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Abstract

We developed a flexible framework for model-
ing the annotation and judgment processes of hu-
mans, which we called “normalized gamma con-
struction of a confusion matrix.” This frame-
work enabled us to model three properties: (1)
the abilities of humans, (2) a confusion matrix
with labeling, and (3) the difficulty with which
items are correctly annotated. We also provided
the concept of “latent confusion analysis (LCA),”
whose main purpose was to analyze the prin-
cipal confusions behind human annotations and
judgments. It is assumed in LCA that confusion
matrices are shared between persons, which we
called “latent confusions”, in tribute to the “la-
tent topics” of topic modeling. We aim at sum-
marizing the workers’ confusion matrices with
the small number of latent principal confusion
matrices because many personal confusion ma-
trices is difficult to analyze. We used LCA to
analyze latent confusions regarding the effects of
radioactivity on fish and shellfish following the
Fukushima Daiichi nuclear disaster in 2011.

1. Introduction

An important theme in collective intelligence is modeling
the annotation and judgment processes of humans. We fo-
cus on modeling a confusion matrix with labeling. Extract-
ing a confusion matrix is useful for not just obtaining better
(closer to the ground truth) aggregation of labels but also
obtaining diagnostic information on human annotation and
judgments.
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Dawid and Skene (1979) proposed a probabilistic genera-
tive model for subjective labeling. Their model can esti-
mate individual confusion matrices even when the true la-
bel is not available. Each worker in this model has a con-
fusion matrix in which if an item (e.g., an image) has true
labelu, workerj can assign another labell with probabil-
ity π

(j)
u,l . Smyth et al. (1994) applied the Dawid and Skene

(DS) model to the image labeling problem. Snow et al.
(2008) applied the DS model to the analysis of opinions in
natural language processing. Liu and Wang (2012) applied
the DS model to judge the quality of (query, URL) pairs.

Whitehill et al. (2009) proposed the Generative model of
Labels, Abilities, and Difficulties (GLAD), which simul-
taneously estimated the expertise of each worker and the
difficulty of each task. It is beneficial to use GLAD, unlike
the DS model, in that it models the difficulty with which
items are correctly annotated. However, it suffers from
a critical issue that when we apply GLAD to a task with
multiple labels, the confusion matrix of a worker cannot be
constructed (see Sec.3.2for the details).

Contributions: This paper makes three contributions.
(1) We propose a normalized gamma construction

(NGC) of a confusion matrix to model the annotation and
judgment process of humans. This framework easily en-
ables us to model a confusion matrix with labeling in a
multi-label setting like the DS model and to take into ac-
count a task’s difficulty like that with GLAD.

(2) We provide a novel concept in data science,latent
confusion analysis (LCA), which was developed with the
NGC framework and latent Dirichlet enhanced modeling.
The main aim of LCA is to extract latent (principal) confu-
sions behind the annotation and judgment processes of hu-
mans. LCA summarizes the workers’ confusion matrices
with the small number of latent principal confusion matri-
ces because many personal confusion matrices is difficult
to analyze.

(3) The proposed learning algorithm was based on the
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Figure 1. Motivational example and input/output of our model.
We created rating data in which the safety level of fish and shell-
fish was annotated by using Japanese crowdsourcing. We asked
people in Japanese crowds to assess the safety levels of items that
consisted of fish names and their fishing grounds in Japan. We
aimed at gaining insights into what kind of confusions Japanese
people had about the effect of radioactivity on fish and shellfish.
Unlike Dawid and Skene (1979), we modeled confusion matri-
ces for the workforce, not for each worker, i.e., we shared latent
confusion matrices between workers. When the workers’ confu-
sions could be described with a combination of a small number
of principal confusion matrices, the number of principal confu-
sion matrices was smaller than the number of workers. Therefore,
we expected to only have to analyze data in the small principal
confusion matrices. Moreover, we modeled the worker’s ability,
denoted bya, and the difficulty in correctly annotating items, de-
noted byd. This information helped us understand the properties
of rating data. The details are described in the experimental sec-
tion 6.

variational Bayes inference. Due to the normalization term
of NGC, we had to devise a way of optimizing the varia-
tional lower bound, which enabled us to obtain closed form
solutions in the M-step (see Sec.5). Moreover, we provide
point estimations of prior parameters, i.e., we did not need
to tune prior parameters for each dataset

Motivation behind LCA: Fukushima Daiichi nuclear
disaster

We are often interested in obtaining diagnostic information
on the types of confusions people experience. It is more
useful in this situation to extract the shared confusions be-
hind people than extract the individual confusion matrix for
each person in the existing work. It is ideal in this situation
to analyze the confusion matrix of each person by using a
combination of latent confusions.

Figure1 outlines our motivation for latent confusion analy-

sis. On March 11 2011, the Tohoku earthquake and tsunami
occurred, followed by a series of equipment failures, nu-
clear meltdowns, and the release of radioactive materials
at the Fukushima I Nuclear Power Plant, which was called
the Fukushima Daiichi disaster. This disaster is considered
to be the largest nuclear disaster since the Chernobyl dis-
aster of 1986 and was only the second disaster along with
Chernobyl to measure Level 7 on the International Nuclear
Event Scale.

Unsurprisingly, there was a great deal of concern in Japan
about the risk to health and the food chain caused by ra-
dioactivity. A huge social issue emerged called “Fuhyo Hi-
gai” in Japanese that was related to trustworthiness. Farm-
ers, fishermen, and related businesses face this risk because
consumers stopped buying products that might be affected
by radioactivity. There is now a growing need to analyze
how people are confused about the effect radioactivity has
on foods. We are therefore under pressure to analyze latent
confusions from a questionary investigation into what ef-
fect radioactivity has on foods. The details on the dataset
are described in the experimental section.

This paper is organized as follows. We describe exist-
ing models in Sec.3. We propose our novel framework in
Sec.4. We provide the variational Bayes inference for LCA
in Sec.5. We present comparative experimental results in
Sec.6.

2. Preliminaries and notations

Thebold notation of a variable indicates a set of the vari-
ables in terms of its subscripts, e.g,zj = {zj,i}

nj

i=1 and
z = {zj}Nj=1. E[x] denotes the expectation ofx by
its distribution. In particular,Eq[x] denotes the expec-
tation of x by its variational posterior. KL[·||·] denotes
the Kullback-Leibler (KL) divergence. Multi(·) denotes
the multinomial distribution. Dir(·) denotes the Dirich-
let distribution. Gamma(·) denotes the gamma distribu-
tion. The probability function of the gamma distribution
is Gamma(x; a, b) = ba

Γ(a)x
a−1e−bx. The expectation ofx

and log x areE[x] = a/b andE[log x] = Ψ(a) − log b.
x ∼ P expresses that a random variable x is distributed
according to the probability distributionP . Ψ(·) is the
digamma (psi) function.δ(c) is the delta function that takes
a value of one if conditionc is satisfied, and zero otherwise.∑

l(̸=u) means
∑L

l=1 δ(u ̸= l).

Suppose that we haveM items to annotate andL annota-
tion labels.N denotes the number of workers. Each item
has a true label from a set of labels{1, 2, · · · , L} where the
true label is not available in fact. For example, in the case
of customers rating books on a scale from one to five stars,
we haveM books andL is five.

Since the true labels cannot be observed, we formulate the
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true labels as latent variables.τm = l denotes that the true
label of itemm is l ∈ {1, · · · , L}. xj,i is the i-th item
that workerj labels. yj,i ∈ {1, · · · , L} denotes the label
assigned by workerj to itemxj,i. x is a bag ofxj,i, y is a
bag ofyj,i, andτ is a bag ofτm. nj is the number of items
that workerj annotates.

3. Existing models

Here, we describe the two models most related to our work.

3.1. Dawid and Skene (DS) model

Dawid and Skene (1979) considered the problem of mea-
suring observer error and analyzed a patient record in
which the patient was seen by different clinicians and dif-
ferent responses may be obtained to the same questions.
They proposed a model that allowed an individual confu-
sion matrix to be estimated even when the true response
was not available. We call this model the DS model.

The key idea is to introduce the confusion matrix given by
the probability,π(j)

u,l , that workerj will assign labell when
u is the true label. That is, workerj assigns labelyj,i to
itemxj,i by

yj,i =

{
u with probability π

(j)
u,u

l(̸= u) with probability π
(j)
u,l

. (1)

The probabilitiesπ(j)
u,l (u ̸= l) indicate the individual error

rates for workerj, andπ(j)
u,u is the probability that workerj

will annotate the true labelu. Note that the error rates are
conditional probabilities where

∑L
l=1 π

(j)
u,l = 1 for eachj

andu. π is a set ofπj
u,l.

The likelihood of workers’ annotation datay and true label
τ , givenπ = {π(j)}Nj=1 is

p(y, τ |x,π,µ) =
M∏

m=1

µτm

N∏
j=1

nj∏
i=1

π(j)
τxj,i

,yj,i
. (2)

whereµ is the true label prior, i.e,µl = p(τm = l), and we
denoteµ = (µ1, · · · , µL). Dawid and Skene (1979) used
the Expectation-Maximization (EM) algorithm to estimate
p(τm|x,y,p,µ), π(j)

u,l , andµl.

3.2. Generative Model of Labels, Abilities, and
Difficulties (GLAD)

Whitehill et al. (2009) formulated a probabilistic model
of the binary-labeling process, i.e.,L = 2, by modeling
the true labels, workers’ abilities, and the difficulty with
which items were correctly annotated, called the Genera-
tive model of Labels, Abilities, and Difficulties (GLAD).

The ability (expertise) of each workerj is modeled by the
parameteraj ∈ (−∞,∞). aj = ∞(−∞) means the
worker always labels items correctly (incorrectly).aj = 0
means that the worker has no information about the true
label. The difficulty of annotating itemm to be annotated
correctly is modeled bydm, which is positive anddm = ∞
means the item is very ambiguous and hence even the high-
est skilled worker has only a 50% chance of labeling it cor-
rectly. 1/dm = ∞ means the item is so easy to annotate
that most of workers always label it correctly.

Labelyj,i = l that workerj assigns toi-th itemxj,i = m
given true labelτm is generated according to

p(yj,i = l|aj , dm, τm)

= σ(aj/dm)δ(τm=l) (1− σ(aj/dm))
δ(τm ̸=l)

, (3)

whereσ(·) is the sigmoid function. Equation (3) means
that if true labelτm = l, the probability ofyj,i = l is
σ(aj/dm); otherwise,1 − σ(aj/dm). It is ideal for us to
have closed-form solutions in the M-step. However, we
have to numerically solve an optimization problem, e.g., by
gradient ascent, to estimate workerj’s ability aj and task
m’s difficulty dm for each M-step in the EM algorithm,
which requires tuning a step-size parameter.

Whitehill et al. formulated a multiple-label variant of
GLAD (mGLAD) in their paper’s supplementary material.
It is assumed with mGLAD that the probability of worker
j assigning labell given true labelτm is

p(yj,i = l|aj , dm, τm)

= σ(aj/dm)δ(τm=l)

(
1− σ(aj/dm)

L− 1

)δ(τm ̸=l)

. (4)

Equation (4) means that if true labelτm = u, the prob-
ability of yj,i = u is σ(aj/dm) and that of other labels is
(1−σ(aj/dm))/(L−1), respectively. The workers’ ability
parametersaj (j = 1, · · · , N) are shared in all items. The
problem is that the workers’ labeling confusion cannot be
modeled because it is modeled as a uniform, i.e.,1/(L−1).

3.3. Other Related Work

Various studies have investigated crowdsourcing. The fol-
lowing studies differ from our work in that they are not
aimed at analyzing the confusion matrices, in particular,
latent confusions and the most cases are binary labeling.

Classification: Raykar et al. (2010) studied a binary clas-
sifier via estimating the annotator accuracy and the actual
true label. Yan et al. modeled annotators’ expertise as a
function of the item’s feature vector (Yan et al., 2010b;a;
2011). Welinder et al. (2010) modeled a binary annotation
process by considering the low-dimensional feature vector
of each image in an image labeling task. Wauthier et al.
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(2011) proposed a Bayesian model to account for annota-
tor bias. Liu et al. (2012) connected the aggregation of
binary labels in crowdsourcing with belief propagation and
a mean field algorithm. These studies seemed to be along
the lines of the DS and GLAD models but their setting was
binary labeling and did not deal with the confusion matrix.
Zhou et al. (2012) proposed a minimax entropy principle
to improve the quality of noisy labels.

Clustering and Ranking: Gomes et al. (2011) pre-
sented “crowdclustering,” which clusters items by using a
worker’s label (same or different) on a pair of items. Yi
et al. (2012) combined a metric learning and the man-
ual annotations obtained via crowdsourcing for clustering.
Raykar and Yu (2011) proposed a score to rank the annota-
tors.

Confusion Matrix Modeling: Venanzi et al. (2014) pro-
posed a community-based Bayesian aggregation model,
which assume that each worker belongs to a certain com-
munity and the worker’s confusion matrix is similar to
the community’s confusion matrix. (Venanzi et al., 2014)
is the most similar work to our work1. The difference be-
tween their model and ours is as follows. (1) Each worker
belongs to one community. (2) They model one confusion
matrix for each worker. (3) They do not model the abilities
of workers and the difficulty of items simultaneously.

4. Proposed framework

We describe the proposed framework in this section. First,
we present the normalized gamma construction (NGC) of a
confusion matrix. Then, we propose latent confusion anal-
ysis (LCA).

4.1. Normalized Gamma Construction of Confusion
Matrix

The confusion matrix of each worker is constructed with
probabilistic vectors in the DS model. It is common to as-
sume that a probability vector is distributed according to
the Dirichlet distribution. That is, the process to generate
the confusion matrix in Eq.(1) for worker j in a Bayesian
manner is

π(j)
u ∼ Dir(γ1, · · · , γL), (u = 1, · · · , L), (5)

whereγl (l = 1, · · · , L) is a parameter of the Dirich-
let distribution. However, in this formulation, we cannot
model the difficulty with which items are correctly anno-
tated. Therefore, we need a novel process of generating
probabilistic vectors to introduce the difficulty with which
items are correctly annotated, as with GLAD.

1(Venanzi et al., 2014) was published after this paper was sub-
mitted.

Here, we consider the following relationship between the
Dirichlet distribution and the gamma distribution (p.594 of
(Devroye, 1986)).

If gℓ (ℓ = 1, · · · , L) is independently distributed according
to Gamma(γi, 1) respectively, i.e.,

gℓ ∼ Gamma(γℓ, 1), (6)

then the vector(g1/s, · · · , gℓ/s), wheres =
∑L

ℓ=1 gi, fol-
lows the Dirichlet distribution with parametersγ1, · · · , γL,
i.e.,

s =
L∑

ℓ=1

gi ∼ Gamma(
L∑

ℓ=1

γℓ, 1) (7)

(π1, · · · , πL) = (
g1
s
, · · · , gL

s
) ∼ Dir(γ1, · · · , γL). (8)

This reformulation inspired us to use the construction of
each worker’s confusion matrixπ(j) by using random
variables distributed according to the gamma distribution,
which presents a flexible framework for modeling the anno-
tation process of workers in the next session and an efficient
inference algorithm based on the VB inference.

The DS model’s generation process in Eq.(1), and the gen-
eration process ofπ(j)

u with the Dirichlet distribution in
Eq.(5), can be reformulated as follows. Letcj,u,l be a con-
fusion variable for workerj to assign labell to an item that
has true labelu and

cj,u,l ∼ Gamma(γc, 1) (u, l = 1, · · · , L). (9)

Given true labelu, we have

yj,i =


u with probability π(j)

u,u =
cj,u,u∑L
v=1 cj,u,v

l(̸= u) with probability π
(j)
u,l =

cj,u,l∑L
v=1 cj,u,v

(10)

This idea enables us to easily introduce the ability of hu-
mans, a confusion matrix and the difficulty with which
items are correctly annotated into modeling human anno-
tation and judgment processes, and to model the concept of
latent confusion analysis (LCA), which is described in the
next section.

4.2. Latent Confusion Analysis

It is assumed with the DS model that a confusion matrix
is formulated for each worker. In this section, we consider
that confusion matrices are shared between workers, which
we call “latent confusions” in tribute to the “latent topics”
of latent Dirichlet allocation (Blei et al., 2003). Figure2
outlines the graphical model of the proposed model.
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Workerj has a latent variable for thei-th item to be anno-
tated, denoted byzj,i, andzj,i = k indicates that workerj
is affected by thek-th latent confusion matrix when anno-
tating thei-th item. LetK be the number of latent confu-
sions, which are given by, fork = 1, · · · ,K,

ck,u,l ∼ Gamma(γc, 1) (u, l = 1, · · · , L). (11)

Moreover, we introduce the ability of each workerj, de-
noted byaj , and the difficulty with which itemm can be
correctly annotated, denoted bydm as

aj ∼ Gamma(γa, 1) (j = 1, · · · , N), (12)

dm ∼ Gamma(γd, 1) (m = 1, · · · ,M). (13)

Therefore, workerj assigns labelyj,i to item xj,i = m
whenzj,i = k and the true label isu ∈ {1, · · · , L} as

yj,i =

{
u with probability π(j,m,k)

u,u ∝ ajck,u,u

l(̸= u) with probability π
(j,m,k)
u,l ∝ dmck,u,l

(14)

A largeaj andck,u,u mean that workerj tends to correctly
label items when the true label isu. A largeck,u,l means
that a worker tends to labell when the true label isu. A
largedm means that itemm is so difficult to correctly an-
notate that even the most expert worker will usually label it
incorrectly according to its confusion matrixck.

The remaining problem is how to model latent variablesz.
We use latent Dirichlet modeling for latent variables. That
is, for each workerj, θj ∼ Dir(α), whereα is theK-
dimensional parameter vector of the Dirichlet distribution
and for thei-th item to be annotated,zj,i ∼ Multi(θj).

Moreover, we model the probability distribution over item
xj,i by ϕk,m which indicates the probability that the item
that a worker annotates ism when the worker is affected
by the k-th confusion matrix, i.e.

∑M
m=1 ϕk,m = 1, as

follows. Whenzj,i = k, xj,i ∼ Multi(ϕk). It is easy to
understand this generation process whenxj,i is regarded as
a word in latent Dirichlet allocation.

The reason we modeled the process for the generation of
items is that we wanted to analyze the relationship be-
tween items and latent confusion. It is useful to gain in-
sights into what types of items are affected by thek-th la-
tent confusion in the annotation process. Whenϕk,m takes
a large value, we find that the annotation of itemm is
greatly affected by thek-th latent confusion. We assume
that ϕk ∼ Dir(β), (k = 1, · · · ,K), where Dir(β) is a
symmetric Dirichlet prior with scalar parameterβ.

5. Variational Bayes Inference for LCA

We provide the variational Bayes (VB) inference in the pro-
posed model. Due to the normalization term of NGC, we

Figure 2. Graphical model of LCA

have to devise a way of optimizing the variational lower
bound.

We present the key idea to derive the VB inference for the
proposed model. This is promising to enable this NGC
framework to be applied to many applications.

For simplicity, we consider the simple formgℓ∑
ℓ gℓ

and
gℓ is distributed by the gamma distribution. We typically
need the expectation calculation in the VB inference, i.e.,
E[log gℓ∑

ℓ gℓ
] = E[log gℓ] − E[log

∑
ℓ gℓ]. The problem is

that we cannot calculate the expectation of a log function
of the normalization termE[log

∑
ℓ gℓ].

Here, we will return to the definition of the gamma
distribution. The gamma distributionp(ξ; a, b) =
ba

Γ(a)ξ
a−1e−bξ indicates that1 =

∫
p(ξ; a, b)dξ =∫

ba

Γ(a)ξ
a−1e−bξdξ, b−a =

∫
1

Γ(a)x
a−1e−bξdξ. When

we set b =
∑

ℓ gℓ and a = 1, we have
1∑
ℓ gℓ

=
∫
e−(

∑
ℓ gℓ)ξdξ. Therefore, log 1∑

ℓ gℓ
=

log
∫
e−(

∑
ℓ gℓ)ξdξ By introducing probability distribution

q(ξ) and Jensen’s inequality, we have

log
1∑
ℓ gℓ

= log

∫
q(ξ)

e−(
∑

ℓ gℓ)ξ

q(ξ)
dξ

≥
∫

q(ξ) log
e−(

∑
ℓ gℓ)ξ

q(ξ)
dξ. (15)

The expectation of this lower bound has an analytic solu-
tion, and thus, this lower-bound and the estimation ofq(ξ)
enable us to obtain closed form solutions for the VB infer-
ence of NGC and LCA.

We estimate variational posteriorsq(τ ), q(a), q(c), q(d),
q(z), q(θ), q(ϕ) and q(ξ). and use the point estima-
tion for γa, γc, γd, µ, α andβ because we do not want
to tune the hyper-parameters for each task. The estimate
of µ is the same as that in the Dawid and Skene model
(Dawid & Skene, 1979).

The details are described in the supplementary material.
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Table 1.Basic information on dataset:
N denotes the number of workers.M denotes the num-
ber of item types.L denotes the number of label types.
E[nworker] =

∑N
j=1 nj/N denotes the average number of

items that a worker annotated.Nitem denotes the number of
workers who annotated an item.

Dataset N M L E[nworker] Nitem

Safety-level 62 97 5 78.2 50
Preposition 47 100 5 63.8 30
Bluebird 39 108 2 108 39

5.1. Computational Complexity

Let T be the total number of labeled items. The comp-
tational costs per iteration in DS model and LCA are
O(NL2 + TL+ML) andO(TKL2 +ML+MK), re-
spectively. Seemingly, LCA is not that scalable because it
can reveal a much more informative latent structure than
existing models. However, the scalability of LCA is the
same as that of LDA, and our learning algorithm is deter-
ministic. Therefore, we can easily apply recent advances
in scaling-up LDA into LCA such as those in the literature
(Hoffman et al., 2010; Zhai et al., 2012).

6. Experiments

We empirically analyzed the proposed model in this sec-
tion.

Since our problem setting was unsupervised, i.e., the true
labels and confusion matrices were not available, it was dif-
ficult to evaluate the models. Therefore, we use datasets in
which the correct answers (labels or scores) were known.
Here, we call a “gold label” a correct label that is actually
known in the datasets. We only use a gold label to evalu-
ate an estimated label that has a maximum probability of
q(τm) for each model, i.e.,τ∗m = argmaxτm q(τm).

MV indicates majority voting. DS indicates the Dawid and
Skene model, and GLAD/mGLAD (multi-label variant of
GLAD described in Sec.3). LCA is our model described
in Sec.4.2.

6.1. Datasets and Evaluation Metrics

We applied the models to three datasets: (1) safety-level
data, (2) preposition data, and (3) bluebird data. We created
datasets (1) and (2) by using crowdsourcing and published
the datasets2. Table1 summarizes the basic information on
the datasets.

2http://www.r.dl.itc.u-tokyo.ac.jp/ sato/icml2014/

Safety-Level Data:Analyzing safety-level data is the main
purpose of this study. We analyzed public confusion re-
garding the effects of radioactivity on food products fol-
lowing the Fukushima Daiichi nuclear disaster. We used
Japanese crowdsourcing to prepare this dataset. We asked
crowd workers to judge the safety level of an item by us-
ing two pieces of information on each item: “the name of
the fish or shellfish” and “where its fishing grounds are in
Japan,” as outlined in Fig.1. The number of labels for an-
notation wasL = 5, in which “safety level 1” meant “It’s
dangerous. I will not eat this food” and “safety level 5”
meant “It’s safe. I will eat this food.” We used items de-
scribed in a safety manual on the effects of radioactivity
on food products published in 20123. The number of items
wasM = 97. These items in the safety manual had a
safety level from1 (dangerous) to100 (safe), which was
calculated by using radioactivity measurement and expert
knowledge. We used this information to evaluate models as
a gold safety level. Each item was annotated by50 work-
ers. The evaluation metric was the correlation coefficient
between the gold safety level and the estimated safety level
with the maximum probability ofq(τm).

We used other datasets to compare our model with the other
models in several settings.

Preposition Data: The use of prepositions in English is
often a headache for non-native English speakers. We an-
alyzed public confusion in the use of prepositions. We
collected100 sentences as fill-in-the-blank questions from
the Special English of Voice of America (VOA)4, where
M = 100. We asked crowd workers to select a prepo-
sition by choosing from the labels “on,” “at,” “in,” “for,”
and “to,” which were the prepositions that cause confusion
for Japanese people, i.e.,L = 5. The number of workers
wasN = 47 and each item was annotated by30 workers.
The evaluation metric was the accuracy measured by using
a gold label and an estimated answer that had a maximum
probability ofq(τm), i.e., accuracy=the number of correct
answers /M .

Bluebird Data: We used a dataset called “bluebird,” pub-
lished by Welinder et al. (2010). This dataset included
M = 108 items andN = 39 workers on a fully connected
bipartite assignment graph, where the workers were asked
whether the presented images contained the Indigo Bunting
or Blue Grosbeak, i.e.,L = 2. Each item was annotated by
39 workers. The evaluation metric was accuracy.

3“Complete manual on the effects of radioactivity on food
products” (in Japanese) ISBN-10: 4796696857

4http://learningenglish.voanews.com/



Latent Confusion Analysis by Normalized Gamma Construction

Table 2.Empirical results.
Larger values indicate better performance. If there is an equality of votes in majority voting (MV), we select a label at
random. We tried five random seeds in MV. Note that we could only determine one label in other models even if there was
an equality of votes because we used the maximumq(τm) for labeling items.K+ denotes the effective number of latent
confusion which is estimated by the implicit sparsity of the VB inference. Note that we setK = N in these experiments.

Dataset Evaluation Metric MV(five random seeds) LCA (K+/K) DS GLAD/mGLAD

Safety-level Correlation coefficient 0.525, 0.525, 0.508, 0.510, 0.528 0.571 (20/62) 0.505 0.472
Preposition Accuracy 0.709, 0.719, 0.700, 0.710, 0.710 0.770 (7/47) 0.739 0.750
Bluebird Accuracy 0.759 (No equality of votes) 0.898 (6/39) 0.898 0.722

Top 1 confusion Top 2 confusion Top 3 confusion Top 4 confusion Top 5 confusion

Top 6 confusion Top 7 confusion Top 8 confusion Top 9 confusion Top 10 confusion

Figure 3. Top ten frequent latent confusions behind safety-level data. The size of the gray squares indicates the size of the values of
the confusion probabilities. For simple visualization, a row with no gray squares means that the confusion probability is uniform (see
Sec.6.5).

6.2. Initialization

The results obtained from the DS and GLAD models only
depended on the initialization ofq(τm). We initialized
q(τm) with an empirical distribution by using worker vot-
ing as Dawid and Skene (1979) did in their study, who ob-
served that this initialization was more effective than ran-
dom initializations. We also found in pilot experiments that
voting initialization was more effective than random initial-
izations in the DS and GLAD models. When we used vot-
ing initialization for q(τm) and not random initialization,
we only had to do the experiment once. The results from
LCA depended on the initialization ofq(zj,i) (or q(ck,u,v))
as well asq(τj) and the number of latent confusionsK.
Therefore, it was ideal for LCA that we did not use ran-
domization for the initialization. We devised the following
strategy to initialize LCA. Note that we actually considered
initializing q(ck,u,v) instead ofq(zj,i).

(1) We setK = N andq(zj,i = j) = 1 (0 otherwise),

which means that each worker had a personal confusion
matrix as well as the DS model. We initializedq(τm)
with an empirical distribution by voting like that in the DS
model.

(2) We ran the VB inference withq(zj,i = j) = 1 being
fixed, which meant that we did not use the latent Dirichlet
enhanced modeling. The results in this step only depended
on the initialization ofq(τm) as with the DS model.

(3) We resetq(zj,i = j) = 1/K and initializedq(θj)
andq(ϕk) with their prior distributions.

After these three steps, we ran the VB inference for LCA.
This initialization scheme only depended onq(τm) as with
the DS and GLAD models.

When we setK < N , we select the workers’ personal
confusions in descending order of their expected ability of
Eq[aj ], which is pre-estimated in initialization step2.

We initializedγa = γc = γd = 1.
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Figure 4. Expected frequency of latent confusions in safety-level
data.

6.3. Empirical results for evaluation metric

Table2 summarizes the experimental results. Our model,
LCA, outperformed or was competitive with the other mod-
els in terms of each evaluation metric for each dataset. The
results revealed that using a family of confusion matrices
helped to recover the ground truth. We think one of the
reasons is that our approach is intuitively a kind of multi-
task learning. We could complement the latent judgment
tendencies of workers who assessed the small number of
items by sharing confusion matrices among users. More-
over, when a dataset has a genre or category, e.g., that in
rating movies, a worker has a biased knowledge, which can
be modeled by a family of confusion matrices. In this case,
the confusion matrix of a worker cannot be represented as
one confusion matrix but a combination of various latent
confusion matrices. For example, there can be bias in a
worker’s knowledge due to where they lives in savefy-level
data.

6.4. Effective number of latent confusions

It was well known that the VB inference induced im-
plicit sparcity, which is called a zero-forcing effect (Minka,
2005). This effect enables us to estimate the effective num-
ber of latent confusions. This property is seen in the update
equation ofq(zj,i).

Let K+ be the effective number of latent confusions, i.e.,
the number of principal confusions. We calculatedK+ by
using the number of latent confusions whose expected fre-
quencyE[nk] =

∑
j,i q(zj,i = k) was greater than0.5 in

Table2. The performance of LCA and the DS model was
the same with the bluebird data; however, it was found that
LCA used a smaller number of confusion matrices than the
DS model did.

Figure 4 plots the frequency of latent confusions before
and after the VB inference of LCA in the safety-level data.

“INIT” indicates the frequency in the initialization step,
i.e., each frequency indicates the number of items that each
worker annotated (see Sec.6.2). “LCA” means that the fre-
quency was given after the VB inference, where the fre-
quency was the expected frequency, i.e.,E[nk]. The latent
confusions are sorted in descending order in terms of the
frequency of “LCA.”

6.5. Visualizing Top 10 latent confusions

We analyzed the top 10 latent confusions by frequency
extracted by using LCA in Fig.3, which revealed “pes-
simistic” and “optimistic” confusions in the safety-level
data.

We normalized thek-th confusion matrix, ck, to
make each row a confusion probability, i.e.,c̃k,u,ℓ =

E[ck,u,ℓ]/
∑L

ℓ=1 E[ck,u,ℓ]. The element of a confusion ma-
trix in the u-th row andℓ-th column,c̃k,u,ℓ, expresses the
probability that if an item has true label,u, labelℓ will be
annotated. The size of the gray squares indicates the size of
the values of their elements. We deductedminℓ c̃k,u,ℓ from
each row to enable simple visualization. Therefore, a row
with no gray squares means that the confusion probability
is uniform.

If there are gray squares below the dashed line, confusion
indicates the safety level has been overestimated, which
means “optimistic.” The top1, 2, 7, 8, and9 confusions
seem to be pessimistic, and the others seem to be opti-
mistic. The top1 confusion was less unbiased than the
other confusions. The top4 confusion was much more op-
timistic because safety levels2, 3, and4 could be confused
as safety level5. The top7 confusion was, in comparison,
much more pessimistic. The frequency of each confusion
is plotted in Fig.4.

7. Conclusion

We proposed modeling the annotation and judgment pro-
cesses of humans by using the normalized gamma con-
struction (NGC) of a confusion matrix. The NGC frame-
work flexibly enabled various properties of data to be mod-
eled and it provided an efficient learning algorithm based
on the variational Bayes inference and the fixed point it-
eration algorithm to estimate prior parameters. Therefore,
it had a wide range of applications besides those that we
described in this paper. We also provided the concept of
“latent confusion analysis (LCA),” which was used to an-
alyze the principal confusions behind human annotations
and judgments. We modeled LCA by using NGC and la-
tent Dirichlet modeling. LCA seemed to be increasingly
more important because there is an information overload in
real life and people are too taken in by it.
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