using
handcrafted features.

Although here we focus exclusively on POS tagging, the
proposed architecture can be used, without modifications,
for other NLP tasks such as text chunking and named entity
recognition.

This work is organized as follows. In Section 2, we de-
scribe the proposed the CharWNN architecture. In Sec-
tion 3, we discuss some related work. Section 4 details our
experimental setup and results. Finally, in Section 5 we
present our final remarks.

2. Neural Network Architecture
The deep neural network we propose extends Collobert et
al.’s (2011) neural network architecture, which is a variant
of the architecture first proposed by Bengio et al. (2003).



Learning Character-level Representations for Part-of-Speech Tagging

Given a sentence, the network gives for each word a score
for each tag τ ∈ T . In order to score a word, the network
takes as input a fixed-sized window of words centralized in
the target word. The input is passed through a sequence of
layers where features with increasing levels of complexity
are extracted. Although the network scores each word sep-
arately, we can take the output for the whole sentence and
use the Viterbi algorithm to perform structured prediction.
The novelty in our network architecture is the inclusion of
a convolutional layer to extract character-level representa-
tions. In the following subsections we detail the proposed
architecture.

2.1. Initial Representation Levels

The first layer of the network transforms words into real-
valued feature vectors (embeddings) that capture mor-
phological, syntactic and semantic information about the
words. We use a fixed-sized word vocabulary V wrd, and
we consider that words are composed of characters from a
fixed-sized character vocabulary V chr. Given a sentence
consisting of N words {w1, w2, ..., wN}, every word wn

is converted into a vector un = [rwrd; rwch], which is
composed of two sub-vectors: the word-level embedding
rwrd ∈ Rdwrd

and the character-level embedding rwch ∈
Rclu of wn. While word-level embeddings are meant to
capture syntactic and semantic information, character-level
embeddings capture morphological and shape information.

2.1.1. WORD-LEVEL EMBEDDINGS

Word-level embeddings are encoded by column vectors in
an embedding matrix Wwrd ∈ Rdwrd×|V wrd|. Each col-
umn Wwrd

i ∈ Rdwrd

corresponds to the word-level embed-
ding of the i-th word in the vocabulary. We transform a
word w into its word-level embedding rwrd by using the
matrix-vector product:

rwrd = Wwrdvw (1)

where vw is a vector of size
∣∣V wrd

∣∣ which has value 1 at
index w and zero in all other positions. The matrix Wwrd

is a parameter to be learned, and the size of the word-level
embedding dwrd is a hyper-parameter to be chosen by the
user.

2.1.2. CHARACTER-LEVEL EMBEDDINGS

Robust methods to extract morphological information from
words must take into consideration all characters of the
word and select which features are more important for the
task at hand. For instance, in the POS tagging task, infor-
mative features may appear in the beginning (like the prefix
“un” in “unfortunate”), in the middle (like the hyphen in
“self-sufficient” and the “h” in “10h30”), or at the end (like

suffix “ly” in “constantly”). In order to tackle this problem
we use a convolutional approach, which has been first in-
troduced by Waibel et al. (1989). As depicted in Fig. 1,
our convolutional approach produces local features around
each character of the word and then combines them using
a max operation to create a fixed-sized character-level em-
bedding of the word.

Figure 1. Convolutional approach to character-level feature ex-
traction.

Given a word w composed of M characters
{c1, c2, ..., cM}, we first transform each character cm
into a character embedding rchrm . Character embeddings
are encoded by column vectors in the embedding matrix
W chr ∈ Rdchr×|V chr|. Given a character c, its embedding
rchr is obtained by the matrix-vector product:

rchr = W chrvc (2)

where vc is a vector of size
∣∣V chr

∣∣ which has value 1 at in-
dex c and zero in all other positions. The input for the con-
volutional layer is the sequence of character embeddings
{rchr1 , rchr2 , ..., rchrM }.

The convolutional layer applies a matrix-vector operation
to each window of size kchr of successive windows in
the sequence {rchr1 , rchr2 , ..., rchrM }. Let us define the vec-
tor zm ∈ Rdchrkchr

as the concatenation of the charac-
ter embedding m, its (kchr − 1)/2 left neighbors, and its
(kchr − 1)/2 right neighbors:

zm =
(
rchrm−(kchr−1)/2, ..., r

chr
m+(kchr−1)/2

)T
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The convolutional layer computes the j-th element of the
vector rwch, which is the character-level embedding of w,
as follows:

[rwch]j = max
1<m<M

[
W 0zm + b0

]
j

(3)

where W 0 ∈ Rclu×dchrkchr

is the weight matrix of the con-
volutional layer. The same matrix is used to extract local
features around each character window of the given word.
Using the max over all character windows of the word, we
extract a “global” fixed-sized feature vector for the word.

Matrices W chr and W 0, and vector b0 are parameters to be
learned. The size of the character vector dchr, the number
of convolutional units clu (which corresponds to the size of
the character-level embedding of a word), and the size of
the character context window kchr are hyper-parameters to
be chosen by the user.

2.2. Scoring and Structured Inference

We follow Collobert et al.’s (2011) window approach to
score all tags T for each word in a sentence. This ap-
proach follows the assumption that the tag of a word de-
pends mainly on its neighboring words, which is true for
various NLP tasks, including POS tagging. Given a sen-
tence with N words {w1, w2, ..., wN}, which have been
converted to joint word-level and character-level embed-
ding {u1, u2, ..., uN}, to compute tag scores for the n-th
word in the sentence, we first create a vector xn resulting
from the concatenation of a sequence of kwrd embeddings,
centralized in the n-th word:

xn =
(
un−(kwrd−1)/2, ..., un+(kwrd−1)/2

)T
We use a special padding token for the words with indices
outside of the sentence boundaries. Next, the vector xn

is processed by two usual neural network layers, which
extract one more level of representation and compute the
scores:

s(xn) = W 2h(W 1xn + b1) + b2 (4)

where matrices W 1 ∈ Rhlu×kwrd(dwrd+clu) and W 2 ∈
R|T |×hlu , and vectors b1 ∈ Rhlu and b2 ∈ R|T | are pa-
rameters to be learned. The transfer function h(.) is the
hyperbolic tangent. The size of the context window kwrd

and the number of hidden units hlu are hyper-parameters
to be chosen by the user.

In POS tagging, the tags of neighboring words are strongly
dependent. Some tags are arranged in chunks (e.g, proper
names with two or more words), and some tags are very
unlikely to be followed by other tags (e.g. verbs are very
unlikely to follow determiners). Therefore, a sentence-wise
tag inference that captures structural information from the

sentence can deal better with tag dependencies. Like in
(Collobert et al., 2011), we use a prediction scheme that
takes into account the sentence structure. The method uses
a transition score At,u for jumping from tag t ∈ T to u ∈ T
in successive words, and a score A0,t for starting from the
t-th tag. Given the sentence [w]N1 = {w1, w2, ..., wN}, the
score for tag path [t]N1 = {t1, t2, ..., tN} is computed as
follows:

S
(
[w]N1 , [t]N1 , θ

)
=

N∑
n=1

(
Atn−1,tn + s(xn)tn

)
(5)

where s(xn)tn is the score given for tag tn at word
wn and θ is the set of all trainable network parameters(
Wwrd,W chr,W 0, b0,W 1, b1,W 2, b2, A

)
.

Using the Viterbi (1967) algorithm, we can infer the pre-
dicted sentence tags [t∗]N1 , which are the ones composing
the path that leads to the maximal score:

[t∗]N1 = argmax
[t]N1 ∈TN

S
(
[w]N1 , [t]N1 , θ

)
(6)

2.3. Network Training

Our network is trained by minimizing a negative likeli-
hood over the training set D. In the same way as in
(Collobert et al., 2011), we interpret the sentence score (5)
as a conditional probability over a path. For this purpose,
we exponentiate the score (5) and normalize it with respect
to all possible paths. Taking the log, we arrive at the fol-
lowing conditional log-probability:

log p
(
[t]N1 |[w]N1 , θ

)
= S

(
[w]N1 , [t]N1 , θ

)
−

log

 ∑
∀[u]N1 ∈TN

eS([w]N1 ,[u]N1 ,θ)


(7)

The log-likelihood in Equation 7 can be computed effi-
ciently using dynamic programming (Collobert, 2011).

We use stochastic gradient descent (SGD) to minimize the
negative log-likelihood with respect to θ:

θ 7→
∑

([w]N1 ,[y]N1 )∈D

−log p([y]N1 |[w]N1 , θ) (8)

where [w]N1 corresponds to a sentence in the training corpus
D and [y]N1 represents its respective tag labeling.

The backpropagation algorithm is a natural choice to ef-
ficiently compute gradients of network architectures such
as the one proposed in this work (Lecun et al., 1998;
Collobert, 2011). In order to perform our experiments, we
implement the proposed CharWNN architecture using the
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Theano library (Bergstra et al., 2010). Theano is a versa-
tile Python library that allows the efficient definition, op-
timization, and evaluation of mathematical expressions in-
volving multi-dimensional arrays. We use Theano’s auto-
matic differentiation capabilities in order to implement the
backpropagation algorithm.

3. Related Work
Our work was mainly inspired by the work of
(Collobert et al., 2011) which has the specific goal of
avoiding task-specific engineering of features for standard
natural language processing tasks, while still achieving
good results. A large amount of unlabeled data is used
for learning word embeddings, which are obtained as
a side effect of training a language model network by
stochastic gradient minimization of a ranking criterion.
The word embeddings are then used to initialize the word
lookup tables of neural networks trained for four specific
tasks: POS tagging, chunking (CHUNK), named entity
recognition (NER) and semantic role labeling (SRL).
For POS and CHUNK the generalization performance
obtained without hand-crafted features is quite close to
that of the benchmarks used for comparisons and can be
further improved using ensemble methods. For NER and
SRL there is a larger performance gap that they show is
possible to reduce using extra information from gazetteers
and by cascading the output from POS and CHUNK. For
SRL, further improvement can be obtained by providing
parse tree information as extra features. In a footnote,
they comment that it would be ideal to learn directly
from character sequences rather than words which would
allow capturing the morphological relationships between
different variants of a word, but leave this out of the scope
of their paper. Here, we pursue this direction, which is
specially important for languages that have morphologi-
cally complex words and for domains such as biological
text, with complicated but logical word structure.

The importance of taking into consideration the morpho-
logical structure of words for natural language processing
appears in other related work. (Alexandrescu & Kirchhoff,
2006) present a factored neural language model where each
word is represented as a vector of features such as stems,
morphological tags and cases. Then a single embedding
matrix is used to look up all of these features. Although
this allows handling new words, the word representations
do not encode the morphological information, but rather
are encoded as network parameters. Thus this information
cannot be transferred to other tasks as is the case with the
approach proposed in this paper.

In (Luong et al., 2013) they also choose to operate at the
morpheme level, assuming access to a dictionary of mor-
phemic analyses of words. Then, they use a recursive neu-

ral network (RNN) to explicitly model the morphological
structures of words and learn morphologically-aware em-
beddings. They evaluate the quality of these embeddings
on a word similarity task, instead of using them for stan-
dard natural language processing tasks such as POS tag-
ging as we do here. They show that the quality of the
embeddings they propose is improved when they combine
the RNNs with a language model neural network that uti-
lizes surrounding words context, creating what they call a
context-sensitive morphological RNN.

Previously, (Lazaridou et al., 2013) had used composi-
tional distributional semantic models, originally designed
to learn meanings of phrases, to derive representations
for complex words, in which the base unit is the mor-
pheme, similar to (Luong et al., 2013). But, as noted
by (Luong et al., 2013), their models can only combine a
stem with an affix and do not support recursive morpheme
composition. Furthermore, they also require a corpus of
stem/derived pairs for training, which we do not require
here.

4. Experimental Setup and Results
In this section, we present the experimental setup and re-
sults of applying CharWNN to POS tagging of English and
Portuguese languages.

4.1. Unsupervised Learning of Word-Level
Embeddings

Word-level embeddings play a very important role in the
CharWNN architecture. They are meant to capture syn-
tactic and semantic information, which are crucial to POS
tagging. Recent work has showed that large improve-
ments in terms of model accuracy can be obtained by
performing unsupervised pre-training of word embeddings
(Collobert et al., 2011; Luong et al., 2013; Zheng et al.,
2013; Socher et al., 2013).

In our experiments, we perform unsupervised learning of
word-level embeddings using the word2vec tool1, which
implements the continuous bag-of-words and skip-gram ar-
chitectures for computing vector representations of words
(Mikolov et al., 2013).

We use the December 2013 snapshot of the English
Wikipedia corpus as the source of unlabeled English text.
The corpus was processed using the following steps: (1)
remove paragraphs that are not in English; (2) substitute
non-roman characters for a special character; (3) tokenize
the text using the tokenizer available with the Stanford POS
Tagger (Manning, 2011); (4) and remove sentences that are
less than 20 characters long (including white spaces) or

1https://code.google.com/p/word2vec/
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have less than 5 tokens. Like in (Collobert et al., 2011) and
(Luong et al., 2013), we lowercase all words and substitute
each numerical digit by a 0 (for instance, 1967 becomes
0000). The resulting clean corpus contains about 1.75 bil-
lion tokens.

For the Portuguese experiments, we use three sources of
unlabeled text: the Portuguese Wikipedia; the CETEN-
Folha2 corpus; and the CETEMPublico3 corpus. The Por-
tuguese Wikipedia corpus is preprocessed using the same
approach applied to the English Wikipedia corpus. How-
ever, we implemented our own Portuguese tokenizer. The
CETENFolha and CETEMPublico corpora are distributed
in a tokenized format. They also contain tags indicating
sentences, lists, author of the text, etc. We only include
the parts of the corpora tagged as sentences. Addition-
ally, for these two corpora, we execute the processing step
(4), which consists in removing short sentences. We also
lowercase all words and substitute each numerical digit by
a 0. When concatenating the three corpora: Portuguese
Wikipedia, CETENFolha and CETEMPublico, the result-
ing corpus contains around 401 million words.

For both languages we use the same parameters when run-
ning the word2vec tool, except for the minimum word fre-
quency. For English, a word must occur at least 10 times
in order to be included in the vocabulary, which resulted in
a vocabulary of 870,214 entries. For Portuguese, we use a
minimum frequency of 5, which resulted in a vocabulary
of 453,990 entries. To train our word-level embeddings we
use word2vec’s skip-gram method with a context window
of size five. The training time for the English corpus is
around 1h30min using 12 threads in a Intelr Xeonr E5-
2643 3.30GHz machine.

We do not perform unsupervised learning of character-level
embeddings. For both English and Portuguese, the charac-
ter vocabulary is quite small if compared to the word vo-
cabulary. Therefore, we assume that the amount of data in
the labeled POS tagging training corpora is enough to ef-
fectively train character-level embeddings. It is important
to note that character-level embeddings are trained using
the raw (not lowercased) words. Therefore, the network
is allowed to capture relevant information about capitaliza-
tion.

4.2. POS Tagging Datasets

We use the Wall Street Journal (WSJ) portion of the Penn
Treebank4 (Marcus et al., 1993) for English POS tagging.
In order to fairly compare our results with previous work,
we adopt the same partitions used by other researchers

2http://www.linguateca.pt/cetenfolha/
3http://www.linguateca.pt/cetempublico/
4We use the LDC99T42 Treebank release 3 version.

(Manning, 2011; Søgaard, 2011; Collobert et al., 2011).
This dataset contains 45 different POS tags. In Table 1, we
present additional details about the WSJ corpus. In this ta-
ble, the last two columns respectively inform the number
of out-of-the-supervised-vocabulary words (OOSV), and
the number of out-of-the-unsupervised-vocabulary words
(OOUV). A word is considered OOSV if it does not appear
in the training set, while OOUV words are the ones that do
not appear in the vocabulary created using the unlabeled
data (as described in Sec. 4.1), i.e, words for which we do
not have word embeddings.

Table 1. WSJ Corpus for English POS Tagging.

SET SENT. TOKENS OOSV OOUV

TRAINING 38,219 912,344 0 6317
DEVELOP. 5,527 131,768 4,467 958
TEST 5,462 129,654 3,649 923

We use the Mac-Morpho corpus to perform POS tagging
of Portuguese language text. The Mac-Morpho corpus
(Aluı́sio et al., 2003) contains around 1.2 million manually
tagged words. Its tagset contains 22 POS tags (41 if punc-
tuation marks are included) and 10 more tags that represent
additional semantic aspects. We carry out tests without us-
ing the 10 additional tags. We use the same training/test
partitions used by (dos Santos et al., 2008). Additionally,
we created a development set by randomly selecting 5% of
the training set sentences. In Table 2, we present detailed
information about the Mac-Morpho corpus.

Table 2. Mac-Morpho Corpus for Portuguese POS Tagging.

SET SENT. TOKENS OOSV OOUV

TRAINING 42,021 959,413 0 4155
DEVELOP. 2,212 48,258 1360 202
TEST 9,141 213,794 9523 1004

4.3. Model Setup

We use the development sets to tune the neural network
hyper-parameters. Many different combinations of hyper-
parameters can give similarly good results. As usually
occurs in SGD training, the learning rate is the hyper-
parameter that has the largest impact in the prediction.
Therefore, we spent more time tuning the learning rate than
tuning other parameters. Nevertheless, learning rates in
the range of 0.01 and 0.005 give very similar results, even
when using the same number of training epochs. Addi-
tionally, we use a learning rate schedule that decreases the
learning rate λ according to the training epoch t. The learn-
ing rate for epoch t, λt, is computed using the equation:
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λt =
λ

t
. A generalization of this learning rate schedule is

presented in (Bengio, 2012).

It is important to note that we use the same set of hyper-
parameters for both English and Portuguese. This pro-
vides some indication on the robustness of our approach to
multiple languages. The number of training epochs is the
only difference in terms of training setup for the two lan-
guages. The WSJ corpus is trained for five training epochs,
while the training with the Mac-Morpho corpus lasts eight
training epochs. In Table 3, we show the selected hyper-
parameter values.

Table 3. Neural Network Hyper-Parameters

PARAMETER PARAMETER NAME VALUE

dwrd WORD-LEVEL DIM. 100
kwrd WORD CONT. WINDOW 5
dchr CHAR. EMBED. DIM. 10
kchr CHAR. CONT. WINDOW 5
clu CONVOL. UNITS 50
hlu HIDDEN UNITS 300
λ LEARNING RATE 0.0075

In order to assess the effectiveness of the proposed
character-level representation of words, we compare the
proposed architecture CharWNN with an architecture that
uses only word embeddings and additional features instead
of character-level embeddings of words. In our experi-
ments, WNN represents a network which is fed with word
representations only, i.e, for each word wn its embedding
is un = rwrd. WNN is essentially Collobert et al.’s (2011)
NN architecture. Where indicated, it also includes two ad-
ditional handcrafted features: capitalization and suffix. The
capitalization feature has five possible values: all lower-
cased, first uppercased, all uppercased, contains an upper-
cased letter, and all other cases. We use suffix of size two
for English and of size three for Portuguese. In our ex-
periments, both capitalization and suffix embeddings have
dimension five. We use the same NN hyper-parameters val-
ues (when applicable) shown in Table 3.

4.4. Results for POS Tagging of Portuguese Language

In Table 4, we report POS Tagging accuracy (Acc.) re-
sults for the Mac-Morpho corpus. The architecture WNN,
which does not use character-level embeddings, performs
very poorly without the use of the capitalization feature.
This happens because we do not have information about
capitalization in our word embeddings, since we use low-
ercased words. When taking into account all words in the
test set (column Acc.), CharWNN achieves a slightly better
result than the one of WNN with two handcrafted features.

Regarding out-of-vocabulary words, we can see in Table
4 that intra-word information is essential to better perfor-
mance. For the subset of words for which we do not
have word embeddings (column Acc. OOUV), the use of
character-level information by CharWNN is responsible for
an error reduction of 58% when compared to WNN without
intra-word information (from 75.40% to 89.74%). These
results demonstrate the effectiveness of our convolutional
approach to learn valuable character-level information for
POS Tagging.

Our Theano based implementation of CharWNN takes
around 2h30min to complete eight training epochs for the
Mac-Morpho corpus. In our experiments, we use 4 threads
in a Intelr Xeonr E5-2643 3.30GHz machine.

Table 4. Comparison of different NNs for POS Tagging of the
Mac-Morpho Corpus.

SYSTEM FEATURES ACC. ACC.
OOSV

ACC.
OOUV

CHARWNN – 97.47 92.49 89.74
WNN CAPS+SUF3 97.42 92.64 89.64
WNN CAPS 97.27 90.41 86.35
WNN SUF3 96.35 85.73 81.67
WNN – 96.19 83.08 75.40

In Table 5, we compare the result of CharWNN with re-
ported state-of-the-art results for the Mac-Morpho cor-
pus. In (dos Santos et al., 2008), the authors use En-
tropy Guided Transformation Learning, a learning strategy
which combines Decision Trees and Transformation-Based
Learning. In (Fernandes, 2012), the authors use Structured
Perceptron with Entropy Guided Feature Induction. In both
pieces of work, the authors use many handcrafted features,
most of them to deal with out-of-vocabulary words. Our
system reduces the error of the previously best system by
12.2%. This is a remarkable result, since we train our
model from scratch, i.e., without the use of any handcrafted
features.

Table 5. Comparison with state-of-the-art systems for the Mac-
Morpho corpus.

SYSTEM ACCURACY

THIS WORK 97.47
(FERNANDES, 2012) 97.12
(DOS SANTOS ET AL., 2008) 96.75

4.4.1. PORTUGUESE CHARACTER-LEVEL EMBEDDINGS

We can check the effectiveness of the morphological in-
formation encoded in character-level embeddings of words
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by computing the similarity between the embeddings of
rare words and words in the training set. In Table 6, we
present four OOSV words and one OOUV word (“dro-
grasse”), and their respective most similar words in the
training set. The similarity between two words wi and wj is
computed as the cosine between the two vectors rwch

i and
rwch
j (character-level embeddings). We can see in Table 6

that the character-level embeddings are very effective for
learning suffixes and prefixes.

In Table 7, we present the same five out-of-vocabulary
words and their respective most similar words in the vo-
cabulary extracted from the unlabeled data. In this Table,
we use word-level embeddings (rwrd) to compute the sim-
ilarity. We can see in this case that the words are more
semantically related, some of them being synonyms. On
the other hand, they are morphologically less similar than
the ones in Table 6.

4.5. Results for POS Tagging of English Language

In Table 8, we report POS tagging results of different NN
configurations for the WSJ corpus. The behavior of the
NNs is quite similar to the one obtained with the Mac-
Morpho corpus. Again, the capitalization feature has a
much larger impact than the suffix feature. Using the
character-level embeddings of words (CharWNN) we again
get better results than the ones obtained with the WNN that
uses handcrafted features. This demonstrates that our con-
volutional approach to learning character-level embeddings
can be successfully applied to the English language.

Our CharWNN implementation takes around 1 hour to
complete five training epochs for the WSJ corpus. Again,
we use 4 threads in a Intelr Xeonr E5-2643 3.30GHz ma-
chine.

Table 8. Comparison of different NNs for POS Tagging of the
WSJ Corpus.

SYSTEM FEATURES ACC. ACC.
OOSV

ACC.
OOUV

CHARWNN – 97.32 89.86 85.48
WNN CAPS+SUF2 97.21 89.28 86.89
WNN CAPS 97.08 86.08 79.96
WNN SUF2 96.33 84.16 80.61
WNN – 96.13 80.68 71.94

Table 9 shows a comparison of our proposed CharWNN re-
sults with reported state-of-the-art results for the WSJ cor-
pus. In (Søgaard, 2011), the author uses a semi-supervised
version of the condensed nearest neighbor algorithm. Dur-
ing the learning process, his strategy uses SVMTool, which
makes use of a rich feature set to solve the POS tagging
task. In (Manning, 2011), the author uses a set of addi-

tional features and distributional similarity classes to im-
prove Toutanova et al.’s (2003) POS Tagger, which is based
on a Cyclic Dependency Network. This POS tagger also
has a rich feature set. Collobert et al.’s (2011) POS tagger is
essentially the same as our WNN (without character-level
embeddings) using capitalization and suffix features. The
result of our system for the WSJ corpus is similar to the
ones of (Manning, 2011) and (Collobert et al., 2011), and
very competitive with the result of (Søgaard, 2011). Again,
this is a remarkable result, since differently from the other
systems, our approach does not use any handcrafted fea-
ture.

Table 9. Comparison with state-of-the-art systems for the WSJ
corpus.

SYSTEM ACCURACY

(SØGAARD, 2011) 97.50
THIS WORK 97.32
(COLLOBERT ET AL., 2011) 97.29
(MANNING, 2011) 97.28

4.5.1. ENGLISH CHARACTER-LEVEL EMBEDDINGS

For the WSJ corpus, we also compute the similarity be-
tween the character-level embeddings of rare words and
words in the training set. In Table 10, we present six OOSV
words, and their respective most similar words in the train-
ing set. Again, the similarity between two words is com-
puted as the cosine between the two character-level embed-
dings of the words. From Table 10, we can also see that the
character-level embedding approach is effective at learning
suffixes, prefixes and even word shapes from the WSJ cor-
pus.

Table 11 shows the same six OOSV words and their respec-
tive most similar words in the vocabulary extracted from
the unlabeled data. The similarity is computed using the
word-level embeddings (rwrd). Similarly to the Portuguese
language case, we can easily note that in Table 10 the re-
trieved words are morphologically more related than the
ones in Table 11 Notice that due to our processing of the
unlabeled data, we have to replace all numerical digits by 0
in order to look for the word-level embeddings of 83-year-
old and 0.0055.

5. Conclusions
In this work we present a new deep neural network archi-
tecture that jointly uses word-level and character-level rep-
resentations to perform natural language processing. The
main contributions of the paper are: (1) the idea of us-
ing convolutional neural networks to extract character-level
features and jointly use them with word-level features; (2)
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Table 6. Most similar words using character-level embeddings learned with Mac-Morpho Corpus.

GRADAÇÕES CLANDESTINAMENTE REVOGAÇÃO DESLUMBRAMENTO DROGASSE

TRADIÇÕES GLOBALMENTE RENOVAÇÃO DESPOJAMENTO DIVULGASSE
TRADUÇÕES CRONOMETRICAMENTE REAVALIAÇÃO DESMANTELAMENTO DIRIGISSE

ADAPTAÇÕES CONDICIONALMENTE REVITALIZAÇÃO DESREGRAMENTO JOGASSE
INTRADUÇÕES APARENTEMENTE REFIGURAÇÃO DESENRAIZAMENTO PROCURASSE

REDAÇÕES FINANCEIRAMENTE RECOLOCAÇÃO DESMATAMENTO JULGASSE

Table 7. Most similar words using word-level embeddings learned using unlabeled Portuguese texts.

GRADAÇÕES CLANDESTINAMENTE REVOGAÇÃO DESLUMBRAMENTO DROGASSE

TONALIDADES ILEGALMENTE ANULAÇÃO ASSOMBRO –
MODULAÇÕES ALI PROMULGAÇÃO EXOTISMO –

CARACTERIZAÇÕES ATAMBUA CADUCIDADE ENFADO –
NUANÇAS BRAZZAVILLE INCONSTITUCIONALIDADE ENCANTAMENTO –

COLORAÇÕES VOLUNTARIAMENTE NULIDADE FASCÍNIO –

Table 10. Most similar words using character-level embeddings learned with WSJ Corpus.

INCONSIDERABLE 83-YEAR-OLD SHEEP-LIKE DOMESTICALLY UNSTEADINESS 0.0055

INCONCEIVABLE 43-YEAR-OLD ROCKET-LIKE FINANCIALLY UNEASINESS 0.0085
INDISTINGUISHABLE 63-YEAR-OLD FERN-LIKE ESSENTIALLY UNHAPPINESS 0.0075

INNUMERABLE 73-YEAR-OLD SLIVER-LIKE GENERALLY UNPLEASANTNESS 0.0015
INCOMPATIBLE 49-YEAR-OLD BUSINESS-LIKE IRONICALLY BUSINESS 0.0040

INCOMPREHENSIBLE 53-YEAR-OLD WAR-LIKE SPECIALLY UNWILLINGNESS 0.025

Table 11. Most similar words using word-level embeddings learned using unlabeled English texts.

INCONSIDERABLE 00-YEAR-OLD SHEEP-LIKE DOMESTICALLY UNSTEADINESS 0.0000

INSIGNIFICANT SEVENTEEN-YEAR-OLD BURROWER WORLDWIDE PARESTHESIA 0.00000
INORDINATE SIXTEEN-YEAR-OLD CRUSTACEAN-LIKE 000,000,000 HYPERSALIVATION 0.000
ASSUREDLY FOURTEEN-YEAR-OLD TROLL-LIKE 00,000,000 DROWSINESS 0.000000

UNDESERVED NINETEEN-YEAR-OLD SCORPION-LIKE SALES DIPLOPIA ±
SCRUPLE FIFTEEN-YEAR-OLD UROHIDROSIS RETAILS BREATHLESSNESS -0.00

the demonstration that it is feasible to train state-of-the-art
POS taggers for different languages using the same model,
with the same hyper-parameters, and without any hand-
crafted features; (3) the definition of a new state-of-the-art
result for Portuguese POS tagging on the Mac-Morpho cor-
pus.

A weak point of the proposed approach is the introduc-
tion of additional hyper-parameters to be tuned. How-
ever, we argue that it is generally preferable to tune hyper-
parameters than to handcraft features, since the former can
be automated.

As future work, we would like to analyse in more detail the

interrelation between the two representations: word-level
and character-level. Another possibility for future work
consists in applying the proposed strategy to other natural
language processing tasks such as text chunking and named
entity recognition.
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