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Abstract

One of the key challenges in using reinforcement
learning in robotics is the need for models that
capture natural world structure. There are meth-
ods that formalize multi-object dynamics using
relational representations, but these methods are
not sufficiently compact for real-world robotics.
We present a physics-based approach that ex-
ploits modern simulation tools to efficiently pa-
rameterize physical dynamics. Our results show
that this representation can result in much faster
learning, by virtue of its strong but appropriate
inductive bias in physical environments.

1. Introduction

One of the fundamental challenges in deploying robots out-
side of the laboratory is that robots must interact with pre-
viously unknown objects. Imagine designing a robot to re-
arrange your furniture. The robot must be able to safely
move each type of object, while avoiding collisions. Rein-
forcement learning (RL) offers an attractive solution: rather
than specifying a complete world model, we can specify a
model space for the robot to estimate and use to plan online.
For this approach to be efficient, the model must represent
relational dynamics that capture how object movement de-
pends on the state of other objects.

Object-Oriented Markov Decision Processes (OO-MDPs)
represent dynamics as a finite set of object attributes and
relationships (Diuk et al., 2008). In this way, OO-MDPs
both manage large state-spaces and can generalize to un-
seen states; however, there are three critical properties that
limit the usefulness of OO-MDPs for real-world dynamics:

1. The dynamics model is discrete, and cannot exploit
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the geometry of physical state spaces (e.g. actions
cause displacements in coordinate frames).

2. Itis missing the notion of an integrator, which models
the evolution of state dimensions conditional on other
state dimensions (e.g. velocity changes position with-
out external force).

3. Relations are represented with first-order predicates,
which cannot define relations parametrically (e.g.
contacty(obji)).

As we will show, the first two issues can be overcome by
using state-space regression as the core dynamics model;
however, overcoming the limitations of first-order predi-
cates to represent relationships for real-world applications
is a more serious challenge.

In this paper we present Physics-Based Reinforcement
Learning (PBRL), where an agent uses a full physics en-
gine as a model representation. PBRL leverages several
decades of progress at distilling physical principles into
useful computational tools that make it possible to simulate
a wide array of natural phenomena, including rigid and ar-
ticulated bodies (Liu, 2013), fabric (Bhat et al., 2003), and
even fluids (Stam, 1999). These tools encode the differen-
tial dynamics and constraints that govern rigid-body behav-
ior and, like the OO-MDP, yield a model parameterization
in terms of a space of object properties. Modern simula-
tors thus offer a large, but structured, hypothesis-space for
physical dynamics. By drawing on these simulation tools,
PBRL can offer a compact and accurate description of re-
lational dynamics for physical systems.

We compare PBRL to OO-LWR, a generalization of OO-
MDP that uses Locally-Weighted Regression as a core dy-
namics model. Our results show that PBRL is considerably
more sample efficient than OO-LWR, potentially leading to
qualitatively different behavior on large physical systems.

2. Preliminaries: OO-MDPs and State-Spaces



BOOMDP

Object Oriented Markov Decision Processes. An MDP
is defined by (S, A, T, R,v) for a state space S, action
space A, transition function 7'(s,a) — P(s), reward func-
tion R(s) — R, and discount factor v € [0,1). The agent
tries to find a policy 7(s) — a which maximizes long-term
expected reward V. (s) = Ex [Y_ o, ¥'7t|so = s] forall s.

In model-based RL, the agent is uncertain about some of
the components of the underlying MDP and must refine its
knowledge from experience. If information about param-
eters is represented in parametric form and updated in ac-
cordance to Bayes’ rule with new information, it is referred
to as Bayesian RL (BRL) (Vlassis et al., 2012). In this
paper we are primarily interested in the transition model
T, and will consider several possible model priors P(T).
The overall object manipulation problem then is to use ob-
served transition samples to update model parameters, and
plan using a learned 7.

The primary objective behind OO-MDPs is to exploit the
unique pattern of stationarity in the dynamics model of
tasks with multiple interacting bodies. Unlike previous
methods for factoring MDP dynamics, such as Dynamic
Bayesian Networks, the OO approach allows model de-
pendencies to vary throughout the state-action space. For
example, the next-state of a chair in a kitchen only de-
pends on the state parameters of other chairs if it is about
to collide with them. To capture this, an OO-MDP de-
fines a set of object classes C = {C1,...,C.} (e.g. ta-
ble, chair, wall), attributes A(C) = {C.aq,...,C.a,} (e.g.
wheels-locked), and relations r : C; x C; — Boolean (e.g.
contact-left(chair, wall)) enumerating the possible rela-
tionships between objects.

These relations allow dependencies to be formalized as a
collection of functions that convert a state into a set of
boolean literals, the “condition” associated with that state:

Cond(sa a) = {pl (Sv a),pz(s, a)v cee 7pn(53 a)}

In this fashion, the OO-MDP uses a collection of first-order
expressions to partition the state-action space into sets with
homogeneous dynamics. Model learning then amounts to
learning the action effects under each condition, where a
condition is a particular assignment to the OO-MDP predi-
cates and attributes, rather than for each state.

Physical domains and State-Space Dynamics. This pa-
per is concerned with physical planning, such as object
manipulation with mobile robots or sprites in physically-
realistic video games. The low-level state representation in
these domains is typically the position and velocity of one
or more rigid bodies. This representation is referred to as
the state-space representation in control theory, and comes
from Newton-Euler dynamics (Sontag, 1998). Actions cor-
respond to the forces and torques that can be applied to
these bodies to move them. Standard notation defines a

state-space in terms of state x and control u:

T = f(xvu) (1

where 2z is the first time-derivative of the state; however,
in order to remain consistent with the RL literature we will
use s to denote the state, a to denote actions, and s’ to de-
note next state. This corresponds to the discrete-time ver-
sion of Eq. 1, as is common in the controls literature, and
is obtained by applying f(s,a) for a finite time-interval.
When state vectors include more than one object we use
superscripts to indicate the state dimensions, (e.g. s’ for
object 7).

In general we assume that the agent can apply forces di-
rectly to one object at a time (though objects may interact
via contact). Consequently, an action is uniquely defined
by a force and torque vector and a target-object identifier.
In two dimensions, we require six parameters to represent
the state s*: two for position in the (x,y) plane, one for
orientation 6, and three for their derivatives. An action re-
quires four parameters: two for the force (f,, f,), one for a
torque 7y, and one for a target object index . For k objects
this results in the overall model signature of:

FROH) — R 0)
3. A Physics-Based Approach

The central focus of this paper is to identify and exploit
the structure of physical object dynamics. To motivate our
approach, we first describe OO-LWR, an implementation
of OO-MDP generalized to handle state-space dynamics.

3.1. Object-Oriented Locally-Weighted Regression
3.1.1. COLLISION PREDICATES

In the original OO-MDP, contact predicates were tied to the
adjacency properties of states arranged in a grid; however,
in reality objects can come into contact from any orienta-
tion, and react according to where the collision occurred in
the coordinate-frame of the object. To handle this reality,
the object boundary can be discretized into a set of n; con-
tact sectors, each of which is assigned a contact predicate:

contacty, (0bj), . .., contacty, (obj)

Importantly, sector predicates must be computed in the co-
ordinate frame of the object. For example, the reaction of a
shopping cart to a collision depends on its direction relative
to its wheels, not the grocery store in which it is located.

Fig. 1 illustrates sector-based collision detection applied to
objects in an apartment. Lines indicate the level of dis-
cretization, and dark (red) dots represent the sectors in col-
lision. The number of sectors n is a free parameter of the
model.
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Figure 1. Detecting collision sectors for contact predicates (OO-
LWR) in an apartment task.

3.1.2. LOCAL STATE-SPACE MODELS

As mentioned in Section 2, state-space dynamics are differ-
ential, defining displacements from the current state. Ob-
jects can also have differential constraints (e.g. wheels)
causing transitions to be non-linear in the state and action
parameters; therefore, the effect model must be (a) compat-
ible with the state-space representation, (b) invariant to ob-
ject pose, and (c) capable of representing non-linear func-
tions.

The building block for state-space regression models
matching Eq. 2 are scalar-valued predictors of the form
f(R"™) — R! for each dimension of each object. To
simplify notation here we use the superscript to denote in-
dividual state dimensions of a single object, rather than an
object index (e.g. si denotes the  coordinate of object 1
at time ¢ = 0, not the full state of object 1). For a single
object the function f(s¢, a;) — s} can be written as:

(st at) + e s,}/
= 3)

[ (s¢,ae) + € st

For these individual predictors we use locally-weighted re-
gression (we summarize the main properties of LWR here,
but for a more thorough overview see (Nguyen-Tuong &
Peters, 2011)). LWR is a kernel-based generalization of
linear regression that permits interpolation of arbitrary non-
linear functions. In LWR, a kernel function is used to com-
pute a positive distance w; = k(X*, X?) between a query
point X* and each element X i of the training set, which
are collected into a diagonal matrix . Kernels are typi-
cally decreasing functions of distance from the query, such

as the Gaussian or “squared-exponential”: k(X*, X*)
e~ (XT=X")%/X

Defining the training data X := [s, a]{_, and y := [s']L,,
and the query X* := [s*,a*], state predictions can be

estimated for each output dimension with weighted least-
squares:

B = (XTWX) ' XTwy,’ 4)
s;=X"T8; 5)

In contrast to parametric approaches, the model parameters
(£* are re-computed for each query. As a result, the regres-
sion coefficients may vary across the input space, allowing
LWR to model nonlinear functions with linear machinery.

Pose invariance is achieved by first transforming s; and
a; to the s; frame, then dropping the position compo-
nents of s;. Transforming all observations in this fash-
ion yields a displacement model for individual objects that
generalizes across position, at the expense of being able
to capture position-dependent effects. However, the only
position-dependent effect in the domains we consider is
collisions, which are handled by the contact predicates.
Furthermore, learning collisions between dynamic bodies
with LWR would require a single monolithic model over
the joint state-space of all objects, which would require
an infeasible number of observations. Therefore in OO-
LWR we use a collection of independent single-body, pose-
invariant LWR models.

In two-dimensions the resulting signature for a single-body
LWR model is f(R®) — R®, which computes a state dis-
placement in the query frame (note that angular velocity is
frame-independent in two-dimensions):

F(&,9,0, fo, £y 70) — (62, 6y,80,6%,69,0)  (6)

The overall transition in the original state space is then ob-
tained by transforming the local-frame position, orienta-
tion, and linear velocity back to the world-frame. In this
fashion, LWR can exploit the geometric nature of the state-
space representation, where coordinate transformations are
internal to the regression model (challenge 1). By build-
ing a regression model in which a given output dimension
can depend on multiple state dimensions, this approach can
also effectively handle integration effects (challenge 2). We
now discuss how these models can be fit.

3.1.3. FITTING OO-LWR MODELS

Recall that the purpose of predicates in an OO-MDP is to
segment the state-action space into sets with distinct ob-
ject dynamics. The process of training an OO-LWR model
on a history of observations h = [s;, ay, s¢41]1_ is there-
fore achieved by assigning observations to effect models
by condition, where a condition is a boolean string con-
taining the output of all relations (e.g. collision predicates)
applied to that state. For example, all training instances in
which the front of a given chair is in collision should be
assigned to the same condition. By using state-space re-
gression for the individual effect models, OO-LWR is able
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to model rigid body motion for multiple objects; however,
OO-LWR does not naturally admit a compact representa-
tion of the space of possible collisions. As we will see,
there are considerable performance implications for larger
domains.

3.2. Physics-based Reinforcement Learning

In PBRL the basic idea is to view a physics engine as a hy-
pothesis space for arbitrary nonlinear rigid-body dynamics.
This representation allows us to compactly describe transi-
tion uncertainty in terms of the parameters of the underly-
ing physical model of the objects in the world. We capture
this uncertainty using distributions over the relevant physi-
cal quantities, such as masses and friction coefficients, and
obtain transitions by taking the expectation of the simula-
tor’s output over those random variables.

3.2.1. PHYSICAL QUANTITIES AS LATENT VARIABLES

At its core, a physics engine uses systems of differential
equations to capture the fundamental relationship between
force, velocity, and position. During each time step the
engine is responsible for integrating the positions and ve-
locities of each body based on extrinsic forces (e.g. pro-
vided by a robot), and intrinsic forces (i.e. differential con-
straints).

Differential constraints are ubiquitous in natural environ-
ments, and arise whenever bodies experience forces that
depend on their configuration relative to one another. A
wheel rolling along a surface, a door rotating around a
hinge, and a train gliding along a track are all examples
of differential constraints acting on a body. For RL pur-
poses, these parameters provide attractive learning targets
that may prove more efficient than more general functional
forms, such as non-parametric regression.

In PBRL we model the state-space dynamics f in terms of
the agent’s beliefs over objects’ inertial parameters and the
existence and parametrization of physical constraints, such
as wheels. Like a standard Bayesian regression model, this
model includes uncertainty in the process input parameters
(physical parameters) and in output noise. If f(:; é) de-
notes a deterministic physical simulation parameterized by

®, then the core dynamics function is:

Sep1 = f(se,a8;P) + € )

where & = (qg)le denotes a full assignment to the relevant
physical parameters for all n objects in the scene, and € is
zero-mean Gaussian noise with variance 0.

For any domain, ® must contain a core set of inertial pa-
rameters for each object, as well as zero or more con-
straints. Inertial parameters define rigid body behavior in
the absence of interactions with other objects, and con-
straints define the space of possible interactions.

In the general case inertia requires 10 parameters; 1 for
the object’s mass, 3 for the location of the center of mass,
and 6 for the inertia matrix; however, if object geometry
is known, we can reduce this to a single parameter m by
assuming uniform distribution of mass.! This is sufficient
for our purposes (for a full parametrization see (Niebergall
& Hahn, 1997; Atkeson et al., 1986)).

We focus on three types of constraints that arise frequently
in mobile manipulation applications: anisotropic friction,
distance, and non-penetration.

Anisotropic friction is a velocity constraint that allows sep-
arate friction coefficients in the x and y directions, typ-
ically with one significantly larger than the other. An
anisotropic friction joint is defined by the 5-vector J,, =
(Wg, Wy, We, g, Ly), corresponding to the joint pose in
the body frame, and the two orthogonal friction coeffi-
cients. Anisotropic friction constraints can be used to
model wheels, tracks, and slides.

A distance joint is a position constraint between two
bodies, and can be specified with a 6-vector J; =
(iq, b, g, Gy, by, by) Which indicates the indices of the two
target objects a and b as well as a position offset in each
body frame. Distance joints can be used to model orbital
motion, such as hinges or pendulums.

Non-penetration, or contact constraints, are responsible for
ensuring objects react appropriately when they come into
contact. Object penetration is detected during state integra-
tion based on object geometry, and is resolved by comput-
ing two types of collision-forces. The first is normal to each
collision surface, and pushes objects apart. The magnitude
of this force is controlled by the coefficient of restitution
r, which is a rigid-body property that can be interpreted as
“bounciness”. The second is tangential to each collision
surface, which captures contact friction and allows trans-
fer of angular momentum. This force is proportional to a
contact-friction coefficient ..

In general this model-space is over-complete: not all bod-
ies will have both hinges and wheels. The model must
therefore allow constraint effects to be added and removed.
This can be accomplished by including auxiliary variables
for represented components, e.g. using a Dirichlet Process
prior on constraints; however, this issue can be avoided for
cases where the effects of interest can be represented with
a finite number of constraints, and where individual con-
straints can be nullified for certain parameter settings.

We satisfy these conditions by including only a single
wheel constraint, and bounding the number of distance
constraints by the number of unique pairs of objects. One
wheel is sufficient for modeling the bodies typically found

"Mass is often parameterized in this fashion in modern simu-
lation tools, such as Box2D (Catto, 2013)
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Figure 2. Graphical model depicting the online model learning
problem, and the assumptions of PBRL, in terms of states s and
actions a. Latent variables I' (geometric properties) and & (dy-
namics properties) parameterize the full time-series model. 7 (-)
denotes the policy and f(-) denotes the dynamics function. We
assume I to be observable.

indoors, such as shopping carts and wheel chairs, be-
cause they have only one constrained axis (multiple coaxial
wheels can be expressed by a single constraint). The wheel
can be nullified by zeroing the friction coefficients, and the
distance constraints can be nullified by setting i, = 1.

In summary, our dynamics model for a single body is rep-
resented by a set ¢ containing the mass m, restitution r,
contact-friction ., plus k distance constraints J¢, and a
single anisotropic constraint J*.

¢ = {m,r, p.} U{JF U {JvH (8)

Fig. 2 illustrates our approach and modeling assumptions.
We split object parameters into two sets according to
whether they are potentially observable by the agent. The
first, ®, denotes the un-observable physical properties that
are needed to parameterize object dynamics, such as fric-
tion and mass. The second, I', describes geometric infor-
mation such as polygons or meshes, and are needed to com-
pute inertial forces and collision effects. Note that these
both describe physical object properties, and are distinct
from object state parameters (position and velocity). We
then define @ = ® U T as the full set of object properties
which are sufficient to parametrize the physical dynamics
of all objects in the model.

Inferring ® from s and a is the model learning problem,
and is the focus of this work. Deciding a from s and ®
is the planning problem, which we consider in Section 4.
Inferring s and I" from sensor observations is the vision
problem, which is outside the scope of this work.

In summary, PBRL provides a model prior for object dy-
namics in terms of a small set of latent physical parame-
ters. The goal of this approach is expressiveness, and the
core technical challenge is estimating ® from time-series
data, considered next.

Property (x) Distribution
m,r Log-Normal (.., 02)
ey Has oy Truncated-Normal (f14, 02,0, 1)
Wy, Wy, Az, 4y Truncated-Normal(p, 02, a %, aZ¥ )
by, by Truncated-Normal (1., 02, b2, brY )
We Von-Mises( iy s Kuw, )
T, tp Categorical(p,)

Table 1. Univariate distributions for each physical parameter, with
* used to indicate subscripting for the appropriate property.

3.2.2. A PRIOR OVER PHYSICAL MODELS

In order to fully specify a PBRL model we must as-
sign priors over each parameter of each body to restrict
support to legal values. Mass m and restitution r can
take values in R*, all friction coefficients {fic, fts, oy }
can take values in [0,1], all position-offset parameters
{wz, Wy, ag, ay, by, by} can take values within the bounds
of the appropriate object, orientation {wy} can take values
in [—m, 7], and index 4, i} can take values in {1, . .., k} for
k objects in the world. To represent the agent’s beliefs over
these parameters, we assign the distributions denoted in Ta-
ble 1 for each object. In general this model prior would be
initialized with uninformative values, and be updated from
posterior statistics as the agent receives data, considered
next.

3.2.3. FITTING PHYSICAL MODELS

Now we consider inferring physical parameters ® from a
history of manipulation data {s;, a¢, s¢41}7—o. Let h de-
note a matrix of observed transitions:

s1 a1 8
So  ag sh
h= . ) . 9

sy ar S

We should use h to update the the agent’s beliefs about
® and the noise term o. In a Bayesian approach this is
expressed as the model posterior given history h:

_ __P(n|®,0)P(®)P(0)
J., P(h|®,0) P(@)P(0)

P(®,0lh) (10)

where & = {¢1,¢02,..., ¢k} is the collection of hidden
parameters for the & objects in the domain, and o is a scalar.
This expression is obtained from Bayes’ rule, and defines
the abstract model inference problem for a PBRL agent.

The prior P(®) can be used to encode any prior knowledge
about the parameters, and is not assumed to be of any par-
ticular parametric form. For a particular assignment to ®,
Eq. 7 implies a Gaussian likelihood over next states:
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Eq. 11 tells us that the likelihood for proposed model pa-
rameters are evaluated on a Gaussian centered on the pre-
dicted next state for a generative physics world parameter-
ized by P (i.e., with known geometry and proposed dynam-
ics). Due to Gaussian noise, the log-likelihood for & is ob-
tained by summing squared distances between the observed
value and the predicted state for each state and action:

In P(h|®,0) x — Z ((s; — f(st, a4 &)))2 (12)

t=1

Along with the prior defined in Table 1, this provides the
necessary components for a Metropolis sampler for Eq. 10.
These posterior samples can then be used by a (stochastic)
planner, which we consider next.

For planning, transition samples from a PBRL model can
be obtained by first sampling the physical parameters ®
from the model posterior, stepping the physics world for
the appropriate state and action, and (optionally) sampling
the output noise. If P(®,o|h) represents the agent’s cur-
rent model beliefs given a history of observations h, the full
generative process for sampling transitions in PBRL is:

0~ P(®,0]h)
€~ N(0,0%) (13)
sie1 = [(s,a;®) + e

4. Multi-Body State-Space Planning

Planning in object-oriented physical domains follows the
typical structure of model-based RL algorithms: an agent
uses sampled transitions to construct a domain model, and
selects actions using this model with a planning algorithm.
Optimal planning and control for high-dimensional non-
linear physical systems with differential constraints is an
open problem in optimal control and robotics (Sontag,
1998).

A popular approach for robotics domains is gradient-based
policy-search, such as the PILCO framework (Deisenroth
et al.,, 2013). Despite being policy based, PILCO can
handle collisions and multiple objects with an appropriate
choice of shaping potentials for pushing objects away from
obstacles (Deisenroth et al., 2011); however, these meth-
ods require gradients of the cost function, which for the
model-based case requires that the dynamics function be
differentiable. At present we have not explored methods for
obtaining derivatives of physical models parameterized by

E—

— —— —_— @)
]

@l

ssssss i o
(a) Shopping Cart (b) Apartment

Figure 3. Simulated manipulation domains

physical properties although this is an exciting direction of
future work which is complementary to the model-learning
problem considered here.

For simplicity we turn to forward-search, value-based plan-
ning. In principle, sparse-sampling and other Monte-Carlo
methods are compatible with our domains and modeling
assumptions. However, the domains we are interested were
too complex to achieve reasonable results with these meth-
ods, even by coarsely discretizing the state space. We
therefore obtained the results presented below using A*
(LaValle, 2006), which had access to the ML estimates of
OO-LWR and the MAP estimates from PBRL. Note that
although A* discretized the state space for the sake of plan-
ning, transitions were still computed using the full contin-
uous representation (to machine precision).

5. Evaluation

We evaluate OO-LWR and PBRL w.r.t noise sensitivity,
scalability, and model mis-specification (PBRL only). We
use a realistic two-dimensional physical simulation based
on the Box2D engine (Catto, 2013) extended to include
anisotropic friction. Fig. 3 shows our two domains: a
single-body world containing a shopping cart, and a multi-
body world containing several types of household furniture.
In all cases reward is proportional to the L, distance of the
objects from user-defined goal configurations.

5.1. Shopping Cart Task

The first task is to push a shopping-cart to the goal config-
uration marked by the red cross in Fig. 3(a). The cart was
modeled as a single body with a wheel constraint parallel
to the handle axis, and behaved similarly to a real shopping
cart which can pivot around points along the wheel axis, but
can not translate along the same axis. Because the cart can
collide with the wall, the model must be able to handle col-
lisions. It must also be capable of modeling the non-linear
behavior of the cart with sufficient accuracy to produce a
plan over the long horizon of the task.

We present results under two learning conditions for this
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task: one which is noise-free, and a second in which the
training observations were corrupted by Gaussian noise
(0 = 0.25). In addition to our primary comparison of
PBRL and OO-LWR, we also include the performance
of an agent directly using the LWR model described in
Section 3.1.2. This was included to decouple the object-
oriented approach from the use of an effect model which
can model state integration. An agent given access to the
true model is provided as a baseline.

Fig. 4(a) shows the online performance of agents using
each of these models in the noise-free condition. Each trace
represents an average over 10 episodes. At each step the
agent received an observation, updated its model, and se-
lected a new action using an A* planner.

In the absence of noise the PBRL agent was able to recover
the true model after two steps, and performed nearly as well
as the baseline agent. The OO-LWR agent was slower to
learn, but also reached the goal configuration. We note that
despite attaining the same final reward, the online behav-
ior of these agents was very different. Because OO-LWR
had to (re)learn a separate model for each collision sector, it
tended to bump into walls. This behavior was not penalized
in the reward function here, but in situations where colli-
sions are undesirable are during learning, the margin be-
tween PBRL and OO-LWR could be considerably higher.

The LWR agent failed to reach the goal configuration be-
cause it lacked the ability to model collisions, due to pose-
invariance. It was therefore greedy with respect to the re-
ward function, and the value at which it plateaus corre-
sponds to the distance of the wall separating the start and
goal configurations.

In the presence of training noise we observed the same
overall pattern of results, but with more gradual learning
as was required to average out the noise. What appears to
be a small steady-state error for the OO-LWR agent was in
fact due to this trace averaging across runs, some of which
had not obtained sufficient accuracy to plan a successful
path around the wall.

5.2. Apartment Rearrangement Task

The next task is a multi-object rearrangement problem in
a simulated apartment, and demonstrates the behavior of
both methods at larger scales. The apartment task contains
11 objects with various shapes and physical properties, in-
cluding fixed wheels (dining table, office desk), large mass
(couch, bed), small mass (chairs), and a revolute constraint
(kitchen table).

The prior for PBRL is a categorical distribution defined
over a collection of pre-learned modes from individual ob-
ject trials. This was done because sampling a joint set of
object parameters under the continuous prior in Table 1 us-

ing MCMC was very slow to mix. Addressing this issue
with more sophisticated mixture-based priors and sampling
methods will be a topic for future work.

Fig. 4(c) compares the online performance of PBRL and
OO-LWR on the apartment task. In this domain, the inef-
ficiency of OO-LWR is apparent: even after 1000 obser-
vations the OO-LWR agent was incapable of modeling do-
main dynamics with sufficient accuracy to produce a valid
plan. This result is not surprising, given that OO-LWR re-
quires 2/CI"s separate effect models to fully describe the
collision space over |O| objects. However, the physics-
based representation of collision dynamics yields qualita-
tively different behavior. In contrast to the predicate-based
approach, the PBRL agent quickly obtained an accurate es-
timate of full relational dynamics of the task, and produced
a viable plan.

6. Related Work

The Relocatable-Action MDP (RAMDP) (Leffler et al.,
2007) proposed a clustering method for generalizing ac-
tion effects across states. This was successfully applied
to robot-navigation in a small domain (without velocity).
In each dynamics regime (wood, cloth, or collision), robot
motion was sufficiently consistent to cluster together, re-
sulting in a more compact model. The core strength of
this approach, in contrast to for example Factored-MDPs
(Degris et al., 2000), is that statistical dependency between
attributes is no longer stationary but rather on a function
which is evaluated at each query state. The OO-MDP (Diuk
et al., 2008) can be viewed as a successor to this idea,
which formalizes the state-clustering process using first-
order predicates, and introduces object attributes as argu-
ments to these predicates.

The idea of estimating physical parameters from data has
a rich history in the robotics, graphics, and computer vi-
sion literature. It arises in vision for model-based track-
ing (Kakadiaris & Metaxas, 2000; Duff et al., 2010), and
in graphics for data-driven tuning of simulation parameters
e.g. for cloth simulation (Bhat et al., 2003), rigid-body mo-
tion (Bhat et al., 2002), and even humanoid motion (Liu
et al., 2005).

The challenge of controlling an initially unknown system
and estimating its relevant parameters online has also been
addressed within the controls subfield indirect adaptive
control (Landau, 2011). Adaptation is typically done in
two stages. In the first stage, the dynamical system pa-
rameters are estimated using a Parameter Adaptation Algo-
rithm (PAA). In the next stage, these parameter estimates
are used to update the controller. While most PAA meth-
ods assume a linear mode (Landau, 2011), PBRL can be
seen as an PAA method supporting non-linear model es-
timation using Bayesian approximate inference. As such,
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k A Ng Mgps € prior MCMC
Shopping Cart 1000 1.5 4 10 20 continuous 2e4,1€3,10,30
Apartment 1000 1.5 4 10 20 categorical 5e3,1e3,10,1

Table 2. Table of the relevant algorithm parameters for each experiment. k: number of nearest neighbors (LWR,00-LWR), A: bandwidth
(LWR,00-LWR), ns: number of sectors (OO-LWR), n¢,s: number of raycast collision tests per sector (OO-LWR), e.: collision radius
(OO-LWR), prior: type of prior (PBRL), MCMC: sampler parameters (iterations, burn-in, thin, number of chains) (PBRL).
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Figure 4. Online performance of various agents under different domain sizes and training conditions.

PBRL is complementary to the existing controls literature.

7. Discussion and Conclusions

In this paper we presented two physics-inspired approaches
to modeling object dynamics for physical domains. The
first, OO-LWR, leveraged only the geometric properties
of physical dynamics, and the second extended this by
exploiting modern physical simulation methods. Our re-
sults suggest that PBRL has a learning bias which is well
matched to RL tasks in physical domains.

An example of a reasoning pattern enabled by a PBRL
representation is illustrated in Fig. 5, which depicts a
Navigation Among Movable Obstacles (NAMO) problem
(LaValle, 1998). In NAMO the task is to find a minimum-
cost path to a goal position which may be obstructed by
movable obstacles. If the robot begins with no knowledge
of the dynamics of these obstacles, it can benefit from the
learning efficiency of the PBRL approach. We demon-
strated this in (Levihn et al., 2012; 2013) in which a pre-
liminary version of PBRL enabled a robot to quickly infer
that a round table is indeed static, without having to try ev-
ery action at its disposal.

Extending this work will require broadening the set of
physical models supported by a single PBRL prior. How-
ever, this greater expressiveness comes at the cost of a
larger parameter space. In order to be feasible for online
applications, our goal is to find the right balance between
over-precise physical models which are brittle and hard to
fit, and coarse models that lack expressive power. We feel
that the wheel model presented here provides such an ex-

|
4

Figure 5. (a) Initial state (b) expected outcome (c) actual outcome;
model updated (d) final solution

ample for furniture-like applications. However, in real-
world scenarios, it may be useful to incorporate the flex-
ibility of non-parametric methods into a PBRL approach,
in order to guard against model mis-specification.

More generally, PBRL can be viewed as an ontological
constraint on the world model: it is governed by the laws
of physics. We hope that this approach helps to close the
representational gap between the sorts of models used in
Reinforcement Learning and the models that robotics engi-
neers use in practice. If successful, this approach may yield
opportunities for learning representations that are currently
engineered by hand in robotics.
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