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Latent Confusion Analysis by Normalized Gamma Construction

Abstract

We developed a flexible framework for model-
ing the annotation and judgment processes of hu-
mans, which we called “normalized gamma con-
struction of a confusion matrix.” This frame-
work enabled us to model three properties: (1)
the abilities of humans, (2) a confusion matrix
with labeling, and (3) the difficulty with which
items are correctly annotated. We also provided
the concept of “latent confusion analysis (LCA),”
whose main purpose was to analyze the prin-
cipal confusions behind human annotations and
judgments. It is assumed in LCA that confusion
matrices are shared between persons, which we

called “latent confusions”, in tribute to the “la-
tent topics” of topic modeling. We aim at sum-
marizing the workers’ confusion matrices with
the small number of latent principal confusion
matrices because many personal confusion ma-
trices is difficult to analyze. We used LCA to
analyze latent confusions regarding the effects of
radioactivity on fish and shellfish following the
Fukushima Daiichi nuclear disaster in 2011.

An important theme in collective intelligence is modeling

the annotation and judgment processes of humans. We fo-~

cus on modeling a confusion matrix with labeling. Extract-

ing a confusion matrix is useful for not just obtaining better

(closer to the ground truth) aggregation of labels but also
obtaining diagnostic information on human annotation and
judgments.

Dawid and Skenel@79 proposed a probabilistic genera-
tive model for subjective labeling. Their model can esti-
mate individual confusion matrices even when the true la-
bel is not available. Each worker in this model has a con-
fusion matrix in which if an item (e.g., an image) has true
labelwu, worker j can assign another labeWwith probabil-

ity wfjl) Smyth et al. {994 applied the Dawid and Skene
(DS) model to the image labeling problem. Snow et al.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

(2008 applied the DS model to the analysis of opinions in
natural language processing. Liu and Wa2@12 applied
the DS model to judge the quality of (query, URL) pairs.

Whitehill et al. 009 proposed the Generative model of
Labels, Abilities, and Difficulties (GLAD), which simul-
taneously estimated the expertise of each worker and the
difficulty of each task. It is beneficial to use GLAD, unlike
the DS model, in that it models the difficulty with which
items are correctly annotated. However, it suffers from
a critical issue that when we apply GLAD to a task with
multiple labels, the confusion matrix of a worker cannot be
constructed (see Sé&c2for the details).

Contributions

This paper makes three main contributions.

1. We propose a normalized gamma construction (NGC)
of a confusion matrix to model the annotation and
judgment process of humans. This framework easily
enables us to model a confusion matrix with labeling
in a multi-label setting like the DS model and to take
into account a task’s difficulty like that with GLAD.

2. We provide a novel concept in data scientsent
confusion analysis (LCAWhich was developed with
the NGC framework and latent Dirichlet enhanced
modeling. The main aim of LCA is to extract la-
tent (principal) confusions behind the annotation and
judgment processes of humans. LCA summarizes the
workers’ confusion matrices with the small number of
latent principal confusion matrices because many per-
sonal confusion matrices is difficult to analyze.

3. The proposed learning algorithm was based on the

variational Bayes inference. Due to the normalization
term of NGC, we had to devise a way of optimizing
the variational lower bound, which enabled us to ob-
tain closed form solutions in the M-step (see 8gc.
Moreover, we provide point estimations of prior pa-
rameters, i.e., we did not need to tune prior parameters
for each dataset
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Input Chernobyl to measure Level 7 on the International Nuclear
[ Workers judge safety levels ‘ 5 ; Event Scale.
a, >ale .. .
! ﬂ < = Unsurprisingly, there was a great deal of concern in Japan
[] Sockeye salmon ~_ about the risk to health and the food chain caused by ra-
fishing ground \\Q ij dioactivity. A huge social issue emerged called “Fuhyo Hi-
L Pl 4 [ So?qtmtl:|1 , , gai” in Japanese that was related to trustworthiness. Farm-
alre cvell / . . . .
il . ([ r . { ers, fishermen, and related businesses face this risk because
a, e T3 255 Fukushima consur_ners.s.topped buying products t_hat might be affected
: .5: =t T : Nuclear Power by radioactivity. There is now a growing need to analyze
SR Stations how people are confused about the effect radioactivity has
Output ——— Output ' Output — on foods. We are therefore under pressure to analyze latent
[workers abiies] [ Confusion maties [1tems’ diffculies confusions from a questionary investigation into what ef-
Summary i!. ..= ,perer satmon fect radioactivity has on foods. The details on the dataset
of workers® Ha m are described in the experimental section.
confusion matrices ‘—l i | ]

This paper is organized as follows. We describe exist-
_ o _ ing models in Se@. We propose our novel framework in
Figure 1. Motivational example and input/output of our model. Sec3. We provide the variational Bayes inference for LCA

We created rating data in which the safety level of fish and shelli, seca. We present comparative experimental results in
fish was annotated by using Japanese crowdsourcing. We ask

people in Japanese crowds to assess the safety levels of items that

consisted of fish names and their fishing grounds in Japan. We

aimed at gaining insights into what kind of confusions Japanesd.. Preliminaries and notations

people had about the effect of radioactivity on fish and shellfish. ) ) o )
Unlike Dawid and Skene1979’ we modeled confusion matri- Thebold notation of a variable indicates a set of the vari-
ces for the workforce, not for each worker, i.e., we shared latenbles in terms of its subscripts, eg; = {z;,}.’, and
confusion matrices between workers. When the workers’ confuz = {z;}.,. [E[z] denotes the expectation aof by
sions could be described with a combination of a small numbeits distribution. In particular]E,[z] denotes the expec-
of principal confusion matrices, the number of principal confu- tation of = by its variational posterior. KJ||-] denotes
sion matrices was smaller than the number of workers. Thereforghe Kullback-Leibler (KL) divergence. Multi) denotes
we expected to only have to analyze data in the small principaihe multinomial distribution. Dit-) denotes the Dirich-

confusion matrices. Moreover, we modeled the worker's ability,let distribution. Gamm@) denotes the gamma distribu-

denoted by:, and the difficulty in correctly annotating items, de- .. - . L
noted byd. This information helped us understand the properties.tlon' The probability function of the gamma distribution

. _ b a—1_—bzx H
of rating data. The details are described in the experimental sedS Gammdz; a,b) = 72 e . The expectation of
tion 5. andlogz areE[z] = a/b andE[logz] = ¥(a) — logb.
x ~ P expresses that a random variable x is distributed

according to the probability distributiofr. ¥(.) is the

Motivation behind LCA: Fukushima Daiichi nuclear digamma (psi) functiond(c) is the delta function that takes
disaster a value of one if condition is satisfied, and zero otherwise.

L
meansy ,_, 6(u # I).
We are often interested in obtaining diagnostic informationzz#u) 21 0(u #1)

on the types of confusions people experience. It is moréUppose that we hav items to annotate anl annota-
useful in this situation to extract the shared confusions betion labels. N denotes the number of workers. Each item
hind people than extract the individual confusion matrix for has a true label from a set of labgls 2, - - - , L} where the
each person in the existing work. It is ideal in this situationtrue label is not available in fact. For example, in the case

to analyze the confusion matrix of each person by using &f customers rating books on a scale from one to five stars,
combination of latent confusions. we havelM books and is five.

Figure1 outlines our motivation for latent confusion analy- Since the true labels cannot be observed, we formulate the

sis. On March 11 2011, the Tohoku earthquake and tsunanifue labels as latent variables,, = | denotes that the true
occurred, followed by a series of equipment failures, nuJabel of itemm is i € {1,---,L}. x;; is thei-th item
clear meltdowns, and the release of radioactive materialthat worker; labels. y;; € {1,---, L} denotes the label
at the Fukushima | Nuclear Power Plant, which was callec@ssigned by workej to itemz; ;. « is a bag ofz; ;, y is a
the Fukushima Daiichi disaster. This disaster is considere829 ofy; i, andr is a bag ofr,,,. n; is the number of items
to be the largest nuclear disaster since the Chernobyl dighat worker; annotates.

aster of 1986 and was only the second disaster along with
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2. Existing models means the item is very ambiguous and hence even the high-
q ibe th del lated est skilled worker has only a 50% chance of labeling it cor-
Here, we describe the two models most related to our workye o, 1/d,, = oo means the item is so easy to annotate

] that most of workers always label it correctly.
2.1. Dawid and Skene (DS) model
Labely; ; = [ that workerj assigns ta-th itemz; ; = m

Dawid and Skenel@79 considered the problem of mea- g|ven true |abeb—m is generated accord|ng to
suring observer error and analyzed a patient record in

which the patient was seen by different clinicians and dif-  p(y;; = l|a;, dm, )
ferent responses may be obtained to the same questions. 5(rm=1) (D).
They proposed a model that allowed an individual confu- = o(a;j/dm) (- U(QJ/d’”)) ©)

sion matrix to be estimated even when the true réSpONSEhere (- is the sigmoid function. Equatior8) means
was not available. We call this model the DS model. that if true labelr,, = I, the probability ofy,; = I is

The key idea is to introduce the confusion matrix given byo (a;/dm); otherwise,l — o(a;/dy,). Itis ideal for us to
the probabllltwaf?, that worker; will assign label when have closed-form solutions in the M-step. However, we
have to numerically solve an optimization problem, e.g., by

u is the true label. That is, workerassigns label; ; t ] ) ) "
gradient ascent, to estimate workgs ability a; and task

itemz;; b
5 Y m’s difficulty d,, for each M-step in the EM algorithm,
B y with probability /) ) which requires tuning a step-size parameter.
i, (£ u) with probabilty U) () Whitehill et al. formulated a multiple-label variant of

GLAD (mGLAD) in their paper’s supplementary material.
_ It is assumed with mGLAD that the probability of worker
The probabilitiest’) (u # 1) indicate the individual error j assigning label given true labet,, is

rates for workeyj, andwfﬁl is the probability that workef

will annotate the true label. Note that the error rates are §(rmatl)

conditional probabilities wherg ", wéf = 1 for eachj B serm=t) (L= 0(a;/dmn) "™
=o(a;/dm) —I-1 . 4

andu. 7 is a set szri L -1

p(yjﬂ? = l|aj7d7m Tm)

The likelihood of workers’ annotation datgand true label Equation 4) means that if true labet,, = u, the prob-

T, givenm = {w(}V is ability of y; ; = wis o(a;/d,,) and that of other labels is
(1—o(a;/dm))/(L—1), respectively. The workers’ ability
M N n; parameters; (j = 1,---,N) are shared in all items. The
p(y, 7lx, ™ p) = H Lhr,, H HwS) .- (2 problem is that the workers’ labeling confusion cannot be
m=1  jeli=l modeled because it is modeled as a uniform, 1.4.L—1).

wherep is the true label prior, i.qy; = p(7,, = 1), andwe 2 3 Other Related Work
denotep = (p1,- -, uz). Dawid and Skenel@79 used

the Expectation-Maximization (EM) algorithm to estimate Various studies have investigated crowdsourcing. The fol-
() lowing studies differ from our work in that they are not

Tm|® S ), , and
Pl 9, P ). Tl Hi: aimed at analyzing the confusion matrices, in particular,

2.2. Generative Model of Labels, Abilities, and latent confusions and the most cases are binary labeling.

Difficulties (GLAD) Classification: Raykar et al. 2010 studied a binary clas-
sifier via estimating the annotator accuracy and the actual
true label. Yan et al. modeled annotators’ expertise as a
function of the item’s feature vectoivén et al, 2010ha;
2017. Welinder et al. 2010 modeled a binary annotation
process by considering the low-dimensional feature vector
of each image in an image labeling task. Wauthier et al.
The ability (expertise) of each workgris modeled by the (2011) proposed a Bayesian model to account for annota-
parametefa; € (—o0,00). a; = oo(—oo) means the tor bias. Liu et al. 2012 connected the aggregation of
worker always labels items correctly (incorrectly). = 0 binary labels in crowdsourcing with belief propagation and
means that the worker has no information about the tru@ mean field algorithm. These studies seemed to be along
label. The difficulty of annotating iterm to be annotated the lines of the DS and GLAD models but their setting was
correctly is modeled by,,,, which is positive and,,, = co binary labeling and did not deal with the confusion matrix.

Whitehill et al. @009 formulated a probabilistic model
of the binary-labeling process, i.e., = 2, by modeling
the true labels, workers’ abilities, and the difficulty with
which items were correctly annotated, called the Genera
tive model of Labels, Abilities, and Difficulties (GLAD).
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Zhou et al. 2012 proposed a minimax entropy principle then the vectofg, /s, - - , ge/s), wheres = Zszl gi, fol-
to improve the quality of noisy labels. lows the Dirichlet distribution with parameters, - - - , vz,

Clustering and Ranking: Gomes et al. Z011) pre- €

sented “crowdclustering,” which clusters items by using a
worker’s label (same or different) on a pair of items. Yi s

L L
> gi ~Gammad v, 1) (7

et al. 012 combined a metric learning and the man- (=1 (=1
ual annotations obtained via crowdsourcing for clustering. (1, L) = (@’ o ’@) ~Dir(y1,- - ,y). (8)
Raykar and Yu2011) proposed a score to rank the annota- S s

tors. This reformulation inspired us to use the construction of

Confusion Matrix Modeling: Venanzi et al. 2014 pro- ~ ©ach worker's confusion matrixr(j) by using random
posed a community-based Bayesian aggregation modeyariables distributed according to the gamma distribution,
which assume that each worker belongs to a certain comyhich presents a flexible framework for modeling the anno-
munity and the worke s confusion matrix is similar to tation process of workers in the next session and an efficient
the community’ s confusion matrix.\(enanzi et al.2014  inference algorithm based on the VB inference.

is the most similar work to our wotk The difference be- The DS model’s generation process in Ej.and the gen-
tween their model and ours is as follows. (1) Each workerg ation process oﬂj) with the Dirichlet distribution in

belongs to one community. (2) They model one confgsiorEq_(S), can be reformulated as follows. Let,, ; be a con-
matrix for each worker. (3) They do not model the abilities ,sion variable for workey to assign label to an item that
of workers and the difficulty of items simultaneously. has true label, and

3. Proposed framework Cjut ~ GamMaye, 1) (u,l=1,---, L).  (9)
We describe the proposed framework in this section. FirstGven true labet, we have
we present the normalized gamma construction (NGC) of a : . B G
confusion matrix. Then, we propose latent confusion anal- Y with probability [, = ZL LG
H y,l = A - . v w J,usv
ysis (LCA). 7 I(#u) with probability =¥/} = Lcﬂicl
v=1 ~7,%,v
3.1. Normalized Gamma Construction of Confusion (20)
Matrix

This idea enables us to easily introduce the ability of hu-
The confusion matrix of each worker is constructed withmans, a confusion matrix and the difficulty with which
probabilistic vectors in the DS model. Itis common to as-jtems are correctly annotated into modeling human anno-
sume that a probability vector is distributed according totation and judgment processes, and to model the concept of

the Dirichlet distribution. That is, the process to generatgatent confusion analysis (LCA), which is described in the
the confusion matrix in EqL) for worker j in a Bayesian npext section.

manner is

; . 3.2. Latent Confusion Analysis
7P ~Dir(y, ), (w=1,--,L),  (5) y

. . It is assumed with the DS model that a confusion matrix
wherey, (I = 1,---,L) is a parameter of the Dirich- s t5:mulated for each worker. In this section, we consider

let g'slt”:])m('ff?_' Towe_vr(]er, ;]n tr:u_s formulation, wel cannot 1hat confusion matrices are shared between workers, which
model the difficulty with which items are correctly anno- . ¢q| “|atent confusions” in tribute to the “latent topics”

tated. Th(_arefore, we qeed a novel Process Of, gene_ratlngf latent Dirichlet allocation Blei et al, 2003. Figure2
probabilistic vectors to introduce the difficulty with which i ac the graphical model of the proposed model.
items are correctly annotated, as with GLAD.

Worker j has a latent variable for theth item to be anno-
€ated, denoted by; ;, andz;; = k indicates that workey

is affected by the:-th latent confusion matrix when anno-
If g¢ (¢ =1,---, L) isindependently distributed according tating thei-th item. LetK be the number of latent confu-
to Gamméy;, 1) respectively, i.e., sions, which are given by, far=1,--- , K,

Here, we consider the following relationship between th
Dirichlet distribution and the gamma distribution.

ge ~ Gammaw, 1), (6) Ckou,l ™~ Gammé@’Yc» 1) (ual =1, >L)' (11)

1(Venanzi et al.2014) was published after this paper was sub- Moreover, we introduce the ability of each workgrde-
mitted. noted bya;, and the difficulty with which itemn can be
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correctly annotated, denoted by, as Iltems’ difficulties ~Latent true labels

T + Number of Item types
aj ~ Gammaf}/a; ]-) (J = 17 e 7N)7 (12) - @_., @ Latent confusion
Workers’ abilities o ; -
dyy ~ Gamm@yd’ 1) (m =1,--- ,M). (13) N M| / matricies
TNy N w/
Label V., @@
K

Number of

Therefore, workerj assigns labey; ; to itemx;; = m @

R i . zZ..
whenz;; = k and the true label is € {1,--- ,L} as i Iatent confusions
. ™ X5 .
u with prObab”Ity Number of ! tem N5 A ¢A \@
7_‘_(j,m,k) _ AjChku,u workers N ol ;
U ‘ 9 i
AiCkunw+ dm ZL, (5(’0 # u)ck W Workers’ proportions Number of items  Item probability )
L= . J UL v=1 v ) related to latent confusion
Yii = l(# U) with probablllty of latent confusions
,n_(jvmak) _ dmck,u,l
u,l - L
@jChuu + dm D yg OV 7 U)Chyu Figure 2. Graphical model of LCA

Alargea; andcy ., mean that workey tends to correctly
label items when the true labelis A largecy., means  For simplicity, we consider the simple for@ge and
that a worker tends to labélwhen the true label is. A i dictri Lt it o8t
) i o g¢ is distributed by the gamma distribution. We typically
Iargedmhmeans tr;]at ltemn Is so d|ff|ckult to_lforrecltllylan- g need the expectation calculation in the VB inference, i.e.,
potatet atevent e most expert worker will usually abe ItE[log Zgggl] — E[log /] — E[log ", g¢]- The problem is
incorrectly according to its confusion matréx. ¢ . .
that we cannot calculate the expectation of a log function
The remaining problem is how to model latent variabdes  of the normalization terni{log >, g].
We use latent Dirichlet modeling for latent variables. That
is, for each workerj, 6; ~ Dir(a), wherea is the K-
dimensional parameter vector of the Dirichlet distribution

Here, we will return to the definition of the gamma distri-
bution. The gamma distribution

and for thei-th item to be annotated, ; ~ Multi(8,). pe
p(&a,b) = =€ e (14)
Moreover, we model the probability distribution over item I'(a)
zj; by éx.m, which indicates the probability that the item indicates that
that a worker annotates is when th%worker is affected )
by the k-th confusion matrix, i.e.>" | ¢rm = 1, @s _ ) b e ke
follows. Whenz;; = k, z;,; ~ Multi(¢1k). It is easy to ! _/p(f’a’ bt = / 1“(a)g e,
understand this generation process whgnis regarded as . 1 a e
a word in latent Dirichlet allocation. B / @x ¢k (19)

The reason we modeled the process for the generation %hen we seb —
items is that we wanted to analyze the relationship be-

tween items and latent confusion. It is useful to gain in- 1 5, ane

sights into what types of items are affected by khth la- Soa / e e IUNdE. (16)
tent confusion in the annotation process. When, takes

a large value, we find that the annotation of itemis  Therefore,

greatly affected by thé&-th latent confusion. We assume

>0 ge anda = 1, we have

that ¢, ~ Dir(8), (k = 1,---,K), where Dif(g) is a log 1 :10g/67(2g9e)6d§ (17)
symmetric Dirichlet prior with scalar parameter 20 9e
o By introducing probability distributiory(£) and Jensen’s
4. Variational Bayes Inference for LCA inequality, we have
We provide the variational Bayes (VB) inference in the pro- 1 e (e 90)€
posed model. Due to the normalization term of NGC, we log S o 10g/61(€)wd€
have to devise a way of optimizing the variational lower ¢ 5 e
bound. > / e =
> [ q(§)log dg. (18)
© q(§)

We present the key idea to derive the VB inference for the
proposed model. This is promising to enable this NGCThe expectation of this lower bound has an analytic solu-
framework to be applied to many applications. tion, and thus, this lower-bound and the estimation (@
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. . in Sec.3.2
Table 1.Basic information on dataset:

N denotes the number of workerdd denotes the num-

ber of item types. L denotes the number of label types.
E[nworke] = Zjvzl nj/N denotes the average number of we applied the models to three datasets: (1) safety-level
items that a worker annotatefiiem denotes the number of data, (2) preposition data, and (3) bluebird data. We created

5.1. Datasets and Evaluation Metrics

workers who annotated an item. datasets (1) and (2) by using crowdsourcing and published
[ Dataset | N | M [ L [ E[nworke] | Nitem | the datasets Table1l summarizes the basic information on
Safety-level] 62 | 97 | 5 | 78.2 50 the datasets.
Preposition | 47 | 100 | 5 | 63.8 30 Safety-Level Data: Analyzing safety-level data is the main
Bluebird 39 | 108 | 2 | 108 39 purpose of this study. We analyzed public confusion re-

garding the effects of radioactivity on food products fol-

lowing the Fukushima Daiichi nuclear disaster. We used
enable us to obtain closed form solutions for the VB infer-Japanese crowdsourcing to prepare this dataset. We asked
ence of NGC and LCA. crowd workers to judge the safety level of an item by us-
ing two pieces of information on each item: “the name of
the fish or shellfish” and “where its fishing grounds are in
Japan,” as outlined in Fit.. The number of labels for an-
motation wasl, = 5, in which “safety level 1” meant “It's
dangerous. | will not eat this food” and “safety level 5"
meant “It's safe. | will eat this food.” We used items de-
scribed in a safety manual on the effects of radioactivity
on food products published in 2012The number of items
was M = 97. These items in the safety manual had a
Let T be the total number of labeled items. The comp-safety level froml (dangerous) td00 (safe), which was
tational costs per iteration in DS model and LCA arecalculated by using radioactivity measurement and expert
O(NL?>+TL+ ML) andO(TKL* + ML + MK), re-  knowledge. We used this information to evaluate models as
spectively. Seemingly, LCA is not that scalable because ia gold safety level. Each item was annotatecbbywork-
can reveal a much more informative latent structure tharers. The evaluation metric was the correlation coefficient
existing models. However, the scalability of LCA is the between the gold safety level and the estimated safety level
same as that of LDA, and our learning algorithm is deter-with the maximum probability of (7, ).
ministic. Therefore, we can easily apply recent advance
in scaling-up LDA into LCA such as those in the literature
(Hoffman et al, 2010 Zhai et al, 2012).

We estimate variational posteriogér), ¢(a), q(c), ¢(d),
q(z), q(0), q(¢) andq(&). and use the point estimation
for v4, ve, va, 1, @ @nd s because we do not want to tune
the hyper-parameters for each task. They are described
AppendixA. The estimate of: is the same as that in the
Dawid and Skene modeDawid & Skeng 1979.

4.1. Computational Complexity

e used other datasets to compare our model with the other
models in several settings.

Preposition Data: The use of prepositions in English is
often a headache for non-native English speakers. We an-
alyzed public confusion in the use of prepositions. We
We empirically analyzed the proposed model in this seccollected100 sentences as fill-in-the-blank questions from
tion. the Special English of Voice of America (VOA) where

. . . . M = 100. We asked crowd workers to select a prepo-
Since our problem setting was unsupervised, i.e., the trUition by choosing from the labels “on,” “at” “in." “for,”

labels and confusion matrices were not available, it was d'f,'and “to.” which were the prepositions that cause confusion

ficult to evaluate the models. Therefore, we use datasets Iy, Japanese people, i.d.,— 5. The number of workers

which the correct answers (labels or scores) were knoquasN — 47 and each item was annotated dyworkers

Here, we call a “gold label” a correct label that is actually The evaluation metric was the accuracy measured by using

known in t_he da(tjalsebtsl. \r/]Ve cr)]nly usea .gold Iabelt)tobﬁyalu— gold label and an estimated answer that had a maximum
ate an estimated label that has a maximum probability O opapility of ¢(r,,), i.e., accuracy=the number of correct

q(Ty,) for each model, i.e., answers V.

5. Experiments

Ty = Argmax q(7p, ). (19)  Bluebird Data: We used a dataset called “bluebird,” pub-

Tm
2http:/iwww.r.dl.itc.u-tokyo.ac.jp/ sato/icml2014/
3«Complete manual on the effects of radioactivity on food
products” (in Japanese) ISBN-10: 4796696857
“http://learningenglish.voanews.com/

MV indicates majority voting. DS indicates the Dawid and
Skene model, and GLAD/mMGLAD (multi-label variant of
GLAD described in Sec2). LCA is our model described
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Table 2.Empirical results.
Larger values indicate better performance. If there is an equality of votes in majority voting (MV), we select a label at
random. We tried five random seeds in MV. Note that we could only determine one label in other models even if there was
an equality of votes because we used the maxim(m,) for labeling items.K* denotes the effective number of latent
confusion which is estimated by the implicit sparsity of the VB inference. Note that we setV in these experiments.

| Dataset | Evaluation Metric | MV(five random seeds) | LCA(K'/K) [ DS | GLAD/mGLAD |
Safety-level| Correlation coefficient 0.525,0.525,0.508,0.510,0.528 | 0.571 (20/62) | 0.505 0.472
Preposition Accuracy 0.709,0.719,0.700,0.710,0.710 | 0.770(7/47) | 0.739 0.750
Bluebird Accuracy 0.759 (No equality of votes) 0.898 (6/39) | 0.898 0.722
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Figure 3. Top ten frequent latent confusions behind safety-level data.
The size of the gray squares indicates the size of the values of the confusion probabilities. For simple visualization, a row
with no gray squares means that the confusion probability is uniform (se&.gec.

lished by Welinder et al. 2010. This dataset included LCA depended on the initialization qf z; ;) (or ¢(ck,u,v))

M =108 items andV = 39 workers on a fully connected as well asq(7;) and the number of latent confusiofs.

bipartite assignment graph, where the workers were asketherefore, it was ideal for LCA that we did not use ran-

whether the presented images contained the Indigo Buntindomization for the initialization. We devised the following
or Blue Grosbeak, i.el, = 2. Each item was annotated by strategy to initialize LCA. Note that we actually considered

39 workers. The evaluation metric was accuracy. initializing ¢(c,.,») iNstead ofg(z; ;).

5.2. Initialization 1. We setK = N andq(z;; = j) = 1 (0 otherwisg,
which means that each worker had a personal confu-
sion matrix as well as the DS model. We initialized
q(tm) with an empirical distribution by voting like
that in the DS model.

The results obtained from the DS and GLAD models only
depended on the initialization aof(7,,). We initialized
q(rm) with an empirical distribution by using worker vot-
ing as Dawid and Skend 979 did in their study, who ob-
served that this initialization was more effective than ran- 2. \We ran the VB inference with(z;; = j) = 1 be-
dom initializations. We also found in pilot experiments that ing fixed, which meant that we did not use the latent
voting initialization was more effective than random initial- Dirichlet enhanced modeling. The results in this step
izations in the DS and GLAD models. When we used vot- only depended on the initialization qf7,,) as with

ing initialization for ¢(7,,,) and not random initialization, the DS model.

we only had to do the experiment once. The results from o
3. Weresey(z;,; = j) = 1/K and initializedq(6;) and
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1200 Let Kt be the effective number of latent confusions, i.e.,
the number of principal confusions. We calculaf€d by

1000 using the number of latent confusions whose expected fre-
2’ 800 quencyE[nk] = >_,; q(zj; = k) was greater thaf.5 in

c:a 600 = INIT Table2. The performance of LCA and the DS model was
g mLCA  the same with the bluebird data; however, it was found that
& 400 LCA used a smaller number of confusion matrices than the

500 ‘“ DS model did.
o I ““l‘mh‘l.[‘“mI‘II“]‘Il|Hl‘ll‘l1II‘IIl“‘lIJ&H‘I[‘IIII‘II‘III Figure 4 plots the frequency of latent confusions before
1 11 21 31 41 51 61 and after the VB inference of LCA in the safety-level data.

“INIT” indicates the frequency in the initialization step,
i.e., each frequency indicates the number of items that each
worker annotated (see SB@). “LCA’ means that the fre-
Figure 4. Expected frequency of latent confusions in safety-levelquency was given after the VB inference, where the fre-
data. quency was the expected frequency, iBn]. The latent
confusions are sorted in descending order in terms of the

q(¢,,) with their prior distributions. frequency of “LCA.”

Latent Confusion

After these three steps, we ran the VB inference for LCA.5'5' Visualizing Top 10 latent confusions

This initialization scheme only depended g,,,) as with  We analyzed the top 10 latent confusions by frequency
the DS and GLAD models. extracted by using LCA in Fi§, which revealed “pes-

When we setk < N, we select the workers’ personal simistic” and “optimistic” confusions in the safety-level

confusions in descending order of their expected ability Opata.

Eq[a;], which is pre-estimated in initialization step We normalized thek-th confusion matrix, ¢, to
make each row a confusion probability, i.€; ,, =
Elck,u,el/ Zle E[ck,u,¢]. The element of a confusion ma-
trix in the u-th row and¢-th column,éy, ,, ¢, expresses the
probability that if an item has true label, label/ will be
Table2 summarizes the experimental results. Our modelannotated. The size of the gray squares indicates the size of
LCA, outperformed or was competitive with the other mod- the values of their elements. We deducteih, &, ., , from

els in terms of each evaluation metric for each dataset. Theach row to enable simple visualization. Therefore, a row
results revealed that using a family of confusion matriceswith no gray squares means that the confusion probability
helped to recover the ground truth. We think one of thejs uniform.

reasons is that our approach is intuitively a kind of multi-

task learning. We could complement the latent judgmen{f there are gray squares below the dashed line, confusion

tendencies of workers who assessed the small number H?dlcates the safety level has been overestimated, which

items by sharing confusion matrices among users. More€ans Opt'm'St'CJ _The tod, 2, 7, 8, and9 confusions .
em to be pessimistic, and the others seem to be opti-

over, when a dataset has a genre or category, e.g., that it

rating movies, a worker has a biased knowledge, which camﬁt'c' Tfhe _topl _clz_cr)]nfusmn v%/as_ less unb|asr(]ad than the
be modeled by a family of confusion matrices. In this caseOther coniusions. The topconfusion was much more op-

the confusion matrix of a worker cannot be represented aEmIStIC because safety levels3, and4 could be confused

one confusion matrix but a combination of various latent®> Sﬁfety leves. The_ iqp?_:_:;}nnffu&on was, |fn comhparlsfon_,
confusion matrices. For example, there can be bias in guch more pessimistic. 1he frequency ot each contusion

worker’s knowledge due to where they lives in savefy-levelIS plotted in Figd.
data.

We initializedy, = v. = v4 = 1.

5.3. Empirical results for evaluation metric

5.6. Analyzing item and worker

5.4. Effective number of latent confusions Here, we analyzed the first listed item in the safety man-
ual, the “Greenling,” whose item-id waksin the safety-
level dataset. FigurB explains how we analyzed the item

2009H. This effect enables us to estimate the effective num—based on the estimated variational posterig,), the

ber of latent confusions. This property is seen in the updatg.rlor p(d.m)’ and the propomon O.f relgted Iatgnt confu-
equation ofy(z.,). sions. Since we used the point estimation of prior parame-

It was well known that the VB inference induced im-
plicit sparcity, which is called a zero-forcing effedifka,
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simistic” confusion. As with the “Sockeye salmon” item in

ID-1: Greenling Fig. 1, the main fishing ground of the “Greenling” item is

. around Hokkaido, which is far from Fukushima. However,

ﬁShmg ground the “Greenling” item had a large fishing ground, which
seems to be a reason for the “pessimistic” confusion.

Maximum Our model could also analyze the confusion matrix of each
fishing worker by using a combination of latent confusions. We
ground also analyzed the two workers with the highest and lowest

abilities (seeb) in terms of their posteriorg(a,) (highest)
andq(ag2) (lowest), and priop(aly,) where~, was esti-
mated with Eq40). The pie chart indicates the proportion
of latent confusions for each worker calculated wit#)].

& _ The index of latent confusion is the same as that for latent
Posterior \ confusions in FigB.

| Prior

NICIATREICE
6. Conclusion

We proposed modeling the annotation and judgment pro-
‘ cesses of humans by using the normalized gamma con-
s{— e struction (NGC) of a confusion matrix. The NGC frame-
e g Proportion of latent confusions  work flexibly enabled various properties of data to be mod-
eled and it provided an efficient learning algorithm based
on the variational Bayes inference and the fixed point it-
Figure 5. Analysis of “Greenling” item eration algorithm to estimate prior parameters. Therefore,
it had a wide range of applications besides those that we
Lowest abilify worker's Highest ability worker's described in t_h|s paper. We also prqwded the concept of
latent confusions - latent confusions - latent confusion analysis (LCA),” which was used to an-
‘ mr/)'/f alyze the principal confusions behind human annotations
y and judgments. We modeled LCA by using NGC and la-
tent Dirichlet modeling. LCA seemed to be increasingly
more important because there is an information overload
in real life and people are too taken in by it. We believe
- o that this work represents a first step toward further work on
a LCA. Interesting directions of research will include a time-
series analysis of latent confusions and more sophisticated

Figure 6. Analysis of workers with highest and lowest abilites Modeling used in a topic modeling.

911
\ /e
13 \ i
“ 2 - { Posterior 1
\
\ q(ay)

Prior

‘ p(al}’u)

‘ k Posterior Y
Q(aaz) \‘ T~

5(961)

A. Update equations
ter~4 by using Eq.42), the priorp(d|v4) meant a base dis-

tribution for analyzing the difficulty posteriai(d; ). Figure The likelihood of workers’ annotation data is

5 indicates that it was more difficult to evaluate the safety N nj

level with this item than with the base line. We investigated p(ylx, z,7,a,¢,d) = H H”(] ji2%,0) (20)
. .. . YT T Taj i:Yd,i

the ranking of this item in terms of the average valué,of j=1i=1

i.e.,E[d,,]. The difficulty rank of this item wa6/97.
We estimate a factorized variational posterior ovea, c,
The pie chart indicates the proportion of related latenty » ¢ andg, i.e.,

confusions, while the numbers in this figure indicate the

rankings of the frequencies in Fig. This proportion was

calculated by usingE[ng ] = Y0, Y, 0(ay, = 4(T.a.¢,d,2,0,8) = [H q(d ]

m)q(z;; = k), which means the number of times workers

were affected by thé-th latent confusion when annotating K L L N n;

item m. A large part of the pie chart is the T@pconfu- [ o) [ Hq(ck,%l)] 11 a(a)a@) I ] a(zi.0)
sion that indicates “pessimistic” latent confusion shown in ~ Lk=1 u=11=1 j=1 i=1

Fig.3. Thus, the item “Greenling” suffered from the “pes- (21)
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Thus, the variational lower bound is obtained by We obtained the following variational posteriors by tak-
g the derivatives of the lower bound with respect to

[,[q(T,a7 c, d7za07¢)] :Eq[logp(y|a:,z,‘r,a7 c, d) w|z (,b |W) ( ) ( ) (d)q(Z)q(H)q(¢>)q(€) and equat|ng them
— KL[q(a)|p(alya)] — K Llg(e)p(elve)] — K Llg(d)|p(d]ya)]t0 Z€TO.
— KL{g(r)Ip(rIn)] - KL[q(0)|p(6la)] — KLla(@)IP(PIB)], yr — o) o
(22) .
6(zj0 = m) [0(yji = w)Eqllogaje; ; )

k3

sum in terms of subsections, e.d(L[¢(a)|p(alv,)] =
37551 KLla(ag)lp(a]7))-

The probl_em.|s that this var|at|or_1al lower bound includes o 654052, 1] Z Eq [£5.idmes, 1]
the following intractable expectation of

N
where the bold notation in the KL divergence means thetu €xp Z
j=1

+ 6(y;,

10g dmch iU, Yj, 1]

£(Fu)
(29)
B, | ! ]
q |log .
a"CZ”TT..T—E..—’_dI‘i T CojisTas s
TTER g0 3 Zl(?é wg0) ATl q(az) = Gamméaﬂ%(zji,%(f%) where
(23)
Here’ let ng = a] CZ] BAEFRELES ] + ﬁ/é]i = Ya + Z Ta:] i = Yj, z (30)
dz; Zz(;em. ) Cayita ol and we have
~() _ :
1 Fos =1+ ZEq €1,iCj10may 571 | (31)
— /e*gj,igj,idgj’i, (24) ~ [ J J }
95,
where¢; ; can be regarded as the auxiliary variable. There(c,, , ;) = Gammdcy, ..;; % ), ~§’“2“ Dy, where
fore, by introducing a variational distributiof(¢; ;) over
&;.4, we have ) N n
A = e 430 a2 = k)a(re;, = u)d(y;s = 1),
j=1i=1
1 (32)
]Eq |:10g :| :Eq |:10g/e 95,i&;5 zd£]71:| N nj
9ji : ~(kuu> 1+ZZE [€5,ia5] a(zj,q :k)’I(TwJ,i = u),
e 94,i84,i j=11i=1
> E, [/ q(&;,:) log dﬁj,i] (33)
q(&5.) N
~(ku,l(#u)) _ _ -
> Bl Bles) [ a6 omalgiaats, 15O =1 Y B e Jatess = atr, =)
Jj=11i=
(25) (34)
where q(dy) = Gammadm,yd 1),’y((1 ")), where
E [gj,i} - E CZJ iTwj i zmi N 7
T = a4 3> (1= a(7m = y3))d(xi =m),  (35)
j=1i=1
a:J L z] Ty, ,l 5 (26) N n; L
75”1 i IS =14 DY a(ray =) > (wgi=m)Eq [§ics, ] -
K L j=11i=1 u=1 1(#u)
EQ[CZ; BXETRELES Z Z a\zji = k (Tﬂﬂj,z‘ = u)]Eq [ck,%u}? (36)
k=1u=1
(27)

q(&;:) = Gammé¢; ;; 1, N(“)) where the update for aux-
iliary variable¢; ; is

=
_Q
v
o~
=
Q
n
&
5
8
&
“e\
Il

~(d,4) _ )
Ve - Eq a’]ch,ivaj,i-,"'iji + de,i Czj,i-,"':cjyivl

K L L
Z Z Z Q(Zjﬂ‘ = k)q(Tﬂlj,i = u)q(ij,i 7é E)Eq [Ck,u,é]- HFTes) 37)
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Finally, we have S S S KLg(ek )| [p(Ch il res D],
M
N > m=1 KL [a(dm)||p(dm|va, 1],
q(zji = k) o with respect toy,, 7. and~y,, and equating them to zero.
exp {Eq [log ¢z, ;] + Eqlog Hj,k}}
N
1
exp {Eq [0(72,., = vj.i) log jCh,to; ;T l]} Yo =01 N Z]Eq [loga,] |, (40)

exp {]Eq [0(72,, # j.i) log dz_j,ickaszy,;»yj,i]}

K L L
Yo = ( ZZZ 1ogckul> (41)
exp § —Eq, fj,i(ajck,rww,rwm +dy; Z Ck nﬂ,z) , k=1u=11=1
W#Te; ) M
(38) Ya = Z allog dy] (42)

and
whereV ~!(z) is the inverse digamma function. We use the
approximation calculation fob —* as follows. By using the
asymptotic formulas fo@ (x) (Minka, 2000:
O( H eak 1+Z7, 1 4(z5,:=k) (39)
’ U(z) =~ log(x — 1/2) (if > 0.6), (43)
1
"5 5(as i=m)q(zs i=k U(x) = ——+¥(1) (if x <0.6), 44
o(be) o H o LT i S =m)a(z.i=k) (z) = ——+ (1) ( ) (44)
we have
a and 8 can be estimated by using the fixed point iter- . _
ation algorithm described in Asuncion et al. and Minka U™ (2) ~ exp(z) +1/2 (if v > —2.22),  (45)
(Asuncion et al.2009 Minka, 2000). O (p) L it 999 4
(x) T (if © < —2.22). (46)

We use the exponential of the digamma function
exp(¥(z)) to estimatey(z;,;) by the VB inference, e.g., to
calculateexp Elog 6,,] o exp(¥(E[n;] + ar,)) where ~References
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