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Abstract
TD(λ) is a core algorithm of modern reinforce-
ment learning. Its appeal comes from its equiv-
alence to a clear and conceptually simple for-
ward view, and the fact that it can be imple-
mented online in an inexpensive manner. How-
ever, the equivalence between TD(λ) and the for-
ward view is exact only for the off-line version of
the algorithm (in which updates are made only at
the end of each episode). In the online version of
TD(λ) (in which updates are made at each step,
which generally performs better and is always
used in applications) the match to the forward
view is only approximate. In a sense this is un-
avoidable for the conventional forward view, as it
itself presumes that the estimates are unchanging
during an episode. In this paper we introduce a
new forward view that takes into account the pos-
sibility of changing estimates and a new variant
of TD(λ) that exactly achieves it. Our algorithm
uses a new form of eligibility trace similar to but
different from conventional accumulating and re-
placing traces. The overall computational com-
plexity is the same as TD(λ), even when using
function approximation. In our empirical com-
parisons, our algorithm outperformed TD(λ) in
all of its variations. It seems, by adhering more
truly to the original goal of TD(λ)—matching an
intuitively clear forward view even in the online
case—that we have found a new algorithm that
simply improves on classical TD(λ).

1. Why True Online TD(λ) Matters
Temporal-difference (TD) learning is a core learning tech-
nique in modern reinforcement learning (Sutton, 1988;
Kaelbling, Littman & Moore; Sutton & Barto, 1998;
Szepesvári, 2014). One of the main challenges in rein-
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forcement learning is to make predictions, in an initially
unknown environment, about the (discounted) sum of fu-
ture rewards, the return, based on currently observed fea-
ture and a certain behavior policy. With TD learning it
is possible to learn good estimates of the expected return
quickly by bootstrapping from other expected-return esti-
mates. TD(λ) is a popular TD algorithm that combines
basic TD learning with eligibility traces to further speed
learning. The popularity of TD(λ) can be explained by its
simple implementation, its low computational complexity,
and its conceptually straightforward interpretation, given
by its forward view.

The forward view of TD(λ) (Sutton & Barto, 1998) is that
the estimate at each time step is moved toward an update
target known as as the λ-return; the corresponding algo-
rithm is known as the λ-return algorithm. The λ-return
is an estimate of the expected return based on both subse-
quent rewards and the expected-return estimates at subse-
quent states, with λ determining the precise way these are
combined. The forward view is useful primarily for under-
standing the algorithm theoretically and intuitively. It is not
clear how the λ-return could form the basis for an online
algorithm, in which estimates are updated on every step,
because the λ-return is generally not known until the end
of the episode. Much clearer is the off-line case, in which
values are updated only at the end of an episode, summing
the value corrections corresponding to all the time steps of
the episode. For this case, the overall update of the λ-return
algorithm has been proven equal to the off-line version of
TD(λ), in which the updates are computed on each step, but
not used to actually change the value estimates until the end
of the episode, when they are summed to produce an over-
all update (Sutton & Barto, 1998). The overall per-episode
updates of the λ-return algorithm and of off-line TD(λ) are
the same, even though the updates on each time step are
different. By the end of the episode they must sum to the
same overall update.

One of TD(λ)’s most appealing features is that at each step
it only requires temporally local information—the immedi-
ate next reward and next state; this enables the algorithm to
be applied online. The online updates will be slightly dif-
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ferent from those of the off-line version of TD(λ) because
the estimates change during the episode and these partici-
pate in determining the λ-returns. Thus the overall effect
of online TD(λ) by the end of the episode will not equal
that of the off-line λ-return algorithm. They may be close
if the step-size parameter is small and the episode is short,
but in general the overall updates will differ. On balance
this is a good thing (for online TD(λ)) because online TD
updates are generally better than off-line ones (see Sutton
& Barto, Sections 7.1–3). What is needed is not an online
way to produce the same results as the (off-line) λ-return
algorithm, but rather a new forward view for the online
case, with a new online λ-return-like algorithm, and then
a new version of TD(λ) that achieves the same result when
applied online.

This is exactly what we provide in this paper. First we
present a new online forward view, based on a modified
λ-return, which we call the truncated λ-return. Then we
present a new version of TD(λ) that obtains exact step-by-
step equivalence with our online forward view. We call this
variation true online TD(λ) because it is truer to the idea of
TD(λ) as matching a λ-based forward view. Empirically,
we demonstrate that true online TD(λ) also performs better
on three benchmark problems.

2. Problem Setting and Notation
In this section, we formally present our learning frame-
work, the various versions of TD(λ), and the conventional
forward view. As a convention, we indicate random vari-
ables by capital letters (e.g., St, Rt), vectors by bold letters
(e.g., θ, φ), functions by lowercase letters (e.g., v), and sets
by calligraphic font (e.g., S, A).

2.1. Markov Reward Processes

We focus in this paper on discrete-time Markov reward
processes (MRPs), which can be described as 4-tuples of
the form 〈S, p, r, γ〉, consisting of S, the set of all states;
p(s′|s), the transition probability function, giving for each
state s ∈ S the probability of a transition to state s′ ∈ S
at the next step; r(s, s′), the reward function, giving the
expected reward after a transition from s to s′. γ is the dis-
count factor, specifying how future rewards are weighted
with respect to the immediate reward.

The return at time step t is the discounted sum of rewards
observed after time step t:

Gt =

∞∑
i=1

γi−1Rt+i .

An MRP can contain terminal states, dividing the sequence
of state transitions into episodes. When a terminal state is

reached the current episode ends and the state is reset to the
initial state. The return for an episodic MRP is defined as:

Gt =

T−t∑
i=1

γi−1Rt+i ,

where T is the time step that the terminal state is reached.

We are interested in learning the value-function v of an
MRP, which maps each state s ∈ S to the expected value
of the return:

v(s) = E{Gt |St = s} .

2.2. Function Approximation

In the general case, the state-space can be huge or even
continuous. In such cases it is not possible to represent
the value function v exactly. In this case, or when data-
generalization is desired, function approximation is used to
represent v. The approximate value-function v̂(s,θ) gives
the approximate value of state s, given a weight vector θ.
Our learning algorithms produce a sequence of weight vec-
tors θt, and as a shorthand we use v̂t(s) = v̂(s,θt).

A common approach is to use linear function approxima-
tion, in which case the value of a state is the inner product
between the weight vector θ and a state-dependent feature
vector φ(s). In this case, the value of state s at time step t
is approximated by:

v̂t(s) = θ
>
t φ(s) =

∑
i

θi,t φi(s) ,

where φi(s) is the value of feature i in state s, and θi,t is
the weight of that feature at time step t. It s is a terminal
state, then by definition φ(s) = 0, so that v̂t(s) = 0. We
also use the shorthand φt = φ(St).

Although TD(λ) is not strictly speaking a gradient-descent
method (Barnard, 1993) it is still useful to view it in these
terms (as in Sutton & Barto, 1998). Stochastic gradient
descent involves incremental updates of the weight vector
θ at each time step in the direction of the gradient of the
time step’s error. The updates can generally be written as

θt+1 = θt + α [Ut − v̂t(St)]∇θt
v̂t(St) , (1)

where Ut is the update target and ∇θt
v̂t(St) is the gradi-

ent of v̂ with respect to θt. In the case of linear function
approximation, this gradient has a particularly simple form:

∇θt
v̂t(St) = φt .

There are many ways to construct an update target Ut from
observed states and rewards. For example, Monte Carlo
methods use the full return as the update target:

Ut = Gt .
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TD methods use an update target that is based on value
estimates of other states. For example, the TD(0) update
target is:

Ut = Rt+1 + γv̂t(St+1) . (2)

The update (1) is an online update, meaning that the weight
vector is updated at every time step t. Alternatively, the
weight vector can be updated off-line. With off-line updat-
ing, the weight vector stays constant during an episode, and
instead the weight corrections are collected on the side. Let
the weight vector for (all of) episode k be θk. The weight
correction for time step t of this episode is:

∆t = α [Ut − v̂k(St)]∇θk
v̂k(St) .

After the episode has terminated, the weight vector is up-
dated by adding all weight corrections collected during the
episode:

θk+1 = θk +

T−1∑
t=0

∆t .

Online updating not only has the advantage that it can be
applied to non-episodic tasks, but it will in general also
produce better value-function estimates under temporal-
difference learning (see Sutton & Barto, 1998, Sections
7.1–3).

2.3. Linear TD(λ)

Under linear function approximation, the TD(0) method,
based on update target (2), performs at time step t + 1 the
following update:

θt+1 = θt + α δtφt ,

where
δt = Rt+1 + γ θ>t φt+1 − θ

>
t φt (3)

is called the TD error. This update only affects the weights
θi for which φi is non-zero at time step t. The idea behind
TD(λ) is to update weights for which φi was non-zero in
the (near) past as well. This is implemented by means of an
eligibility vector e, which reflects how much each feature
is ‘eligible’ for the current TD error. TD(λ) performs an
update of each θi, with the current TD error, proportional
to its trace value ei:1

θt+1 = θt + δtet . (4)

The original linear TD(λ) (Sutton, 1988) used accumulat-
ing traces, in which et is initialized to the zero vector, 0,
and then updated according to:

et = γλet−1 + αφt , (5)

where λ ∈ [0, 1]. Note that for λ = 0, the TD(λ) update re-
duces to the TD(0) update. Algorithm 1 shows pseudocode
for linear TD(λ) with accummulating traces.

1We fold the step-size α into the eligibility vector.

Algorithm 1 linear TD(λ) with accummulating traces
initialize θ arbitrarily
loop {over episodes}

initialize e = 0
initialize S
repeat {for each step in the episode}

generate reward R and next state S′ for S
δ ← R+ γ θ>φ(S′)− θ>φ(S)
e← γλe+ αφ(S)
θ ← θ + δe
S ← S′

until S is terminal
end loop

Singh and Sutton (1996) introduced an interesting variation
on the traces of TD(λ) called replacing traces. These traces
do not increase with repeated visits to a state (or state fea-
ture) but are rather reset to a constant value (generally 1)
each time the state (or state feature) is visited. The trace
due to the re-visit does not add to the existing trace, it re-
places it. Replacing traces result in faster and more reli-
able learning on many problems (Sutton, 1996). Replacing
traces are usually defined only for discrete states or linear
function approximation with binary features (that are either
1 or 0, present or not present). We generalize the update
slightly to allow the features to take on any values, and in-
clude α in the trace, as follows:

ei,t =

{
γλei,t−1 if φi,t = 0

αφi,t if φi,t 6= 0
for all i .

This update, with (4), is exactly the same as TD(λ) with
replacing traces as it has been explored in the literature,
and also allows us to use the same idea with features that
take on non-binary values, as in the experiments later in
this paper.

2.4. The Conventional Forward View

The conventional forward view relates TD(λ) (with accu-
mulating traces) to the λ-return algorithm. This algorithm
performs at each time step a standard update (1) with the
λ-return as update target. The λ-return Gλt is an estimate
of the expected return based on a combinations of rewards
and other estimates:

Gλt = (1− λ)
∞∑
n=1

λn−1G
(n)
t,θ ,

with θ the weight vector corresponding to the current
episode, and G (n)

t,θ the n-step return, defined by:

G
(n)
t,θ =

n∑
i=1

γi−1Rt+i + γn θ>φt+n . (6)
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For an episodic task, the λ-return is defined as:

Gλt = (1− λ)
T−t−1∑
n=1

λn−1G
(n)
t,θ + λT−t−1G

(T−t)
t,θ , (7)

where T is the time step that the terminal state is reached.
Because the value of a terminal state is always 0, the last
n-step return in this equation is equal to the full return:

G
(T−t)
t,θ =

T−t∑
i=1

γi−1Rt+i = Gt .

Note that for λ = 0, Gλt is equal to the TD(0) update target
(2). On the other hand, for λ = 1, Gλt is equal to the full
return Gt.

It has been shown that off-line TD(λ) is equal to the (off-
line) λ-return algorithm (Sutton & Barto, 1998; Sutton,
1988). However, online TD(λ) is only approximately equal
to the online λ-return algorithm. In fact, no version of on-
line TD(λ) can be constructed that matches the online λ-
return algorithm exactly, because the λ-return uses rewards
and states beyond the current time step. In Section 3, we
present a new forward view that can be implemented on-
line.

2.5. Other Variations on TD(λ)

Several variations on TD(λ) other than those treated in
this paper have been suggested in the literature. Shapire
and Warmuth (1996) introduced a variation of TD(λ) for
which upper and lower bounds on the accuracy of the value
estimate of the current state can be derived and proven.
Maei, Sutton, and others (Maei, 2011; Maei & Sutton,
2010; Sutton et al, in preparation; Sutton et al., 2009) have
explored generalizations of TD(λ)-like algorithms to off-
policy learning, in which the behavior policy (generating
the data) and the target policy (whose value function is be-
ing learned) are allowed to be different. Although in this
paper we consider only the on-policy case, where these two
policies must be the same, extending the ideas of true on-
line TD(λ) to the off-policy case would be an interesting
and natural avenue of future work.

3. An Online Forward View
The conventional forward view assumes that the value esti-
mates are constant during an episode. Consequently, the
online TD(λ) algorithm matches the forward view only
approximately. In order to construct a version of online
TD(λ) that matches the forward view exactly, we have
to think more carefully about what we mean by the term
‘online’. In Section 2.2 we specified that online learning
means that the value estimates are updated at every time
step. This definition does not rule out the possibility that

the update at time step t, uses information beyond time
step t. One could for example record a sequence of state
transitions and rewards, and at the end of an episode use
the full sequence to construct update targets for all visited
states. When the λ-return is used as the basis for an online
forward view, this broad interpretation of the term online
is required, because the λ-return is an update target that is
based on the full experience sequence.

On the other hand, if we look at online TD(λ) the term
online seems to mean something more restrictive. Specifi-
cally, online TD(λ) uses for the update at time step t only
information up to time step t. This restriction is what
makes online TD(λ) very generally applicable. For ex-
ample, it can be applied to non-episodic tasks, and can be
easily generalized to control tasks. We will call the more
restrictive definition of online, as applies to online TD(λ),
strict-online. The goal of this section is to define a strict-
online forward view.

To construct a strict-online forward view, we start by defin-
ing a version of the λ-return that is truncated at a specific
time step. Let t′ be the time step the λ-return is truncated.
The truncated λ-return Gλ|t

′

t is defined as:

G
λ|t′
t = (1− λ)

t′−t−1∑
n=1

λn−1G
(n)
t,θt+n−1

+ λt
′−t−1G

(t′−t)
t,θt′−1

. (8)

Note that this definition is closely related to the definition
of regular λ-return for episodic tasks (7). Basically, T is
replaced by t′, and the weight vectors used in the n-step
returns have now a specific time index.

The idea behind the new strict-online forward view is in
essence a simple one: at each time step, the truncated λ-
returns from all previous time steps are updated, such that
they are now truncated at the current time step; the weight
vector of the current time step is determined by sequen-
tially performing TD backups, using the updated λ-returns,
starting from the initial weight vector, θinit. The weight
vectors for the first three time steps are shown below. We
use a second index for θ to indicate at which time step the
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λ-returns are truncated.2

θ0,0 : θ0,0 = θinit ,

θ1,1 : θ1,0 = θinit

θ1,1 = θ1,0 + α0

[
G
λ|1
0 − θ>1,0 φ0

]
φ0 ,

θ2,2 : θ2,0 = θinit

θ2,1 = θ2,0 + α0

[
G
λ|2
0 − θ>2,0 φ0

]
φ0 ,

θ2,2 = θ2,1 + α1

[
G
λ|2
1 − θ>2,1 φ1

]
φ1 ,

θ3,3 : θ3,0 = θinit

θ3,1 = θ3,0 + α0

[
G
λ|3
0 − θ>3,0 φ0

]
φ0 ,

θ3,2 = θ3,1 + α1

[
G
λ|3
1 − θ>3,1 φ1

]
φ1 ,

θ3,3 = θ3,2 + α2

[
G
λ|3
2 − θ>3,2 φ2

]
φ2 ,

More generally, the weight vector θt,k is incrementally de-
fined by the equation:

θt,k = θt,k−1 + αk−1

[
G
λ|t
k−1 − θ

>
t,k−1 φk−1

]
φk−1 (9)

for 0 < k ≤ t, with θt,0 = θinit.

Note that θi,j for j < i are temporary ‘helper’ vectors. In
the context of the true online forward view, θt refers to θt,t.
For example, the value estimate of state s at time step t is:

v̂t(s) = θ
>
t φ(s) = θ>t,tφ(s) .

We call the algorithm that computes θt,t at each time step
t the truncated λ-return algorithm. Note that for λ = 0 the
following holds:

G
0|t′
t = G

(1)
t,θt

= Rt+1 + γθtφt+1 .

Hence, for λ = 0 the truncated λ-return algorithm is equiv-
alent to TD(0). For λ = 1, at the end of an episode (t′ = T )
the following holds:

G
1|T
t = G

(T−t)
t,θT−1

= Gt .

Hence, for λ = 1 the values at the end of an episode com-
puted by the truncated λ-return algorithm are equal to those
computed by (an online, step-size version of) Monte-Carlo.

The truncated λ-return algorithm is an expensive method,
and requires storage of all observed states and rewards. In
the next section, we introduce a new online TD(λ) version
that implements the strict-online forward view efficiently
using eligibility traces.

2For ease of exposition, we focus on the linear case. However,
our approach can be extended to the non-linear case in a straight-
forward way.

4. True Online TD(λ)
This section present the online TD(λ) method that matches
the new online forward view exactly. First the algorithm
itself is presented, then its equivalence to the new online
forward view is proven. The section finishes with empirical
results demonstrating the benefits of the algorithm.

4.1. The Algorithm

True online TD(λ) forms the backward view of the trun-
cated λ-return algorithm. Like traditional TD(λ), it updates
feature weights proportional to a decaying eligibility trace.

The three update equations that specify the algorithm are
as follows:

δt = Rt+1 + γθ>t φt+1 − θ
>
t−1φt (10)

et = γλet−1 + αtφt − αtγλ[e>t−1 φt]φt (11)

θt+1 = θt + δt et + αt[θ
>
t−1φt − θ

>
t φt]φt (12)

Comparing these three equations with equations (3), (4)
and (5) — the update equations for traditional TD(λ) —
reveals that the the true online TD(λ) updates are different
in the following ways:

• δt: θ>t−1φt is used instead of θ>t φt.

• et: the term −αtγλ[e>t−1 φt]φt is added.

• θt+1: the term αt[θ
>
t−1φt − θ

>
t φt] is added.

Algorithm 2 shows pseudo-code that implements the true
online TD(λ) equations. For λ = 0, the algorithm is equiv-
alent to (regular) TD(0).

Algorithm 2 true online TD(λ)
initialize θ arbitrarily
loop {over episodes}

initialize e = 0
initialize S
v̂S ← θ>φ(S)
repeat {for each step in the episode}

generate reward R and next state S′ for S
v̂S′ ← θ>φ(S′)
δ ← R+ γv̂S′ − v̂S
e← γλe+ α

[
1− γλ e>φ(S)

]
φ(S)

θ ← θ + δe+ α
[
v̂S − θ>φ(S)

]
φ(S)

v̂S ← v̂S′

S ← S′

until S is terminal
end loop
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4.2. Equivalence to the Online Forward View

In this section, we prove that the values computed by true
online TD(λ) are exactly the same as those computed by
the truncated λ-return algorithm. We start by deriving two
lemmas.

Lemma 1 G
λ|t′
t , used by the truncated λ-return algorithm,

is related to δt, used by true online TD(λ) ((10)), as fol-
lows:

G
λ|t′+1
t −Gλ|t

′

t = (γλ)t
′−tδt′ .

Proof The truncated λ-return algorithm uses Gλ|t
′

t ((8))
with θτ(n) = θt+n−1, resulting in:

G
λ|t′
t = (1−λ)

t′−t−1∑
n=1

λn−1G
(n)
t,θt+n−1

+λt
′−t−1G

(t′−t)
t,θt′−1

.

From this it follows that Gλ|t
′+1

t is:

G
λ|t′+1
t = (1− λ)

t′−t∑
n=1

λn−1G
(n)
t,θt+n−1

+ λt
′−tG

(t′+1−t)
t,θt′

.

Subtracting Gλ|t
′

t from G
λ|t′+1
t results in

G
λ|t′+1
t −Gλ|t

′

t = λt
′−t[G

(t′+1−t)
t,θt′

−G(t′−t)
t,θt′−1

] . (13)

Similarly, using (6), it can be shown that subtracting
G

(t′−t)
t,θt′−1

from G
(t′+1−t)
t,θt′

yields:

G
(t′+1−t)
t,θt′

−G(t′−t)
t,θt′−1

= γt
′−t[Rt′+1 + γθ>t′φt′+1 −

θ>t′−1φt′
]

= γt
′−tδt′ .

Substituting this result in (13) yields the lemma.

Using Lemma 1, the following lemma can be derived.

Lemma 2 The following equation holds:

θt+1,t − θt,t = γλδtet−1,

with δt and et−1 defined by (10) and (11), respectively.

Proof The proof structure is a proof by induction. First we
prove that if for some k, 1 ≤ k < t, the following equation
holds:

θt+1,k − θt,k = (γλ)t+1−kδtek−1 , (14)

then it also holds for k + 1. We then show that it holds
for k = 1. Hence, by induction, it also holds for k = t,
proving the lemma.

Subtracting θt,k+1 from θt+1,k+1 using (9) yields:

θt+1,k+1 − θt,k+1 = θt+1,k − θt,k
+αk

[
G
λ|t+1
k −Gλ|tk

− (θt+1,k − θt,k)> φk
]
φk

If (14) holds for k, this can be rewritten as (using Lemma
1):

θt+1,k+1 − θt,k+1 = (γλ)t+1−kδtek−1

+αk

[
(γλ)t−kδt

− (γλ)t+1−kδt(ek−1)
> φk

]
φk

= (γλ)t−kδt

[
γλek−1 + αkφk

−αkγλ(e>k−1 φk)φk
]

= (γλ)t−kδtθk

This proves that if (14) holds for k, it holds for k + 1.

Computing θt+1,1 − θt,1 using (9) yields:

θt+1,1 − θt,1 = θt+1,0 − θt,0
+αk

[
G
λ|t+1
0 −Gλ|t0

− (θt+1,0 − θt,0)> φ0

]
φ0

Using θt+1,0 = θt,0 = θinit and Lemma 1 this reduces to:

θt+1,1 − θt,1 = αk(γλ)
tδtφ0

This demonstrates that (14) holds for k = 1.3 By induction,
it follows that (14) also holds for k = t, proving the lemma.

We are now ready to prove our main theorem.

Theorem 1 θt,t, computed by the truncated λ-return al-
gorithm, is the same as θt, computed by true online TD(λ),
for all time steps t.

Proof Using (9), θt+1,t+1 can be written as:

θt+1,t+1 = θt+1,t + αt

[
G
λ|t+1
t − θ>t+1,t φt

]
φt . (15)

Rewriting Lemma 2 as:

θt+1,t = θt,t + γλδtet−1 ,

3 Technically, initialization of et occurs for t = −1, that is,
e−1 = 0. Using (11) it follows that e0 = α0φ0.
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and substituting this in (15) yields:

θt+1,t+1 = θt,t + γλδtet−1 + αt[Rt+1 + θ
>
t,tφt+1]φt

−αt[(θt,t + γλδtet−1)
>φt]φt

= θt,t + γλδtet−1 + αt[δt + θ
>
t−1,t−1φt]φt

−αt[θ>t,tφt + γλδte
>
t−1 φt]φt

= θt,t + γλδtet−1 + αtδt φt

−αtγλδt[e>t−1 φt]φt
+αt[θ

>
t−1,t−1φt − θ

>
t,tφt]φt

= θt,t + δt et + αt[θ
>
t−1,t−1φt − θ

>
t,tφt]φt

This final equation shows that the weight update from one
time step to the other for the truncated λ-return is the same
as the weight update for true online TD(λ) ((12)).

4.3. Empirical Results

We compare the performance of true online TD(λ) with tra-
ditional TD(λ) with accumulating and replacing traces on a
random-walk task. The random-walk task is shown in Fig-
ure 1 forN = 6 (N being the total number of states, includ-
ing the terminal state). In our experiment we use N = 11.
The transition probability in the direction of the terminal
state, p, is set to 0.9. Initial θ is 0 and γ = 0.99.

We used linear function approximation with two types of
features, resulting in two different tasks. The feature values
of these two tasks are shown in Table 1 (forN = 6). In task
1, there are (at most) 3 non-zero features for each state. In
task 2, the number of non-zero features is between 1 and
N − 1. For the terminal state all features have value 0. The
L2-norm of φ(s) is 1 for all non-terminal states.

For the considered features of both tasks, the true state val-
ues can be represented exactly with linear function approx-
imation. We specify the performance of a method as the
root-mean-squared (RMS) error of the value estimates of
all non-terminal states at the end of an episode with respect
to their true values (which are analytically determined), av-
eraged over the first 10 episodes and 100 independent runs.

s2s1 s3 s4 s5 s6
+1

p 

1-p 

Figure 1. Random-walk forN = 6 states (experiments usedN =
11). Transition probability to the right is p; transition probability
to the left is 1 − p. All rewards are 0, except transition to the
terminal state (s6), which results in a reward of +1. The initial
state is s1.

Figure 2 shows the performance on both tasks for α from
0 to 1.5 with steps of 0.01 and λ from 0 to 0.9 with steps
of 0.1 and from 0.9 to 1.0 with steps of 0.025. Figure 3

Table 1. Feature values for random-walk task 1 and task 2 for
N = 6.

s1 s2 s3 s4 s5 s6
Task 1 φ1 1 1/

√
2 1/

√
3 0 0 0

φ2 0 1/
√
2 1/

√
3 1/

√
3 0 0

φ3 0 0 1/
√
3 1/

√
3 1/

√
3 0

φ4 0 0 0 1/
√
3 1/

√
3 0

φ5 0 0 0 0 1/
√
3 0

Task 2 φ1 1 1/
√
2 1/

√
3 1/

√
4 1/

√
5 0

φ2 0 1/
√
2 1/

√
3 1/

√
4 1/

√
5 0

φ3 0 0 1/
√
3 1/

√
4 1/

√
5 0

φ4 0 0 0 1/
√
4 1/

√
5 0

φ5 0 0 0 0 1/
√
5 0

shows the performance for the different λ values at the best
α value.

While the return has an upper bound of 1, accumulating
traces get errors above 1 on both tasks, indicating diver-
gence of values. While replacing traces does not result in
divergence of values for the considered step-sizes, it has no
effect in the second task. True online TD(λ) is the only
method that achieves a performance benefit (with respect
to TD(0)) on both tasks.

0 0.5 1
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

λ

RMS        
error       

Task 1

 

 

T
D

(λ), accum
ulating

T
D

(λ), replacing

tru
e
 o

n
lin

e
 T

D
(λ)

0 0.5 1
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

λ

RMS        
error       

Task 2

 

 

TD(λ), replacing
true online TD(λ)

TD
(λ

), 
ac

cu
m

ul
at

in
g

Figure 3. RMS error of state values at the end of each episode,
averaged over the first 10 episodes, as well as 100 independent
runs, for different values of λ at the best value of α.

5. Control
The true online TD(λ) algorithm (Algorithm 2) can be eas-
ily modified for control. Simply using a feature vector con-
sisting of state-action features (i.e., using φ(s, a) instead
of φ(s)) changes the algorithm to a true online Sarsa(λ)
algorithm.
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Figure 2. RMS error of state values at the end of each episode, averaged over the first 10 episodes, as well as 100 independent runs, for
different values of α and λ.

Figure 4 compares true online Sarsa(λ) with the traditional
Sarsa(λ) implementation on the standard mountain car task
(Sutton & Barto, 1998) using 10 tilings of each 10×10 tiles.
Results are plotted for λ = 0.9 andα = α0/10, forα0 from
0.2 to 2.0 with steps of 0.2. Clearing/no clearing refers
to whether the trace values of non-selected actions are set
to 0 (clearing) or not (no clearing), in case of replacing
traces. The results suggest that the true online principle is
also effective in a control setting.

6. Conclusion
We presented for the first time an online version of the for-
ward view which forms the theoretical and intuitive foun-
dation for the TD(λ) algorithm. In addition, we have pre-
sented a new variant of TD(λ), with the same compu-
tational complexity as the classical algorithm, which we
call true online TD(λ). We proved that true online TD(λ)
matches the new online forward view exactly, in contrast
to classical online TD(λ), which only approximates its
forward view. In addition, we demonstrated empirically
that true online TD(λ) outperforms conventional TD(λ) on
three benchmark problems. It seems, by adhering more
truly to the original goal of TD(λ)—matching an intuitively
clear forward view even in the online case—that we have
found a new algorithm that simply improves on TD(λ).
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Figure 4. Average return over first 20 episodes on mountain car
task for λ = 0.9 and different α0. Results are averaged over 100
independent runs.
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